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We study why gold forms planar and cagelike clusters while copper and silver do not. We use density
functional theory and norm-conserving pseudopotentials with and without a scalar relativistic component. For
the exchange-correlation �xc� functional we use both the generalized gradient �GGA� and the local density
�LDA� approximations. We find that planar Aun structures, with up to n=11, have lower energy than the
three-dimensional isomers only with scalar-relativistic pseudopotentials and the GGA. In all other calculations,
with more than six or seven noble metal atoms, we obtain three-dimensional �3D� structures. However, as a
general trend we find that planar structures are more favorable with the GGA than with the LDA. In the total
energy balance, kinetic energy favors planar and cage structures, while xc energy favors 3D structures. As a
second step, we construct cluster structures having only surface atoms with Oh, Td, and Ih symmetry. Then,
assuming one valence electron per atom, we select those with 2�l+1�2 electrons �with l integer�, which
correspond to the filling of a spherical electronic shell formed by nodeless one-electron wave functions. Using
scalar relativistic GGA molecular dynamics at T=600 K, we show that the cagelike structures of neutral Au32,
Au50, and Au162 are metastable. Finally, we calculate the static polarizability of the two lowest-energy isomers
of Aun clusters as a means to discriminate isomers with planar �or cagelike� geometry from those with compact
structures. We also fit our data to a semiempirical relation for the size-dependent polarizability which involves
the effective valence and kinetic energy components for the homogeneous and inhomogeneous electron den-
sities. Analyzing that fit, we find that the dipole polarizability of gold clusters with planar and cagelike
structures corresponds to the linear response of 1.56 delocalized valence electrons, suggesting a strong screen-
ing of the valence interactions due to the d electrons.
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I. INTRODUCTION

Small clusters of metal atoms behave differently than bulk
matter, because each additional atom, or even each additional
electron, can drastically change their electronic and geo-
metrical properties.1 Noble metal clusters, with valence elec-
tron filling nd10�n+1�s1, differ from the simple s-orbital al-
kali metals,2,3 but also present striking differences among
Cu, Ag, and Au.4,5 Well-established structural differences
among Aun

� ��=0, ±1� and Agn
� or Cun

� clusters are the fol-
lowing: �i� Aun

� clusters, especially the anions ��=−1�, adopt
planar structures up to larger sizes than Ag and Cu clusters,
as demonstrated by combined experimental and theoretical
studies;6–9 �ii� experimental photoelectron spectra for noble
metal clusters with 55 atoms10 indicate that silver and copper
adopt some symmetry, preferably icosahedral, whereas the
pattern for Au55 corresponds to an amorphous structure;11

�iii� anionic and neutral Au20 show a tetrahedral Td
geometry,5,12,13 but Ag20 and Cu20 have amorphouslike com-
pact Cs structures; �iv� an icosahedral cagelike structure has
been found to be very stable for Au32,

14,15 but not for silver
and copper.14,16 Other metastable cagelike structures for gold
clusters have been proposed recently.16,17

The differences between Au and other noble metal clus-
ters are usually attributed to relativistic effects,4 which stabi-

lize the 6s orbital and destabilize the 5d one, favoring the
hybridization of these orbitals. However, although Pt shows
as strong relativistic effects as Au,2 it has been shown that
the competition between planar and three-dimensional �3D�
structures of Pt clusters is not affected by relativistic
effects.18 Notice that Pt7 is 3D,19,20 like Ag7 or Cu7, but Au7
is planar. Notice also that the largest s-orbital contraction due
to relativistic effects occurs in Au.21 Consideration of the
spin-orbit coupling does not alter the relative stability of sca-
lar relativistic structures of Aun clusters with n�20, but it
increases the binding energy by about 0.08 eV/atom
�1.85 kcal/mol�.22

Comparison of density functional theory �DFT� results for
Au6 and Au8 at several levels of theory �that is, different
exchange-correlation functionals� with results from quantum
chemical calculations using second-order perturbation theory
�MP2� or coupled cluster methods �CCSD�T�� indicate that
DFT predicts planar structures, but MP2 and CCSD�T� pre-
dict the lowest-energy Au8 isomer to be nonplanar by
26.6 kcal/mol and 1.5 kcal/mol, respectively.23 Another re-
cent calculation,24 using ab initio correlated-level theory,
predicts Au8 to be planar.

Concerning DFT calculations, we notice that the type of
exchange-correlation �xc� functional has a decisive influence
on the structural properties of gold clusters, but it is not so
critical for silver and copper clusters.25 Thus, first-principles
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calculations by means of the SIESTA code26 with scalar rela-
tivistic pseudopotentials found planar structures of neutral
Aun clusters with up to six atoms using the local density
approximation �LDA� for the xc functional27 and up to ten
atoms using the generalized gradient approximation �GGA�.5
Such a dissimilar result was corroborated by a variety of
different pseudopotential and all-electron scalar relativistic
DFT calculations using the LDA28,29 and/or GGA.29,30

In a recent paper, Grönbeck and Broqvist31 compared the
different contributions to the binding energy of several pla-
nar and 3D structures of Au8 and Cu8 clusters, optimized
within the GGA and LDA. They found that planar Au8 iso-
mers have a significantly smaller kinetic energy than 3D
ones, which was attributed to d-electron delocalization. A
correlation between strong s-d hybridization and high stabil-
ity of planar structures was found in Ref. 4 for noble metal
heptamers, but does not appear to be a general tendency of
small Au clusters. Instead, the preference of planar configu-
rations for Au8 isomers was attributed to a sizable d-d over-
lap and to d-electron delocalization.31

Recently, the � aromaticity in saturated inorganic rings
was examined.32 Evidence for d-orbital aromaticity in square
planar noble metal clusters33 and in triangular gold rings34

was presented also recently. The spherical � aromaticity of Ih
symmetrical gold fullerenes fulfilling a generalized 2�l+1�2

s-electron rule35 et al.14 to explain the extra stability of a
cagelike Au32 cluster with Ih symmetry compared to other
space-filling isomers.

A rough estimation of the photoabsorption response of
several isomers of Au32 and Au42 �Ref. 36� suggests that the
cagelike structures could be clearly distinguished from
space-filling isomers in optical absorption experiments.
However, it is difficult to separate in these spectra the spec-
tral features due to symmetry from the features due to empty-
cage effects. In this paper we will compare the calculated
static dipole polarizability of planar and cagelike Aun clus-
ters with those for 3D and compact isomers.

In Sec. II, we outline the first-principles method used in
our calculations. Results are presented and discussed in Sec.
III. In Sec. III A, we compare the GGA and LDA equilibrium
structures of Aun clusters with 6�n�9. We will focus on
the relation of 2D or 3D isomers with the delocalization of d
electrons, following the ideas of Grönbeck and Broqvist.31 In
Sec. III B we contrast again LDA and GGA predictions for
the stability of magic cagelike structures Au18, Au20, Au32,
Au50, and Au160, compared to amorphouslike filling space
isomers. The stability of these cagelike structures against
molecular dynamics at constant temperature �600 K� and
against the loss or gain of one electron is also tested. In Sec.
III C we investigate the use of the calculated static polariz-
ability as a physical property sensible to the cluster structure.
In Sec. IV we will present our conclusions.

II. COMPUTATIONAL PROCEDURE

We use the first-principles code SIESTA �Ref. 26� to solve
fully self-consistently the standard Kohn-Sham equations37

of DFT within the GGA as parametrized by Perdew, Burke,
and Ernzerhof38 and within the LDA as parametrized by Per-

dew and Zunger.39 For each xc approximation we use a
norm-conserving scalar relativistic pseudopotential40 in its
fully nonlocal form,41 generated from the Au atomic valence
configurations 5d106s16p0, and core radii which we have
tested and reported in previous works.5,42 Flexible linear
combinations of numerical �pseudo�atomic orbitals are used
as the basis set, allowing for multiple-� and polarization or-
bitals. In order to limit the range of the basis pseudoatomic
orbitals �PAO’s�, they are slightly excited by a common en-
ergy shift �0.01 eV in this work� and truncated at the result-
ing radial node.43 In the present calculations we used a
double-� 5p ,6s basis, with maximum cutoff radius of
7.62 bohrs. The basis functions and the electron density are
projected onto a uniform real-space grid in order to calculate
the Hartree and exchange-correlation potentials and matrix
elements. The grid fineness is controlled by the energy cutoff
of the plane waves that can be represented in it without alias-
ing �120 Ry in this work�.

To obtain the equilibrium geometries, an unconstrained
conjugate-gradient structural relaxation using the DFT
forces44 was performed for several initial cluster structures
�typically more than 10�, suggested by the several geometries
for Aun, Aun

−, and Aun
+ isomers obtained previously.5

The static dipole polarizability of a cluster can be ob-
tained by using the standard numerical finite-field perturba-
tion method, in which the field-dependent energy is ex-
panded with respect to an external uniform electric field F,

E = E0 − �iFi −
1

2
�ijFiFj − ¯ , �1�

where i , j are Cartesian coordinates and the dipole moment
and the static dipole polarizability are obtained as energy
derivatives, �i=−� �E

�Fi
�F=0, and �ij =−� �2E

�Fi�Fj
�F=0, respectively.

The external electric-field values used in our calculations
were �in a.u.� �F � =0.000, 0.001, 0.006, 0.010, 0.014, and
0.018. The energies calculated for these values were fitted
to a polynomial expansion to obtain the first-order and
second-order derivatives of energies with respect to the
electric-field strength. The mean polarizability is calculated
as �̄=Tr��ij� /3.

III. RESULTS AND DISCUSSIONS

A. Planarity and d-electron delocalization in Aun

The onset of three-dimensional structures of neutral Aun
clusters was calculated at n=11 within the GGA �Ref. 5� and
at n=7 within the LDA �Ref. 27�. In this work we compare
the planar and 3D lowest-energy isomers of Aun �6�n�9�
calculated within the SIESTA code26 and using the LDA �Ref.
39� and GGA �Ref. 38� for xc functionals �with the corre-
sponding LDA and GGA scalar relativistic pseudopotentials�.
Figure 1 shows our results for the geometry of these isomers.
The lower-energy isomer is the planar one for the GGA and
the 3D one for the LDA, except for n=6. Table I gives the
binding energy difference between 2D and 3D isomers,
�Eb=Eb�Aun�−Eb�Aun

*�, for the relativistic and nonrelativis-
tic calculations. We see that the GGA leads to planar struc-
tures, but the LDA favors 3D structures for n	7 clusters.
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Thus, although the planarity of Au7 compared to the 3D
structures of Ag7 or Cu7 was attributed to relativistic effects,4

the observed planarity of Au clusters6–8 is accounted for only
using the GGA theory. We have also optimized the Aun
structures in Fig. 1 within GGA and LDA nonrelativistic
pseudopotentials, resulting in the 3D structures becoming
more stable energetically than the planar ones, except for
n=6 within the GGA, as shown in the last row of Table I.

Table II gives the various energy differences �total, ki-
netic, Coulomb, and exchange correlation� between the sec-
ond and first energy isomers of scalar relativistic Au and Cu
clusters with 6�n�9 atoms. We will denote compact 3D
structures with an asterisk, while its absence indicates planar
and cagelike geometries. The geometry of the Au isomers is
given in Fig. 1. The geometries of Cu6 and Cu6

* are similar to
those of Au6 and Au6

*, respectively. For Cun with n=7, 8, 9,
the geometries of the two lowest-energy isomers are both 3D
and are taken from our previous work.5 We can see in Table
II that planar structures have smaller kinetic energy than 3D
isomers and larger for the LDA than for the GGA. Adding
kinetic and Coulomb energies, the 2D structures became

more stable energetically than the 3D ones. On the other
hand, the xc energy is more negative �it contributes more to
the binding energy� for 3D than for planar structures. Both
effects are stronger within the LDA, but in the balance of
total energy difference, the loss of kinetic energy in planar
structures dominates over the increase of xc energy when
using the GGA, but the opposite occurs with the LDA. Thus,
as a whole, the GGA �LDA� favors 2D �3D� structures of
gold clusters. On the other hand, for Cu6 and Cu6

* isomers,
which have the same geometry as Au6 and Au6

*, the change
in kinetic and Coulomb energies is not so noticeable as in
gold.

For Cun with n=7–9, whose first and second isomer ge-
ometries are all 3D, the change in exchange-correlation en-
ergy, �xc, can be positive or negative. For Cu8, whose elec-
tronic properties can be described approximately by the
spherical jellium model,5 we see that the sum of changes in
kinetic and Coulomb energies roughly cancel each other, re-
sulting that the change in the total energy is ruled by the
change in xc energy, as in the jellium model.45

The loss of kinetic energy in planar gold clusters with
respect to their 3D isomers was attributed to electron
delocalization,31 but it is not easy to reconcile that delocal-
ization with the simultaneous confinement in two dimen-
sions. On the other hand, the xc energy becomes less nega-
tive for planar configurations, which is also not clearly
related to delocalization and confinement in 2D gold clusters.
We observe that the calculated average bond length dav is
larger for 3D than for 2D isomers. Specifically, the difference
between dav of 3D and 2D Aun isomers with n=6, 7, 8, 9 is

TABLE I. The binding energy difference �Eb=Eb�Aun�
−Eb�Aun

*�, in eV, between the 2D and 3D isomers of the gold clus-
ters represented in Fig. 1, optimized within LDA and GGA xc func-
tionals using relativistic and nonrelativistic �NR� pseudopotentials.

Au6 Au7 Au8 Au9

LDA GGA LDA GGA LDA GGA LDA GGA

�Eb 0.14 0.15 −0.02 0.03 −0.06 0.01 −0.04 0.01

�Eb
NR −0.04 0.02 −1.42 −1.11 −1.64 −1.37 −1.29 −0.98

FIG. 1. �Color online� Equilibrium geometry of the lowest-
energy isomers of gold clusters having planar �Aun, upper row� or
three-dimensional �Aun

*, lower row� geometry as resulting from
LDA and GGA scalar relativistic calculations. For GGA the ground
state is the planar Aun isomer. For the LDA the ground state is the
3D Aun

* isomer, except for n 
 6, whose structure is also the planar
Au6.

TABLE II. Total, kinetic, Coulomb, and exchange-correlation energy differences ��Ei=Ei�Aun
*�

−Ei�Aun��, in eV, between the second isomer �3D, Aun
*� and first isomer �2D, Aun� of gold clusters with the

structures of Fig. 1. For Cun the first and second isomers are 3D, except for Cu6, where the two isomers are
similar to Au6 and Au6

*. The Cun geometries are taken from Ref. 5.

�Etot �Ekin �ECoul �Exc

LDA GGA LDA GGA LDA GGA LDA GGA

Au6 0.86 0.88 11.01 10.63 −9.62 −9.42 −0.53 −0.33

Au7 −0.15 0.24 12.49 10.34 −11.12 −9.52 −1.53 −0.57

Au8 −0.46 0.04 7.37 7.03 −6.53 −6.80 −1.30 −0.19

Au9 −0.34 0.07 5.07 4.63 −4.50 −4.52 −0.91 −0.04

Cu6 0.03 1.03 −0.78 −0.22

Cu7 0.34 0.20 −0.98 1.13

Cu8 0.89 2.10 −1.98 0.77

Cu9 0.25 −1.60 1.87 −0.02
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�in Å� 0.04, 0.11, 0.13, 0.09 �0.05, 0.11, 0.09, 0.09� for the
LDA �GGA� calculation.

The kinetic energy of the electron gas in two dimensions
is about one-half of the 3D case at the same density param-
eter rs, while the exchange energy in 2D is slightly larger
than in 3D.46,47 However, the correlation energy, at least in
the random phase approximation �RPA�, is much larger in
2D than in 3D.46 This consideration points again to the im-
portance of good exchange-correlation functionals in dealing
with the DFT structural description of gold clusters.

B. Magic cagelike structures of gold clusters

Stable cagelike structures of gold clusters have been pre-
dicted recently for Au32,

14,15 Au26,
48 Au42,

49 and others.16,17

On the other hand, although all atoms of Au20 are at the
surface, this cluster can be considered as a small piece of
bulk fcc gold.5,12,13

In this work we construct cagelike atomic structures start-
ing with the Platonic solids with triangular faces—
tetrahedron �Td�, octahedron �Oh�, and icosahedron
�Ih�—which are those allowing compact planar packing. By
adding atoms at the intersections of fcc planes in the tri-
angles, we obtain the following sequences for the number of
atoms: n�Td�=4+2m�m+2�, n�Oh�=6+4m�m+2�, and n�Ih�
=12+10m�m+2�, where m=0,1 ,2 , . . . is the number of at-
oms inserted in each edge. When we add a central atom to
each new triangle, we obtain cagelike structures with n�Td�
=2+6�m+1�2, n�Oh�=2+12�m+1�2, and n�Ih�=2+30�n
+1�2. On the other hand, from the electronic point of view, a
cluster with nearly free valence electrons is magic when it
has filled electronic shells, having well-defined angular mo-
mentum, as in the jellium model. As we look for an empty
cage with an approximately spherical surface, orbitals with
radial nodes have to be excluded and the only allowed elec-
tronic shells are 1s ,1p ,1d ,1f , . . .. This leads to a magic
number of electrons ne=2�l+1�2, where l is an integer
number.50 Assuming that each noble metal atom contributes
with one valence electron, the equality n=2�l+1�2 leads to
the following magic neutral cagelike Aun clusters �contain-
ing less than 1000 atoms�: n=8 �Td�, 18 �Oh�, 32 �Ih�, 50
�Oh�, 98 �Td�, 162 �Ih�, and 578 �Oh�. Double anionic clusters
should obey n+2=2�l+1�2, and they appear at n=6 and 198

�Oh� atoms. Double cationic magic clusters are the solutions
of n−2=2�l+1�2. However, we exclude the Td clusters be-
cause they are far from spherical. Also Au20 cannot be prop-
erly considered cage like because it contains many internal
bonds, as similarly occurs to smaller clusters, like Au18. Nev-
ertheless, in the following we will test the estructural and
electronic properties of Aun clusters with 18, 20, 32, 50, and
162 atoms.

We performed full relaxations of the initial cagelike
magic structures and several compact geometries obtained by
forcing initially some surface atoms inside these clusters.
Figure 2 shows the equilibrium geometries with cagelike and
compact structures, obtained after a nonexhaustive search
and optimized with forces �0.01 eV/Å at the GGA and
LDA levels. The cagelike equilibrium structures were proven
to be metastable after performing an ab initio molecular dy-
namics run at temperature of 600 K during 1000 steps, each
of 2 fs. The binding energy difference between cagelike and
compact structures is tabulated in Table III. We see that cage-
like GGA structures are slightly more bound than the com-
pact ones. Instead, the LDA leads to compact structures with-
out symmetry, except for Au20. The true ground state is not
known, however, and improved functionals could lead to
compact, ordered or disordered, structures.

As a further test, we calculate the relative stability of
cagelike and compact isomers after loss or gain of one elec-
tron. Figure 3 shows the total energy difference per atom
between cagelike and compact equilibrium structures of cat-
ionic, neutral, and anionic clusters with n=18, 20, 32 atoms.
We see that only the cation Au32

+ and the anion Au20
− are

still cage like. Interestingly, the lowest-energy isomer of both
ionic clusters Au18

+ and Au18
−, is not cage like, contrary to

the neutral Au18.
In Fig. 4 we compare the density of states �DOS� of the

cagelike and amorphous structures of neutral Aun �n

TABLE III. Binding energy difference between the cagelike and
compact structures of Fig. 2, �Eb=Eb�Aun�−Eb�Aun

*�, optimized
with the LDA and GGA.

Au18 Au20 Au32 Au50

LDA GGA LDA GGA LDA GGA LDA GGA

�Eb −0.07 0.01 0.01 0.03 −0.06 0.01 −0.14 0.01

FIG. 2. �Color online� Cagelike �Aun� and space-filling �Aun
*�

equilibrium isomeric structures of neutral gold clusters with n=18,
20, 32, 50, and 162, except Au162

* which is not optimized in this
paper.

FIG. 3. �Color online� Total GGA energy difference per atom �in
eV� between the lower-energy isomer of compact and cagelike
structures for cationic, neutral, and anionic clusters of gold with n
=18 �stars�, 20 �crosses�, and 32 �circles� atoms.
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=18,20�. We see that the cagelike geometries show a more
structured DOS, with well-defined peaks. This is probably
due to a higher geometrical symmetry �Oh for Au18 and Td
for Au20�, as shown in a previous work for Au55.

10 This fact
is independent of the GGA or LDA level of theory. The LDA
DOS profile tends to be shifted �to lower energies for Au20�
with respect to the GGA one, and the highest occupied and
lowest unoccupied molecular orbital �HOMO-LUMO� gap is
smaller for the LDA than for the GGA. On the other hand,
the HOMO-LUMO gap is considerably larger for cagelike
Au20 than for cagelike Au18, indicating that the former is
much more stable than the latter.

C. Static dipole polarizability

The minimum polarizability principle states that any sys-
tem evolves naturally towards a state of minimum polariz-
ability, but exceptions have been reported.51 In Table IV are
given the results of our scalar-relativistic GGA calculations
for the mean polarizability per atom of the two lowest-
energy states of the Au clusters reported in the subsections
above.

The static dipole polarizability of atomic Au comes to
20.53 a .u. �bohr3� for the scalar-relativistic calculation and
33.06 a .u. for the nonrelativistic calculation, which is a clear
manifestation of the relativistic size contraction of gold.2 Our
Au polarizability is smaller than other calculated and experi-
mental values quoted in the literature.2,52–54 Different esti-
mates of the experimental value are 30±4 a .u. �Ref. 2� and
39.1±9.8 a .u. �Ref. 52�. A quantum chemical CCSD�T� cal-
culation gives 36.06 a .u. �Ref. 53�, and a recent CASSCF-
CASPT2 relativistic calculation gives 27.9 a .u. �Ref. 52�.

For noble metal dimers, recent relativistic and nonrelativ-
istic calculations55 found that the reduction of the polariz-
ability, due to the relativistic contraction effect, amounts to

39.8% for Au2, 15.8% for Ag2, and 6% for Cu2. From the
time-dependent �TDDFT� study of Castro,54 the static polar-
izability of Aun clusters up to n=4 are affected up to �2%
by the inclusion of the spin-orbit term.

From the TDDFT calculations of Castro et al.,56 the static
polarizability of the 3D tetrahedral isomer of Au4 is 2.5%
higher than the one for the planar D2h ground state. We ob-
tain a larger difference �15.5%� between our two planar Au4
isomers �a rhombus and a triangle with another Au on top;
see Ref. 5�. Our result for the Aun polarizability with n
=2–9, is similar to the one calculated by Zhao and
co-workers57 using a finite-field perturbation method like
ours. However, the polarizability per atom obtained by these
authors for planar Au18 and Au20 is much higher than ours
for cagelike and compact isomers. On the other hand, the
difference between the GGA and LDA polarizabilities of pla-
nar Aun clusters �n=2–20� calculated in Ref. 57 is less than
2%.

We see in Table IV that the average polarizability per
atom of Aun clusters is remarkably constant, with small odd-
even effects for n�7. Up to n=6 the first and second iso-
mers are planar, and the larger polarizability of the second
isomer is due to the larger average Au-Au bond length. The
polarizability of the Au7

* 3D isomer is smaller than that of the
planar isomer, due to the compact pentagonal bipyramid ge-
ometry, and it constitutes one of the exceptions to the mini-
mum polarizability principle.51 The cagelike structures seem
to be another exception to that rule.

The average mean polarizability per atom for the first iso-
mer of Aun clusters in Table IV is �̄av /n=33.57 a .u. The
jellium model for atomic clusters of monovalent metals ful-
fills the relation � jel=rs

3n, where rs is the radius per electron
�in a.u.� of the bulk metal. For Au, with rs=3.01 and the
GGA, we obtain the ratio �̃� �̄av /� jel=1.23. We can calcu-
late a similar ratio for Li, Na, Cu, and Ag clusters using
results from experiments and other calculations. Using the

FIG. 4. �Color online� Density of states �DOS� of the lower-
energy cagelike and amorphous isomers of Au clusters with 18 and
20 atoms, calculated at the LDA and GGA levels of theory.

TABLE IV. The third and fourth columns give, respectively, the
mean polarizability per atom �̄ /n of the first and second isomers of
Aun clusters. The last column gives their difference. For compari-
son, the first column gives the �̄/n value calculated by Zhao and
co-workers for planar structures �Ref. 57�. All polarizabilities are in
atomic units �bohr3�.

�̄ /n �̄ /n

n Ref. 57 First isomer Second isomer ��̄�%�

2 29.4 28.3 29.0 2.5

3 31.1 36.4 43.0 18.2

4 32.7 31.5 37.2 17.9

5 34.2 32.9 46.6 41.6

6 34.2 32.7 40.0 22.5

7 34.3 33.9 30.9 −9.0

8 36.2 34.7 36.1 4.2

9 38.5 37.8 48.1 27.3

18 42.7 32.1 31.4 −2.4

20 43.7 35.2 32.9 −6.4

32 33.9 33.5 −1.3
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experimental values58,59 for the dipole polarizability of Li
�rs=3.25�, Na �rs=3.93�, and Cu �rs=2.67� clusters with n
�10, we obtain the ratios �̃expt�Li�=2.26, �̃expt�Na�=2.11,
and �̃expt�Li�=2.0 for Li, Na, and Cu, respectively. From the
GGA polarizability values calculated in Ref. 60 for Li and
Na clusters with n�10, we find �̃GGA�Li�=2.47 and
�̃GGA�Na�=1.81. For Cu clusters in the same range of sizes,
using the different GGA and LDA polarizability values re-
ported by Yang and Jackson,61 one has �̃GGA�Cu�
=1.93–1.98 and �̃LDA�Cu�=1.79. Using recent calculations17

for the polarizability of Ag clusters with 2�n�8 results in
�̃GGA�Ag�=1.69. As a whole, we see that the ratio �̄av /� jel is
considerably smaller for Au than for Li, Na, Cu, and Ag
clusters.

The enhancement of dipole polarizability over the classi-
cal jellium model �Mie value � jel� is directly proportional to
the fraction of electronic charge that extends beyond the
positive background in the field-free system �spill-out�.1 The
smaller spill-out for gold with respect to silver and copper
can be attributed tentatively to the relativistic contraction of
the electronic cloud.2,21

We can explore a little more our calculated polarizability
values using an extended Thomas-Fermi-Weizsäcker
�TF�W� jellium model,62 which predicts the mean polariz-
ability of a cluster with ne=vn valence electrons �v

valence, n 
number of atoms� as

�̄ = � jel�1 + 3
d�rs�

rs
ne

−1/3	1 +
�1�rs�
�0�rs�

ne
−1/3
� . �2�

In this expression, d�rs� is the image plane position �the cen-
troid of the induced electron density for the flat metal sur-
face�, and �1 and �0 are two coefficients dependent on the
parameter �, which take into account the weight of the
inhomogeneity-density correction �Weizsäcker term� to the
Thomas-Fermi kinetic energy. In the interval 3�rs�4, it
results in �1�rs��−0.1 a .u. independently of the � value �see
Fig. 1 of Ref. 62�, but �0�rs� is strongly dependent on �. In
terms of a reduced polarizability, defined by �red= ��̄ /� jel

−1�n2/3, we can write Eq. �2� as

�red = An1/3 + AB , �3�

where A= 3
v1/3

d�rs�

rs
and B= 1

v2/3

�1�rs�

�0�rs�
. By fitting our data in Table

IV to Eq. �3�, we obtain �red=1.15n1/3−1.26, and using
d�Au�=1.34 a .u. for the image plane distance of gold,63

there results an effective valence v=1.56 and a ratio
�1�rs�

�0�rs�
=−1.46. For �1�Au��−0.1 we obtain �0�Au�=0.07. Ex-
trapolating the results in Fig. 1 of Ref. 62, such a small
�0�Au� value corresponds to an extremely small value of the
parameter �, which means that the contribution of inhomo-
geneity corrections to the kinetic energy is very small. This
result agrees with our conclusion in Sec. III A about the de-
localization of valence electrons in planar gold clusters. On
the other hand, the effective valence v=1.56 reflects in some
way the screening of the dipole response due to the d
electrons.56

We test also an empirical linear relation between the cubic
root of the mean polarizability per atom, �̄1/3 /n, and the
inverse of the ionization potential per atom, I p

−1 /n. That re-
lation was tested in Ref. 60 for Li and Na clusters with two
to ten atoms, resulting for both cases �using calculated GGA
values, in a.u.� in a proportionality constant close to unity,
with a linear correlation coefficient 0.995. For the lower-
energy isomers of Au clusters reported in Table IV, there
results a proportionality constant of 0.925 and a correlation
coefficient of 0.984.

As probed by Yang and Jackson,61 temperature effects are
a possible source of discrepancy between calculated and
measured polarizabilities, because calculations are carried
out for 0 K while experiments are conducted at finite tem-
peratures. The existence of a permanent electric dipole in a
cluster adds the following temperature-dependent term to the
effective polarizability:64

�ef f = �̄ +
�2

3kT
, �4�

where � is the dipole moment and k is Boltzman’s constant.
The dipole contribution is important at low temperatures for
clusters with permanent dipole moments. Using the dipole
moments calculated for our GGA lower-energy isomers, the
correction of Eq. �4� to the mean polarizability per atom at
T=2 K is �in a.u.� 1.39, 0.04, 0.74, 2.33, and 0.09, for clus-
ters with 3, 4, 5, 6, and 20 atoms, respectively. This small
correction still allows one to discriminate the polarizability
of planar and cagelike gold clusters from their isomers.

IV. CONCLUSIONS

We obtain that, using nonrelativistic pseudopotentials,
both the GGA and LDA predict the onset of three-
dimensional cluster structures already at n=6 for Cun and
Agn and at n=7 �6� for Aun. This result changes by consid-
ering scalar-relativistic pseudopotentials within the GGA, re-
sulting in planar Aun structures up to n=11.

From our scalar-relativistic results for the two lowest-
energy isomers of Aun and Cun with n=6–9 atoms, we find
that planar structures have smaller kinetic energy than 3D
isomers, and this effect is much larger for gold than for cop-
per clusters. Adding kinetic and Coulomb energies, the 2D
structures became more stable than the 3D ones, and this
effect is more noticeable for the LDA than for the GGA. On
the other hand, the xc energy is more negative �contributes
more to the binding energy� for 3D than for planar structures,
and this effect is notably enhanced within the LDA. Thus, in
the total energy balance, kinetic energy loss favors planar
GGA structures, but xc energy favors LDA 3D structures.

As a second step, we constructed clusters having only
surface atoms, and with Oh, Td, and Ih symmetry. From
those, assuming one valence electron per atom, we select the
ones having 2�l+1�2 electrons, which correspond to the fill-
ing of a spherical electronic shell formed by nodeless one-
electron wave functions. We obtain, by means of scalar-
relativistic GGA calculations, that these cagelike structures
for neutral Au18, Au20, Au32, Au50, and Au162 are metastable
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after moderate �600 K� constant-temperature molecular dy-
namics. However, after the addition or substraction of an
electron, only the anion Au20

− and the cation Au32
+ remain

cage like.
Finally, we calculate the static polarizability of the two

lowest-energy isomers of Aun clusters, which are planar
�n=2–9� and cage like �n=18,20,32� for the first isomer
and planar �n=2–6� or space filling 3D �n
=7–9,18,20,32� for the second isomer. In the range n
=2–9, the polarizability per atom is smaller for the first iso-
mer than for the second, with the exception of n=7, confirm-
ing the empirical rule of minimum polarizability. The con-
trary occurs for cagelike structures, with larger �̄ than their
space-filling isomers.

We fitted the polarizability of the first isomer of these
gold clusters to a semiempirical relation between the cluster

dipole polarizability and its size, which involves the effective
atomic valence and the kinetic energy due to homogeneous
and to inhomogeneous density components. From that fit we
extract a very small value for the kinetic energy component
due to inhomogeneous density, which suggests a delocalized
character of the valence electrons involved in the dipole re-
sponse. We also obtain an effective valence charge of 1.56
electrons, reflecting a dipole response with strong screening
of the d electrons, as already reported previously.56
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