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Electronic states of graphene nanoribbons studied with the Dirac equation
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We study the electronic states of narrow graphene ribbons (“nanoribbons”) with zigzag and armchair edges.
The finite width of these systems breaks the spectrum into an infinite set of bands, which we demonstrate can
be quantitatively understood using the Dirac equation with appropriate boundary conditions. For the zigzag
nanoribbon we demonstrate that the boundary condition allows a particlelike and a holelike band with evanes-
cent wave functions confined to the surfaces, which continuously turn into the well-known zero energy surface

states as the width gets large. For armchair edges, we show that the boundary condition leads to admixing of
valley states, and the band structure is metallic when the width of the sample in lattice constant units has the
form 3M +1, with M an integer, and insulating otherwise. A comparison of the wave functions and energies
from tight-binding calculations and solutions of the Dirac equations yields quantitative agreement for all but

the narrowest ribbons.

DOI: 10.1103/PhysRevB.73.235411

I. INTRODUCTION

Improvements in the processing of graphite have made
possible the isolation of two dimensional carbon sheets
known as graphene.! The experimental observation of the
quantum Hall effect in ribbons of this material, with widths
in the micron? or submicron® range, indicates unambiguously
the two dimensional character of the system. The possibility
of gating and further processing such graphene sheets into
multiterminal devices has opened a field of carbon-based na-
noelectronics, where graphene nanoribbons could be used as
connections in nanodevices.

The electronic properties of a nanometer scale carbon sys-
tem depends strongly on its size and geometry.*> This is well
known in the case of nanotubes, which are graphene sheets
rolled into cylinders.® The geometry dependence is strongly
influenced by the bipartite character of the graphene lattice.
For carbon nanotubes the wrapping direction imposes differ-
ent boundary conditions on the wavefunction in the different
sublattices, which determines whether the system is semi-
conducting or metallic.

In this work we study the electronic states of graphene
ribbons with different atomic terminations (Fig. 1). Using
tight-binding calculations, we show that the electronic prop-
erties depend strongly on the size and geometry of the
graphene nanoribbons. We demonstrate that the electronic
energies and states may be understood in terms of eigenval-
ues and eigenvectors of the Dirac Hamiltonian, which de-
scribes the physics of the electrons near the Fermi energy of
the undoped material.

We now summarize our results. We find that for nanorib-
bons with zigzag edges, the correct boundary condition is for
the wave function to vanish on a single sublattice at each
edge. In this case the nanoribbon has confined electronic
states with wave functions that involve sites on both sublat-
tices, and is extended across the system. In addition, there
are surface states strongly localized near the edges which are
nonvanishing only on a single sublattice. For armchair edges,
the appropriate boundary condition is for the wave function
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to vanish on both sublattices at the edges. This can be
achieved by admixing states from both Dirac points. In this
case we find that the electronic structure depends critically
on the nanoribbon width, with the system being metallic
for nanoribbons of width L=(3M + 1)a,, where M is an inte-
ger and ag is the graphene lattice constant, and insulating
otherwise.

II. MODEL HAMILTONIAN

In graphene the carbon atoms crystallize in a honeycomb
structure whose primitive lattice vectors are a=ay(1,0) and
b=ay(1/2,y3/2). The lattice is bipartite and there are two
atoms per unit cell, denoted by A and B, located at (0, 0) and
at d=a,(0,1/ \6). In the simplest model, bands formed from
the sp2 orbitals are assumed to be filled and inert, and mobile
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FIG. 1. (Color online) The lattice structure of a graphene sheet.
The primitive lattice vectors are denoted by a and b. Top and bot-
tom are zigzag edges, left and right are armchair edges. Atoms
enclosed in the vertical (horizontal) rectangle represent the unit cell
used in the calculation of nanoribbons with zigzag (armchair)
edges. The length of the nanoribbons, L, as function of the number
of atoms, N, in the unit cell is also indicated.
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carriers move in the x-y plane by hopping between the p,
orbitals of the carbon atoms. A tight-binding model with only
nearest neighbor hopping 7 leads to a Hamiltonian with Dirac
points at the six corners of the Brillouin zone, only two of
which are inequivalent. We take these to be K= (; s 3) and
K'= za:( %, 3) Because we are interested in the low -energy
states near these points, it is appropriate to adopt the k-P
approximation.”® In this approach wave functions are ex-
pressed in terms of envelope functions [i,(r), ¥g(r)] and
[,(r), ¢p(r)] which multiply the states at the K and K’
points, respectively. The envelope functions may be com-
bined into a four-vector W= (i, ¥z, — by ,—tby),” which sat-
isfies a Dirac equation HV =gV, with

0  —ketik, 0 0

Heya| 5O 0 N
0 0 0 k+ik,
0 0  ke—ik, 0

where y= \3t/2. Note that k denotes the separation in recip-
rocal space of the wave function from the K (K') point in
the upper left (lower right) block of the Hamiltonian.

The bulk solutions of Hamiltonian (1) are well-known.
The eigenstates retain their valley index as a good quantum

7

may be written as [e*Te7 %2 T ¢kTei%/2 () 0] for the K val-
ley, and [0,0,e™ /%2 +¢*Te=i%/2] for the K’ valley. Here
O =arctan k,/k,. Note that a solution to the Dirac equation
(Y4, g, —,,—pp) with energy e has a particle-hole conju-
gate partner'® (¢, — i, — 4/}, 1) with energy —e. Because of
this, the eigenstates of Eq. (1) must be normalized on each
sublattice separately:® [dr[|4,(r)[*+ |y (r)[]=1/2, for u
=A,B.

III. ZIGZAG NANORIBBONS

The geometry of a nanoribbon with zigzag edges is illus-
trated on the top and bottom edges of Fig. 1. It is interesting
to note that the atoms at each edge are of the same sublattice
(A on the top edge of Fig. 1 and B on the bottom edge). In
Fig. 1 we also show the unit cell used in the tight-binding
calculations of the zigzag ribbons, containing N/2 A-type
atoms that alternate along the unit cell with N/2 B-type at-
oms. The total width of the nanoribbon is L=—\3a0 We
impose periodic boundary conditions along the direction par-
allel to the edge. In our discussions we will assume that the
edges lie along the y direction, so in in the discussion of the
zigzag nanoribbons, the coordinate axes in Fig. 1 will be
rotated by 90°, and the eigenstates are proportional to . In
Fig. 2 we plot an example of the band structure of a nanor-
ibbon with zigzag edges. The finite width of the ribbon pro-
duces confinement of the electronic states near the Dirac
points. In Fig. 3 we plot the energy of the first three confined
states, at k=K, as a function of the nanoribbon width. The
two bands of d1sper510nless localized surface states!!~!3 that
occur between K, and K in Fig. 2(a) are also affected by the
finite width: they admix, and the two bands are slightly offset
from zero. The dependence of the electronic states on the
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FIG. 2. (Color online) Examples of energy bands for a graphene
nanoribbon with periodic boundary conditions in one direction. k is
the wave vector parallel to the nanoribbon edge, measured with
respect the center of the Brillouin center. (a) Ribbon terminated in
zigzag edges with 56 atoms in the unit cell. The dispersionless
states correspond to confined surface states. The band structures of
insulating and metallic armchair nanoribbons are plotted in (b) and
(c), respectively.

width of the nanoribbon may be understood in terms of
eigenstates of the Dirac Hamiltonian with appropriate bound-
ary conditions: setting the wave function to zero on the A
sublattice on one edge, and on the B sublattice for the other.
We can understand the lines of vanishing wave function to be
lattice sites that would lie just beyond the edges if bonds had
not been cut to form them.
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FIG. 3. (Color online) Calculated confined state energies at a
Dirac point vs the nanoribbon width, in a zigzag nanoribbon. The
dots are tight binding results, and the crosses are the results of the
k-P approximation.
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For the continuum description, we begin by rotating the
wave vectors in Eq. (1), k,— k,, k,——k, so that the zigzag
edge lies along the y direction, and our wave functions exist
in the space 0 <<x<L. Translational invariance in the y di-
rection guarantees the wave functions can be written in the
form ¢, ( ’)(r):eik>’-"gbﬂ( ")(x). To find wave functions for
a system with edges, we make the replacement k,— —id, in
Eq. (1) (after the rotation). By acting on the spinor state
twice with the Hamiltonian, one easily finds for the K(K')
valley that the wave functions obey

(- +k) ()= (1),
(- +k)pa( ) = hy( 1), (2)

with &=¢/(yay). It is easy to see if one solves the equations
for ¢z and ¢, the remaining wave functions are determined
by

§¢B = (lax - lkv) ¢A7

g =(—id, +ik,) by 3)
The general solutions of Eq. (2) have the form
¢, (x) =Ae™ + Be™, (4)

with z= \f'kﬁ—é”z, which can be real or imaginary.
For the zigzag nanoribbon, we meet the boundary condi-
tion for each type of wave function separately

$a(x=0) = $y(x=0) = bs(x=L) = dy(x=L)=0. (5

These conditions leads to a transcendental equation for the
allowed values of z,
ko —

Ak ez, (6)
ky +zZ

Equation (6) supports solutions with real values of z=k for
k),>k§=1/L, which correspond to the surface states. These
have energies i\/ki—kz, and are linear combinations of states
localized on the left and right edges of the ribbon. For large
values of ky, k%ky and the surface states become decoupled.
For k,<<0 there are no states with real z that can meet the
boundary conditions, so surface states are absent. For values
of ky in the range O<ky<k;, the surface states are so
strongly admixed that, as we show below, they are indistin-
guishable from confined states.

For pure imaginary z=ik,, the transcendental equation be-
comes

ky

ky= m, (7)

and for each solution k,, there are two confined states with
. ~_ ) 2 .
energies €=+ an+ky and wave functions

é sin(k,x)
( A) - i i '
bp +—[-k, cos(k,x) +k, sin(k,x)]
g

(8)

Here the index 7 indicates the number of nodes of the con-
fined wave function. Interestingly, for values of k, larger than
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FIG. 4. (Color online) Squared wave function for the state clos-
est to zero energy for a zigzag nanoribbon, as obtained from tight
binding calculations. The width of the ribbon is L= 14\53510. (a) k
=-2m/3ay and (b) k=(-27/3ay)(1-0.02). Both are measured from
the center of the Brillouin zone.

kS, Eq. (7) does not support nodeless solutions, indicating the
existence of surface states in this region of reciprocal space.
The critical value k| is the momentum where the lowest en-
ergy solution of the transcendental Eq. (6) changes from pure
real to pure imaginary, and the energy is equal to i|k;|.

In order to analyze the accuracy of the k- P approximation
for describing the electronic properties of carbon nanorib-
bons, in Fig. 3 we plot the energies of the three lowest con-
fined states of a zigzag nanoribbon as a function of its width,
both from the tight-binding approach and from our solutions
to the Dirac equation. It is apparent that the two approaches
match quite well, even for rather small widths (~35 A).

In Fig. 4 we plot the squared wave function for the lowest
energy state of a zigzag nanoribbon as obtained in the tight
binding approach. Figure 4(a) corresponds to k,=0
(k=—=27/3a, with respect the center of the Brillouin zone),
and Fig. 4(b) to k,=0.02X2m/3a,. The first case corre-
sponds to a nodeless confined state, and we find the wave
function is described nearly perfectly by Eq. (8), whereas the
second case is the expected linear combination of surface
state wave functions that decay exponentially from the edges
as exp(—kx).

IV. ARMCHAIR NANORIBBONS

The geometry of a nanoribbon with armchair edges is
illustrated on the left and right edges of Fig. 1, along with the
unit cell used in the corresponding tight binding calculations.
In this orientation the width of the nanoribbon is related to
the number of atoms in the unit cell through the expression
L:%ao. Here the edge runs along the y direction, and no
rotation of the figure is needed to represent our calculations.

The electronic properties of armchair nanoribbons depend
strongly on their width. In Figs. 2(b) and 2(c) we plot two
examples of band structures of armchair nanoribbons. One
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FIG. 5. (Color online) Calculated lowest energy confined states
at the center of the Brillouin zone vs the nanoribbon width, for an
armchair nanoribbon. The dots correspond to the tight binding re-
sults and the crosses are the results of the k- P approximation. In the
inset we plot the six lowest energy confined states for three different
widths. The k-P results are slightly shifted to the right for clarity.
Note that the for L=25q the k-P results are doubly degenerate.

sees that in the latter figure there is a Dirac point, leading to
metallic behavior for a noninteracting model, whereas the
former is a band insulator. In general we find that armchair
nanoribbons of width L=(3M+1)a,, with M integral, are
metallic, whereas all the other cases are insulators. The en-
ergy of the confined states also behave in a discontinuous
way with respect to the width of the ribbon. In Fig. 5 we plot
the energy of the lowest (squared) energy confined states at
the center of the Brillouin zone as a function of the nanorib-
bon width. In the inset of this figure we see that the separa-
tion in energy between confined states is also strongly depen-
dent on the number of atoms in the unit cell.

As in the case of the zigzag nanoribbons this behavior
may be understood in terms of eigenstates of the Dirac
Hamiltonian with the correct boundary conditions. In Fig. 1
one may see that the termination consists of a line of A-B
dimers, so it is natural to have the wave function amplitude
vanish on both sublattices at x=0 and x=L+ay/2. To do this
we must admix valleys, and require

$ux=0)=¢,(x=0),

G(x=L+ay/2) = ¢, (x=L+ay/2)e™ 02

with AK =§—;. The ay/2 offset in the boundary condition on
the right is appropriate because the two leftmost atoms in the
ribbon unit cell are L+a/2 to the left of the two rightmost
atoms (see Fig. 1). With these boundary conditions the gen-
eral solutions of the Dirac equation are planes waves

() = et and @p(x) = e, ©)

The wave functions on the A sublattice may be obtained via
Eq. (3). The wave vector k,, satisfies the condition

2ikallrag2)  GIbK(Lrag/2) (10)

so that
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FIG. 6. (Color online) Squared wave function of the state with
energy closest to zero for an armchair ribbon of width (a) L=25a,
and (b) L=26ay, as obtained from tight binding calculations.

(k,,—z—w)(ZL+a0)=27rn (11)

3(10

with 7 an integer. Thus for armchair nanoribbons the allowed
values of k, are

2n 2
l‘l: + _’
2L + ao 3610

(12)

with energies i\s’k,21+k§. Note that this is in contrast to the
zigzag nanoribbon for which the allowed values of &, depend

on k,. For a width of the form L=(3M+1)ay, the allowed

values of k,,, kn=32—;](%), create doubly degenerate states

for [2M+1+n[=0, and allow a zero energy state when k,
— 0. Nanoribbons of widths that are not of this form have
nondegenerate states and do not include a zero energy mode.
Thus these nanoribbons are band insulators. The quality of
the k- P approximation for describing the electronic states of
armchair nanoribbons is reflected in Fig. 5 where the ener-
gies of the confined states obtained by diagonalizing the tight
binding Hamiltonian and by solving Eq. (12) are compared.
The quantitative agreement is apparent for all but the nar-
rowest ribbons, where one does not expect the k-P to work
well.

The admixing of different valley states to meet the bound-
ary condition means that the wavefunction will oscillate with
period 277/ AK.° This behavior can explicitly be seen in Fig.
6, which illustrates the squared wave function from the tight
binding calculation. The short oscillation in the wave func-
tions has exactly the period expected for the valley mixing
we introduced to meet the boundary conditions. In the case
of Fig. 6(a), the ribbon is of width is L=25a, and k,=0, so
that the energy is zero and there is no confinement effect on
the form of the wave function. For a ribbon of width L
=26a, [Fig. 6(b)], k, is nonzero and one sees a long-
wavelength oscillation whose period is related to the value of
k

n:
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V. CONCLUSION

In this paper we studied eigenstates and eigenenergies of
graphene nanoribbons using the Dirac equation with appro-
priate boundary conditions, and compared the results to those
of tight binding calculations. We found that except for the
narrowest ribbons, the agreement was quantitative. Zigzag
nanoribbons support surface states which go to zero energy
in the limit of wide ribbons, and can only be found in a k,
interval between the Dirac points. Armchair nanoribbons
have no surface states, but in spite of their finite size they
have zero energy states for appropriately chosen widths, so
that the system oscillates between insulating and metallic
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behavior as the width changes. Our results show that the
continuum description of graphene may be used in quantita-
tive analysis of this system for all but the most narrow
systems.©
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