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We investigate the effect of isolated scattering centers on the electronic transport in metallic carbon nano-
tubes. It is found that the impurity potential significantly alters the overlap of electronic wave functions and
results in a rapid oscillation in the conductance and the shot noise. Furthermore, the conductance and the shot
noise near the neutral Fermi energy depend periodically on the relative position of the scatterers and on the
phase factor � which is generated by the scattering. If two defects are in the same sublattice and �d�ac, the
conductance near the neutral Fermi energy is dropped to G0=2e2 /h approximately and the shot noise decreases
to zero when �=1, but the conductance decreases to zero if �=� or �2; whereas, the situation is reversed for
the configuration in which two defects are in the different sublattices. For the case of closely paired defects, it
is predicated that a small “energy gap” would be developed in “metallic” nanotubes. A comparison of our
numerical results and the analytical calculations of the effective-mass approximation is presented.
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I. INTRODUCTION

Carbon nanotubes �CNTs� have attracted much attention
in the last decade because of their special electrical proper-
ties and potential applications in nanodevices.1–8 Theoretical
and experimental investigations have revealed that the elec-
tronic structures of CNTs depend only on their geometries
and are characterized by chirality vectors �n ,m�.9 It is found
that CNTs are metallic if the differences n−m are multiples
of 3, otherwise, they are semiconducting. The exact metallic
phase of the single-walled nanotube �SWNT� may be modi-
fied by various interactions such as the intertube interaction.
As an example, it has been shown that the finite tube curva-
ture alters the overlap of the �-electron wave function and
may result in a small energy gap in a metallic tube.10

The key to the development of CNTs-based electronic de-
vices is the method in controlling and tuning their electronic
properties. Recent progress in experimental techniques has
made it possible to fabricate a CNTs-based system with con-
trollable defects or damages. Experimental observation
shows that the atoms in a CNT can be released under elec-
tron or ion irradiations effectively, and some vacancies are
left in SWNTs behind.11 A single vacancy can reduce the
conductance at neutral Fermi energy to one-half of that of a
perfect tube.12,13 Therefore, artificially introducing defects
represent a promising method of realizing this goal is to
create some local scattering centers if it is controllable and
reversible. By using the voltage pulses from a metal-coated
antiferromagnetic tip14 or the high-energy electron beam15 to
cause the local damages in CNTs, local defects can be cre-
ated. Recently, Yuzvinsky et al.16 reported a method of re-
moving material locally from carbon nanotubes with the
low-energy focused electron beam of a scanning electron mi-
croscope. Because clean precise cuts can be made onto nano-
tubes, the electronic transport properties of the CNTs devices
are, then, modified.

Many important information on the electron transport can
be obtained from the conductance characteristics. Like the
conductance, the shot noise can be used to characterize the

transport properties of mesoscopic conductors.17–21 It stems
from the charge quantization and is fundamentally connected
to the statistical properties of the entities which generate the
noise.22 The shot noise is rather remarkable in experiments
for mesoscopic systems. In a quantum microstructure, the
fluctuations arise from the quantum-probabilistic character of
electrons transmitted through the sample. The shot noise is
suppressed in systems where electron transport is perfectly
ballistic. Only for ideal perfect CNTs free of any disorders
and external disturbance, one would not observe any detect-
able shot noise. However, it is inevitable in CNTs due to
various disturbances such as the impurities, external fields,
or distortions under pressure. The shot noise has been mea-
sured in CNTs bundles 23 and in SWNTs.24 In the present
paper we investigate theoretically and numerically the elec-
tron transport and shot noise in CNTs with paired defects
whose positions are correlated. The defects are regarded as
local scattering centers here. The interference between wave
functions scattered from these local defects would lead to
oscillations in both the conductance and the shot noise. We
will investigate how the conductance and the shot noise de-
pend on the geometrical configurations of paired defects on
the CNTs and study the effect of correlated defects in the
electronic transport. The studies shows that a “gap” would be
generated at the neutral Fermi energy and a dip in conduc-
tance is emerged when the distance of two defects �d is
small. Unanimously, the shot noise is an oscillatory function
of the relative distance when �d is much greater than C-C
bonds length. In Sec. II, the model and the calculation
method will briefly be described. Section III presents the
numerical results of the conductance and the shot noise is
presented in the Sec. III. Using the effective mass theory,25

thecharacteristic behaviors near the neutral Fermi energy are
investigated analytically. The conclusions are summarized in
Sec. IV.

II. MODEL AND METHOD

We consider an armchair CNT with two defects on it. The
structure of a two-dimensional �2D� graphite �a� and corre-
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sponding Brillouin zone �b� are shown in Fig. 1. For simplic-
ity, two defects are the same and are located on two different
carbon atomic sites in CNT. Since the position of the first
defect can be chosen to be the origin, then the second defect
is located at �d,

�d = l1a1 + l2a2 + �t , �1�

where a1 and a2 are the unit lattice vectors of the 2D graph-
ite, while l1 and l2 are integers, and t= � 1

3
��a1+a2� is the

vector which connects two neighboring atoms A and B �as
seen in Fig. 1�. It is easy to see that two defects are located
on the same sublattice if �=0, while two defects are located
on different sublattices if �=1. In our approach, the scatter-
ing potentials due to the defects are modeled by two point-
like potentials. It is assumed that two defects are located at r1
and r2, respectively. From Eq. �1� we have r2−r1=�d. The
defects are described by a short-range potential, V�r�
=g���r−r1�+��r−r2�� with the strength g.

The conductance at zero temperature can be calculated by
the Landauer-Büttiker formula G= �2e2 /h�Tr T. The trans-
mission coefficient is given by T= ��LGr�RGa� �Ref. 26�
with �L�R�= i�	L�R�

r −	L�R�
a �, where 	L�R�

r = �	L�R�
a �† is the self-

energy due to the left �right� lead, and Gr�a� is the retarded
�advanced� Green function of SWNT. It is found to be

Gr = �
+ − HC − 	L
r − 	R

r �−1 �2�

and Ga= �Gr�†, where 
+=
+ i0+ and HC is the Hamiltonian
of the center part of nanotube. The effects of leads are com-
pletely incorporated into the self-energy 	L�R�

r . Considering
the leads to be semi-infinite, the self-energy 	L�R�

r can be
written as

	L
r = hLC

† gL
r hLC, 	R

r = hCRgR
r hCR

† , �3�

where hLC �hRC� is the coupling matrix which is determined
by the geometry of connection between the conductor and
the left �right� surface of contact. gL�R�

r are the Green’s func-
tions of the left �right� lead. Regarding the semi-infinite leads
as the infinite stacks of elementary layers with nearest-
neighbor interactions, the original system can be transformed
into a linear chain of elementary layers. Then, we can use the

method given in Refs. 27 and 28 to define Th and T̄h. The

Green functions are given by G10=ThG00 and G01=G00T̄h.

The self-energies are found to be 	R
r =h01Th and 	L

r = T̄hh01
† .

According to Refs. 27 and 28, Th and T̄h can be computed
with the formulas

Th = t0 + t̃0t1 + t̃0t̃1t2 + ¯ + t̃0t̃1t̃2 ¯ tn

and

T̄h = t̃0 + t0t̃1 + t0t1t̃2 + ¯ + t0t1t2 ¯ t̃n, �4�

where tn and t̃n are obtained

tn+1 = �1 − tnt̃n − t̃ntn�−1tn
2

and

t̃n+1 = �1 − tnt̃n − t̃ntn�−1t̃n
2, �5�

iteratively. In the calculation the initial condition t0= �

−h00�−1h10 and t̃0= �
−h00�−1h01 are iterated. The procedure
is stopped until the element of the matrix tn and t̃n are small
enough to be neglected.

In the investigation of the shot noise, the Fano factor �
over a frequency range �� will be calculated. The Fano fac-
tor is a measure of the deviation from the classical Poisso-
nian behavior and is expressed in the form of

� =
���I�2�

�2e/h���I
, �6�

where ���I�2� is the current fluctuation and is found to be29

���I�2� =
2e2��

h
Tr��1 − T�T��eV� �7�

at the small bias V and low temperature limit. For a perfect
CNT, the electrons transmit through the CNT without reflec-
tion; the shot noise is, therefore, fully suppressed which can
be reached directly from the Landauer-Büttiker formula.

III. RESULTS AND DISCUSSION

A. Numerical results of conductance and shot noise

The conductance and the shot noise of CNTs with two
defects at different spatial locations have been calculated nu-
merically. We will focus on the effect of the relative distance
of defects on the transport properties. In the calculation of
the electronic structure of SWNT’s, a tight-binding model is
adopted in which one � electron orbital per carbon atom is
kept and the on-site energy is taken to be zero. The constant
nearest-neighbor carbon bond hopping integral �0 is chosen
as −3.0 eV.

Because two carbon atoms A and B in an unit cell of
graphite belong to two different sublattices, the defect can
occupy one of the lattice sites. Therefore, the configurations
of CNT with two pointlike defects can be classified into two
different types: AA type and AB type. For the AA-type con-
figuration, the two defects locate at the same sublattice, i.e.,
�=0; while for the AB type, one defect locates at the A
sublattice and another one locates at the B sublattice, i.e.,

FIG. 1. �a� Graphite lattice. The y axes are along the armchair
axes. The unit lattice vectors are a�1 and a�2. t� is the vector connect-

ing two neighboring atoms. �b� b�1 and b�2 are the reciprocal lattice
vectors.
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�=1. The most interesting property in the charge transport is
mainly characterized by those electronic properties near the
Fermi energy. We will first discuss this energy region in de-
tail. For a metallic CNT, the Fermi “surface” is described by
two points K and K� which satisfy K−K�= � 1

3
��b1−b2�,

where b1 and b2 are reciprocal lattice vectors as shown in
Fig. 1. Under the Born approximation, the matrix element
near the Fermi points of two pointlike potentials can be writ-
ten in the form of

�K�V�r��K�� = �K�g��r��K�� + �K�g��r − �d��K��

= �1 + ���K�g��r��K�� , �8�

where �=exp�−i�K−K�� ·�d�. From Eq. �1� it is found �
=exp�−i�2� /3��l1− l2��.

First, we discuss the AA-type configuration of paired de-
fects. In the evaluation of the matrix element �K �V�r� �K��, it
is found that there are only three different possible values,
which correspond to three different kinds of configurations
of paired defects respectively, i.e., l1− l2=3N+1, 3N+2, and
3N. For these three configurations, the corresponding values
of � are �=�, �=�2, and �=1, respectively, where �
�exp�i�2� /3��. It is noted that the configurations of l1− l2

=3N+1, and l1− l2=3N+2 or 3N−1 are equivalent because
their matrix elements are mutually conjugated. Based on
these analyses we can conclude that there are only two typi-
cal behaviors for conductances in the region near the Fermi
energy at 
F=0. It should be pointed out that for any metallic
CNTs, such a classification is independent of the choice of
�d. In general, �d is not unique due to the cylindrical struc-
ture of CNTs so that we can define a different �d� which
satisfies �d�=C−�d, where C=na1+ma2 is the circumfer-
ence of metallic CNT. Because of its metallic character, we
have the relation n−m=3K. Hence, �d� and �d belong to
the same class.

For different configurations of paired defects in a �6,6�
nanotube, the conductance and the Fano factor as the func-
tions of Fermi energy are shown in Fig. 2 �nd−md=3N� and
Fig. 3 �nd−md=3N±1�, respectively. It is found that the be-
haviors for the configurations nd−md=3N and nd−md
=3N±1 are completely different in the region near the Fermi
energy 
F=0. The conductance is reduced by one unit G0
=2e2 /h for nd−md=3N while is dropped to zero for nd−md
=3N±1. From our previous qualitative analysis, the prefac-
tor of �K �V�r� �K�� �see Eq. �8�� for the case of nd−md

=3N is real and has the maximum value. This leads to the
finite value of transmission when the Fermi energy is set to
be zero. If nd−md=3N±1 this prefactor is complex and re-
sults in significant destructive interference. Furthermore, it is
shown that the shot noise is fully suppressed for the configu-
ration nd−md=3N �Fig. 2�. This indicates that only one
eigenchannel is open if paired defects satisfy nd−md=3N.
However, for the case of nd−md=3N±1, all eigenchannels
have been closed at the regime near the zero Fermi energy,
so the shot noise reaches its maximum value. By increasing
the Fermi energy, the second channel is opened so that the
transmission is enhanced and the conductances jump to 2G0
near the energy of 
=1.470 eV in both cases of Figs. 2 and 3,
abruptly. This difference in the conductance for two different

defect configurations will be further discussed in the next
section using the effective mass theory.

For the AB-type configurations of paired defects on CNT,
these two defects are located at two different sublattices.
Thus, we have �=1 and �d= l1a1+ l2a2+ t. Similar to the
AA-type configuration, the corresponding classification can
also be defined in terms of the phase factor �. The �s can
still take three different values only: �, �2, and 1. For the
case of �=1, the conductance and the Fano factor are plotted
in Fig. 4. It is found that near to 
F=0, the behaviors of the
conductance and the Fano factor in the AB-type configura-
tions of defects has manifested a similar behavior as those in
an AA-type configuration of defects with �=� and �2. The
conductance is suppressed to zero approximately and the
Fano factor reaches to unit, i.e., �	1. Figure 5 shows the
conductance and the shot noise with � equal to � or �2. It is
shown that near 
F=0, the conductance is around G0 but the

FIG. 2. The conductance �upper panel� and the Fano factor
�lower� vs energy for �6,6� CNTs in the presence of two defects,
which are in same sublattice. The relative distance �d=nda1

+mda2 satisfying nd−md=3N or �=1. The distance �d is much
greater than the C-C bond length.

FIG. 3. The conductance �upper panel� and the Fano factor
�lower� vs energy for �6,6� CNTs in the presence of two defects,
which are in same sublattice. Here nd−md=3N±1 and �=� or �2.
The distance �d is much greater than the C-C bond length.
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shot noise is dropped to zero which indicates it is suppressed
if the distance of two defects is much greater than the length
of the C-C bond. For the case of these two defects to be
nearest neighbors, the conductance at 
F=0 is a little smaller
than 2G0.30 It is worth emphasizing that although the above
results are obtained for �6,6� nanotubes, they are generally
applicable to metallic tubes and do not depend on the chiral-
ity of the CNTs. Such a classification for the transport prop-
erties in metallic CNTs can be regarded to be universal.

In order to see the variance of the conductance and the
Fano factor with the separations of two defects in AB-type
configuration, the conductance and the Fano factor have been
investigated with the different �d. Figure 6 shows that for
�=1 while Fig. 7 for �=� or �2. It is shown that if the
distance �d is much larger than the C-C bond length �more
than 10ac�, the electron band structure would not be changed
by the variance of a relative distance between these two in-
dividual defects significantly and the conductance and the
shot noise of tubes depend on the phase factor �s. This in-
dicates that these two defects act as two isolated scattering

centers. As shown in the two lower panels in Figs. 6 and 7,
the interference of electrons scattered off the two separated
scattering centers results in an oscillatory behavior in the
conductance and the shot noise. The behaviors near 
F=0 are
dramatically related to the relative distance of two defects.

In comparison to that of large separation of two defects,
properties of the transport are quite different when �d is
comparable to the C-C bond length. When the two defects
are very close to each other, the electron band structure is
significantly altered. It is found that the two upper curves in
Fig. 6 are quite similar to that in Fig. 7 so that the depen-
dence of both the conductance and the shot noise on the
values of � is not distinct. The reason is that a gap can be
generated when the value of �d is around ac for any value of
�. The gap would disappear when �d increases slightly.

B. In comparison of the analytic result

To understand the behaviors of the conductance and the
shot noise near neutral Fermi energy, we present an analysis

FIG. 4. The conductance and shot noise of a �6,6� SWNT with
two defects in different sublattices having �=1. The distance �d is
much greater than the C-C bond length.

FIG. 5. The conductance and shot noise of a �6,6� SWNT with
two defects in different sublattices having �=� or �2. The distance
�d is much greater than the C-C bond length.

FIG. 6. The conductance �solid line� and Fano factor �dashed
line� vs Fermi energy for the �6,6� SWNT with two defects in dif-
ferent sublattices having �=1. The relative distance of the two
defects are �a� ��d � =ac, �b� 5ac, �c� 8ac, and �d� 
259ac.

FIG. 7. The conductance �solid line� and Fano factor �dashed
line� vs Fermi energy for the �6,6� SWNT with two defects in dif-
ferent sublattices having �=� or �2. The relative distance of the
two defects are �a� ac, �b� 
28ac, �c� 
109ac, and �d� 
373ac.
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based on the effective mass theory.25 To this end, we expand
the Hamiltonian at the K and K� point and retain the linear
terms only. The matrix representation of the potential due to
a defect localized at in r0 is given as,

VA�r� = g

KA KA� KB KB�

�
1  0 0

* 1 0 0

0 0 0 0

0 0 0 0
� ��r − r0�

and

VB�r� = g�
0 0 0 0

0 0 0 0

0 0 1 

0 0 * 1
���r − r0� ,

where =exp�−i�K−K�� ·r0� and g is the potential strength.
There are two right-going channels K+ and K+� as well as two
left going channels K− and K−� in the vicinity of 
F=0. The
scattering matrix can be written as

S =

K−

K−�

K+

K+�

K+ K+� K− K−�

�
rKK rKK� tKK� tKK�

�

rK�K rK�K� tK�K
� tK�K�

�

tKK tKK� rKK� rKK�
�

tK�K tK�K� rK�K
� rK�K�

�
� . �9�

These analytical results can be applied to the systems for
both AA-type and AB-type configurations.

For the AA-type configuration with nd−md=3N and a
larger �d, the transmission matrix t can further be written
as25

t =
K+

K+�

K+ K+�

 1
2 − 1

2e−i�K−K��.�d

− 1
2ei�K−K��.�d 1

2

� . �10�

By using the formulas of conductance and the shot noise it is
obtained G=G0 and �=0. Therefore, the shot noise is fully
suppressed at 
F=0. Since the two defects at the equivalent
sites produce quasibound states of the same energy level, it is
equivalent to the situation of a single defect on the tube with
strength 2g. Therefore the results given here are very similar
to those for a single defect.12,31 The above analysis is in
agreement with the numerical result in Fig. 2.

However, for an AA-type configuration with nd−md
=3N±1 and larger �d, the transmission matrix can be writ-
ten as

t =�1 −
ig

�0L + igg0
0

0 1 −
ig

�0L + igg0

� , �11�

where L is the circumference of CNT and g0 is found to be25

g0�x,y� =
− i

��0
� duy�

n


eiux�n�x+iuyy

�ux�n�2 + uy
2� − ��/�0 + i0�2

with ux�n�= �2�n /L�−Kx and uy =ky −Ky. Here 


= ��0 �
ux�n�2+uy
2.

Then, it is obtained the analytical expressions for the con-
ductance

G = 2
2e2

h

�0
2L2 + g2�g0 − 1�2

�0
2L2 + g2g0

2

and the shot noise

SI = 4
e2

h
�eV�2

��0
2L2 + g2�g0 − 1�2��2g0 − 1�g2

��0
2L2 + g2g0

2�2 .

Near the Fermi energy 
F=0, we have g0	1. In the limit of
the larger potential strength g→�, we have G�0 and �
�1. This is in agreement with the numerical result in Fig. 3.

For an AB-type configuration, the conductance behavior is
reversed to those in AA-type configurations as seen in Figs. 4
and 5 if the distance of two pointlike potentials is far enough
�more than 20 nm�. The conductance at 
F=0 equals G0 for
�=� or �2 and is dropped to zero for �=1. However, there
is no simple analytical solution for this. It has been shown
that the relative distance of two defects will change the levels
of quasibound states.30 If these two defects are closer to each
other, the quasibound states would be generated. Such qua-
sibound states are similar to the “bonding” and “antibond-
ing” states which can be constructed from two inequivalent
states �A and �B.30 The separation between bonding and an-
tibonding states would be decreased with increasing �d. If
the relative distance is larger than that of C-C bond, the
separation tends to zero and results in a minimum value in
the conductance, as shown in Figs. 6�d� and 7�d�.

IV. SUMMARY AND CONCLUSIONS

In summary, we have studied the electron transport in
metallic CNTs with two localized scattering centers within
the �-electron tight-binding model. The oscillations in the
conductance and the Fano factor caused by the interference
of waves scattered from the different defects have been
shown. It is found that the conductance and the shot noise
are strongly dependent on the phase factor � which is gen-
erated by the scattering. For AA-type configurations of de-
fects �i.e., two defects are in the same sublattice� and
�d�ac, the conductance near the neutral Fermi energy is
dropped to G0 and the shot noise decreases to zero when �
=1 but it decreases to zero and the Fano factor reaches the
unit if �=� or �2, whereas, the situation is reversed for
AB-type configurations of defects. If �d is around a few ac,
a small “gap” would be developed at 
F=0. This rule is
applicable to all metallic CNTs and is independent of the
chirality of CNTs.
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