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Electromigration-induced step bunching in the presence of sublimation is studied theoretically in the

attachment-limited regime. We predict a phase transition as a function of the relative strength of kinetic
asymmetry and step drift. For weak asymmetry the number of steps between bunches grows logarithmically
with bunch size, whereas for strong asymmetry at most a single step crosses between two bunches. In the latter
phase the emission and absorption of steps is a collective process which sets in only above a critical bunch size

and/or step interaction strength.
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I. INTRODUCTION

Much of the morphological structure and dynamics of
crystal surfaces can be understood in terms of the behavior of
steps that separate different exposed atomic layers.'=> Steps
are long-lived structural defects subject to long-ranged inter-
actions of entropic and elastic origin. When such a system of
interacting steps is driven out of equilibrium by external
forces, a rich variety of morphological patterns and dynamic
phenomena emerge.

As was first discovered by Latyshev and co-workers,*
steps on Si(111) surfaces can be manipulated by a direct
heating current, which induces mass transport along the sur-
face through the electromigration of adatoms.> A host of step
patterns have since been found and studied experimentally in
this system.®” Of particular interest is the electromigration-
induced formation of step bunches, and the long-standing
puzzle posed by the multiple reversals of the current direc-
tion required to induce step bunching that occur as a function
of substrate temperature.*~'© A number of recent theoretical
papers have addressed this issue on the level of linear stabil-
ity analysis, and several mechanisms associated with the way
in which atoms are exchanged at steps have been
proposed.!!'=1* However, in order to distinguish between al-
ternative explanations and, thus, to uncover the true underly-
ing microscopic processes, it seems mandatory to go beyond
the linear regime and embark on a systematic investigation
of the fully nonlinear step dynamics.

In this spirit, we report here on a dynamic phase transition
that we have found in the most basic model of
electromigration-induced step bunching.”>!'>~!7 In this model
the steps are assumed to be straight, and the uniform step
train is destabilized by an electromigration force in the
downhill direction. The phase transition occurs as a function
of a dimensionless parameter b, defined in (4) below, which
gauges the relative importance of electromigration-induced
kinetic asymmetry and step drift due to sublimation. This
parameter can be tuned experimentally, e.g., by changing the
electromigration force through the DC component of the
heating current, or the sublimation rate through a change in
temperature.

Step drift leads to the exchange of steps between bunches,
which plays an important role in the evolution and coarsen-
ing of the bunch pattern.'®~!8 The most striking visual signa-
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ture of the phase transition is a qualitative change in the
number of such crossing steps, and in the mechanism by
which they are exchanged (Fig. 1). For b<<1 (strong drift/
weak asymmetry) the step density decreases smoothly in the
outflow region of a bunch, and the number of crossing steps
grows logarithmically with the bunch distance. In contrast,
for b>1 (weak drift/strong asymmetry) there is at most a
single free step between any two bunches, irrespective of
their size. This feature should make the two regimes clearly
distinguishable in experiments using reflection electron
microscopy* or scanning probe microscopy.?-10

The dynamics in the regime b>1 are remarkably com-
plex. The exchange of a step is a collective process involving
both the expelling and the receiving bunch, which sets in
only beyond a critical bunch size, and which is accompanied
by breathing oscillations of the entire bunch. As a conse-
quence, a stationary bunch shape amenable to a continuum
description!® of the type developed previously?*?! for <1
does not appear to exist.

(a) (b)

(c) (d)

FIG. 1. Typical step configurations (top view of a vicinal sur-
face) generated by numerical solution of (1). Graphs (a)—(d) corre-
spond to »b=0.1,0.5,5,20, respectively, and in all cases U/bl=0.6.
Each frame contains about 60 steps. Reduction of the number of
crossing steps with increasing b is evident. In case (d) there are no
crossing steps since the bunch sizes are within the dead zone region
of Fig. 3.
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II. MODEL

We consider a system of straight, nontransparent steps’
subject to electromigration and sublimation. We work in the
attachment-detachment limited regime, where the kinetic
length d=D/k, the ratio of surface diffusion coefficient D,
and attachment rate k, is large compared to the step spacing.’
The equations of motion for the step positions x,(r) then take
the form (Ref. 15)

dx, 1-b 1+b
0 T(xiﬂ —-x;) + T(xi =xi) + UQRSi = fioy = fis1) s
(1)

where the time scale has been normalized to the sublimation
flux. Summing over i we see that the average step velocity v
is equal to the mean terrace width /. In numerical solutions of
(1) lengths are measured in units of /, i.e., we set /=1. The
last term on the right-hand side represents stabilizing step-
step interactions of strength U, where, for combined entropic
or dipolar elastic repulsion (Ref. 1)

/ v+l i v+l
I
Xi— X1 Xigl =X

with v=2. The parameter b governs the asymmetry between
ascending and descending steps, relative to the mean step
velocity, which induces step bunching when b>0. Linear
stability analysis of (1) shows that the instability sets in at
wavelengths corresponding to bunches containing more than
M" steps, with

M" =2mlarccos(1 - bl/120)]7". (3)

In previous work more complicated variants of the step equa-
tions (1) have been studied numerically, and some of the
features analyzed in this paper have been described on a
qualitative level.'®!7 The advantage of using the attachment/
detachment limited dynamics (1) lies in the linearity of the
destabilizing terms, which allows to clearly expose the key
role of the parameter b and the existence of a sharp phase
transition.

In terms of physical quantities, the parameters b and U are
given by (Ref. 15)

I'r r
b= Tez, Us=—2 (a3 0, (4)
ZkBTa ZkBT

where T is the step mobility for the Brownian motion of an
isolated step,l a? is the atomic area, F is the electromigration
force acting on an adatom, 7, is the inverse desorption rate,
0=a/l is the miscut angle, and g is the step interaction pa-
rameter.

The model (1) is expected to apply’ in two of the four
temperature regimes®’ in which step bunching is observed
on Si(111), around 900 °C (regime I) and around 1250 °C
(regime III). The parameters given in Refs. 8 and 15 lead to
the estimates b=~ 14 in regime I and »=0.3 in regime III,
which shows that both cases b<<1 and b>1 are experimen-
tally realizable.

Step equations of the form (1) can also be derived for step
bunching induced by Ehrlich-Schwoebel (ES) barriers during
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sublimation® or by inverse ES barriers during growth.?%?? In
this sense (1) constitutes a rather generic model of step
bunching kinetics. However, in step bunching induced by ES
barriers the parameter b is restricted to the interval 0<b
<1, and hence the phenomena described in this paper do not
occur.

III. STRUCTURE OF THE OUTFLOW REGION

In the presence of step drift, coarsening of step bunches is
a very dynamic process during which steps continuously
leave (flow out of) one bunch and join (flow into) its
neighbor.'®!7 In Refs. 21 and 22 it was shown that the analy-
sis of the outflow region provides key insights into the shape
and dynamics of bunches for »<<1. We shall see now that
there are drastic differences between the outflow regions for
the cases »<<1 and »>1. We consider a bunch containing a
large number M > 1 of steps, so that its shape can be consid-
ered quasistationary. We impose periodic boundary condi-
tions A;(r)=A,,(?) for the terrace sizes A;=x;,;—x;. Station-
arity implies then periodicity of each step trajectory (up to an
overall shift with velocity wv=I[), with some period
7(b,U,M), during which each step i will once cross the pla-
teau between two consecutive bunches. After time 7/M, each
step i will substitute the position of step i+1 (up to a con-
stant shift independent of i), so that

A (1) =A,.(,i M) (5)

Deriving an equation for A,(¢) from (1) and substituting (5),
we get a differential-difference equation?' for a single,
7-periodic function A(z)=A(r)

dA(r) 1-b T

— = —A(r+ 1) +bA(r) — MA(t— —) +U(-+),
dt 2 M 2 M
(6)

where for brevity the U-containing terms are only sketched.
The (unknown) period 7 determines the velocity of a bunch:
after time 7 the bunch shifts by (=MI) in a frame comoving
with velocity v; in the laboratory frame its lateral velocity is
then (Ref. 21)

V=I(1-Ml/7). (7)

Big bunches are separated by wide plateaux, and for the
steps crossing a plateau (in case there are many) the U term
in (6) should become negligible. In this outflow region one
can solve the remaining linear part by the ansatz A(r)
~exp(gMt/ 7) obtaining the transcendental equation

b[cosh(g) — 1]=sinh(g) — gM/7. (8)

To fix the unknown parameter 7, we recall the Fourier
analysis?! of (1), which shows, irrespective of the value of b,
that for large M generically 7(M)~M+O(1). Thus

b[cosh(g) — 1] =sinh(g) — ¢ )

which has a real positive solution for each b<<1 but no so-
lutions for b>1. In the following section we explore the
consequences of this fact.
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IV. NUMBER OF CROSSING STEPS

For <1, the existence of a solution ¢ of (9) implies a
smooth decrease of the step density in the outflow region,
with the terrace widths increasing exponentially, as
A /Ay =exp(q). To estimate the number N, of free steps
between two bunches of size M, we equate the total length
~1 exp[gN,] occupied by N, terraces to the typical distance
M1 between the bunches, and obtain

N.~qg'InM. (10)

For small b, the solution of (9) can be approximated by g
~3b.

For b—1, g diverges and N, vanishes. The absence of
solutions of (9) means that the U term in (1) can never be
neglected and that correspondingly there can be at most one
step crossing the plateau between two bunches, at any stage
of evolution. One can check, using (1) and (2), that any
configuration with more than one step between two bunches
is unstable for »>> 1, so that all steps except at most one will
be pushed back to the bunch they originated from. In Fig. 1
we show numerically generated bunch configurations in the
course of coarsening for »<<1 and b> 1, which confirm this
conclusion.

V. DYNAMICS OF EMISSION AND ABSORPTION OF
STEPS

We now examine in more detail how steps are emitted
from a bunch. It is seen directly'® from (1) that the last step
(with label i, say) of the bunch at position x;, which is trail-
ing a wide terrace of width A;=x;,;—x;>[, will be driven to
escape from the bunch by the linear term (1-5)A;/2, pro-
vided b<1. This term indeed gives the main contribution to
the dynamics of the last step of the bunch, as we see from
numerical analysis. The emitted step does not perturb the
remaining steps; the (i—1)-th step which has become the last,
is free to escape once the ith step has traveled sufficiently far.
Bunches emit steps continuously, creating an outflow region
governed entirely?!?? by the linear part of (1).

In contrast, for »>1, the linear term (1-5b)A;/2 in (1)
gives a negative contribution to the step velocity, and the
only way to move the last step i away from the bunch is by
step-step interactions [the U term in (1)]. Since the next step
i—1 cannot be emitted before step i has landed at the next
bunch, the configuration of steps at the end of the bunch has
to be changed by the emission process—if it were un-
changed, the next step i—1 would be emitted immediately
after the ith. This gives rise to oscillations of the bunch pro-
file at the end, which spread to the whole bunch, and whose
amplitude grows with increasing b. Such oscillations at the
outflow end of the bunch are completely absent in the b
<1 phase (Fig. 2).

When the emitted step collides with the receiving bunch it
provokes perturbations in the inflow region of the bunch,
which are visible both for »<1 and 5>1. In the case b
<1 the oscillations in the inflow region are damped and
disappear toward the bunch interior. In the b>1 phase, how-
ever, the oscillations penetrate through the bunch, regain
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FIG. 2. Full line: Distance A(7) between a pair of neighboring
steps moving through the bunch interior (initial and end regions
excluded), for b=10, U/I=6, M=64. Symbols show the sizes of 42
consecutive terraces (out of 64), at times t=0(+), t=0.34-(7/M)
(X), t=0.55-(7/M)(*), illustrating the oscillatory breathing of the
bunch. They lie on the curve A(r) because of (5). Inset: A(z) for b
=0.176, U/1=0.108. For b<1 the oscillations do not extend into
the outflow region.

their amplitude toward the bunch tail, and culminate in the
emission of the last step of the bunch, provided that the
initial impact was sufficiently strong (Fig. 2). This implies
correlations between the emission and absorption of steps,
which should have important consequences for the coarsen-
ing dynamics.

VI. ONSET OF STEP EMISSION

We have seen above that the emission of steps for b>1 is
facilitated by a large step-step repulsion U, and suppressed
by the kinetic asymmetry b. For small U (or large b) the
oscillatory breathing of the bunch may not be able to trigger
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FIG. 3. Phase diagram characterizing quasistationary step
bunches of size M as function of step-step repulsion U for b=10,
[=1. Three phases can be defined: (a) Bunches smaller than the size
M" deduced from linear stability analysis [Eq. (3)] dissolve (filled
circles). (b) Dead zone: for M, (U)<M <M, (U) bunches are
stable but do not emit steps (squares). (¢c) For M>M ,(U) and
M*<M<M,,(U) bunches are stable and emit steps (crosses). The
lines M, (U),M.,(U) terminate at a critical interaction strength
U.(b) beyond which stable bunches always emit steps.
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FIG. 4. Values of critical interaction strength U, (squares) and
bunch size M, (circles) for different b, determined from numerical
simulations. Straight lines illustrate the power laws (11).

the emission of steps when bunches are small. The typical
behavior of bunches as a function of size M and step inter-
action U at a fixed value of > 1 is summarized in the phase
diagram in Fig. 3. For any given b > 1, there exists a critical
value U, (b) such that for U< U, bunches emit steps only for
sizes M" <M <M, and M > M ,, whereas for U> U, stable
bunches always emit steps. Inside the dead zone M. <M
<M, the time interval 7/M between emission of steps is
infinite, and correspondingly bunches move with the mean
step speed, V=v=I [compare to (7)]. The ratio 7/M decays
monotonically to 1 with distance from the dead zone, reflect-
ing the fact?! that lim,,_., 7/M=1 for any fixed b.
Diagrams for different b can be superimposed after res-
caling U, and M.=M_, ,(U,) according to the relations

U.~00062- (b+1)% M,~1+1.69-b7, (11)

with @=3, y=1 for all parameters investigated (3 <b <20,
102<U<60), see Fig. 4. Note that the relation y=(a
—1)/2 implies an invariance of the linear instability curve (3)
at large U under rescaling.

Different step kinetics for bunches of different sizes im-
plies a change in coarsening dynamics, highlighted in Fig. 5.
For b> 1, depending on the value of U different coarsening
scenarios are possible. For U>U, steps are exchanged
throughout the coarsening process, while for U= U,/2 late
stage coarsening proceeds in two stages: without step ex-
change (for bunch sizes smaller than M) and with step
emission once the typical bunch size exceeds M ,. Coarsen-
ing with or without a step exchange has previously been
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FIG. 5. Space-time plot of individual step trajectories during
coarsening, in a frame comoving with the step velocity v, for b
=20, U/l=12. Step emission starts when the bunch size exceeds a
critical value. The isolated emission event around #=7 occurs be-
cause the bunch shapes are not yet stationary. The initial configu-
ration is a slightly perturbed train of bunches consisting of 16 steps
each.

associated with nonconserved (b finite) and conserved (b
=, no sublimation) dynamics, respectively;17 here we see
that both types of behavior may coexist when b> 1.

VII. CONCLUSIONS

We predict a dynamic phase transition in electro-
migration-induced step bunching within the regime of non-
transparent steps and attachment-detachment limited kinet-
ics. The transition is characterized by a dramatic change in
the number and behavior of the free steps that are exchanged
between bunches. Qualitative changes in the behavior of
crossing steps have repeatedly been reported in electromigra-
tion experiments on Si(111). For example, Homma and
Aizawa’® observed single crossing steps consistent with our
b>1 scenario in temperature regime III, while Gibbons et al.
found a dramatic reduction in the number of crossing steps
on approaching equilibrium conditions.'” We therefore ex-
pect that a systematic investigation of crossing steps will
considerably deepen our understanding of step bunching in
this system. Theoretical challenges for the future include the
development of a continuum description for »>1, and the
investigation of the correlated coarsening dynamics in this
regime.
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