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A variational irreversible thermodynamic method for curved surfaces and interfaces in a two-dimensional
�2D� continuum, having anisotropic specific surface Gibbs free energy, is developed by utilizing the more
realistic monolayer model of Verschaffelt and Guggenheim for the description of interfaces and surfaces in
connection with the global entropy production hypothesis. This approach considers not only the asymmetric
disposition of the grain-boundary triple junction, but also its dynamical effects on the morphological evolution
of surfaces. The governing Euler equation and the associated boundary conditions �the strong solution� are
derived rigorously by the variational technique applied on the positive definite rate of global internal entropy
production; the results are in excellent accord with those deduced by the first-principles theory of irreversible
thermodynamics of curved surfaces with triple junctions as formulated previously by the author, using the basic
postulate of the local internal entropy production in connection with the microfinite-element method in discrete
2D space. At the final stage, the whole problem is converted into a variational extremum problem in order to
obtain the weak solution in a class of smooth functions �i.e., Hermite functions� having continuous derivatives
C��−� , +�� by transforming the displacement field into the particle-flux representation using the principle of
conservation of particles, including the phase transition. As an application of the weak solution, which is
converted into a compact matrix format in the normalized and scaled time and space domain, a set of computer
simulation experiments is performed on symmetrically disposed bicrystal thin metallic films having fourfold
anisotropic specific surface Gibbs free energy to demonstrate the breaching effects caused by grain-boundary
grooving under the surface drift diffusion driven by the capillarity without electromigration forces.
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I. INTRODUCTION

Capillary-driven morphological evolution of surfaces and
interfaces in solids continues to be a challenging theoretical
problem in materials science, especially under the action of
applied force fields such as electromigration and thermome-
chanical stress systems. By drawing from elegant fundamen-
tal laws of physics, the field allows for the exciting possibil-
ity of making quantitative prediction about the behavior of a
diverse range of real materials such as sapphire or ice. The
importance of this subject in materials science applications
derives from the fundamental role played by surfaces and
heterophase boundaries in physical and chemical processes
in solids, in stability of structures, and in properties of ma-
terials. Wetting, sintering, grain growth, grain-boundary
grooving, growth of thin films, and stability of multilayers
are all examples of capillary-driven shape and microstruc-
tural evolution. The special issue of surface morphological
evolution has found renewed interest over the past decade
with the advancement of nanotechnology. The evolution of a
crystal surface close to a high-symmetry orientation �vicinal
planes� has a stepped structure �terraces and breaching�, and
as a direct consequence of this the formation of cusps is
observed in the Wulff construction of the surface specific
Gibbs free energy below the roughening transition tempera-
ture. The evolution kinetics of such a surface is controlled by
the surface drift diffusion as well as the evaporation and
condensation processes occurring concurrently. This intricate
behavior often combines with strong anisotropy �cusps� in
the Wulff construction represented by a Dirac � distribution

function singularity in the surface stiffness, which is closely
related to the instability of the surface morphological evolu-
tion, and the topography of the pattern formation.

In the early 1950s, this area was partially put into a solid
quantitative framework by the classical work of Herring,1

von Neumann,2 and Mullins.3 Their work relied strictly on
equilibrium thermodynamics and the Gibbs4 abstract descrip-
tion of interfaces and dividing surfaces. The earliest analyti-
cal study was Mullins3 treatment of the grooving of a grain
boundary �GB�. Mullins ignored GB diffusion and consid-
ered the triple junction �TJ� to have an equilibrium capillarity
configuration satisfying the Young5 relationship. The bound-
ary conditions at the TJ are continuity of the chemical poten-
tial, conservation of mass, and again the equilibrium capil-
larity configuration for the geometry. It has been well known
for some time that GB grooves can develop facets owing to
surface energy anisotropy. The presence of facets on the
groove surfaces poses intricate modeling issues since Mul-
lins’ theory is inapplicable to anisotropic surfaces.

Non-boundary-tracking methods have been increasingly
applied to simulate complex microstructural evolutions, in-
cluding Monte Carlo, cellular automata, and phase field
methods.6 Kazaryan et al.7 generalized the phase field ap-
proach by allowing for rigid-body rotation during sintering,
and by further assuming that the TJ velocity can be deter-
mined from the steady-state requirement imposed at the GB.
TJ motion is also investigated by Cahn et al.8 utilizing long-
time asymptotic analysis in which the requirement of uni-
form displacement is still incorporated. Averbuch et al.9 uti-
lized highly sophisticated numerical procedures in their
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studies, but they still assumed that there is an equilibrium
configuration at the TJ, and the TJ displacement velocity can
be extrapolated from the projection of the normal velocities
of the neighboring nodes in the direction of the intergranular
GB.

The GB grooving at singular surfaces was extensively
studied by Rabkin et al.10 and Klinger et al.11 by explicitly
introducing faceted and rough regions, each with different
isotropic surface energies. Recently, Zhang et al.12 and Xin
and Wong13 prescribed an orientation-dependent surface
stiffness instead of the surface free energy explicitly in their
treatments. However, none of the above studies account for
the grooving kinetics at the TJ, ruling out the possibility of a
nonequilibrium groove profile, which was fully considered
very recently by Ogurtani and Akyildiz14 in connection with
their extensive computer simulations under the capillary and
electromigration forces. Actually, the results of the rigorous
treatment of the nonequilibrium dynamics of the TJ by Oren
and Ogurtani15 appeared in the literature in connection with
simulation studies of GB void interactions driven by elec-
tromigration and capillary forces in thin-film interconnects
with bamboo structure having anisotropic diffusivity. In that
study,15 the asymmetric disposition of the adjacent grains
�texture� is fully accounted for by the internal entropy pro-
duction �IEP� due to the transversal virtual displacement of
the TJ. The discrete micro-finite-element �DMFE� formula-
tion of irreversible surface thermodynamics was also applied
to the GB void interaction under the capillary and electromi-
gration forces by Ogurtani and Oren,16,17 and a formula re-
sulted for the interconnect failure time that is in excellent
agreement with the published experimental data on copper
and aluminum thin-film interconnects having bamboo struc-
tures.

Most recently, Ramasubramaniam and Shenoy18 made a
very serious attempt to obtain a weak solution of the evolu-
tion kinetics of faceted GB grooves by using a variational
approach and utilizing ad hoc thermokinetics arguments
based on Herring’s formula, which is very popular in surface
science and continuum mechanics.19 They produced, how-
ever, proper connections for the TJ displacement velocity,
which is in complete accord with the result of Oren and
Ogurtani,15 but only for symmetrically disposed surface pro-
files that are initially flat and infinite in extent.

This paper focuses on the more transparent variational
formulation of the irreversible thermodynamics of surfaces
and interfaces to give a full coverage of the surface morpho-
logical evolution of arbitrary-shaped curved surfaces with
corners and edges in both finite and infinite extent, utilizing
not only the strong solutions but also the weak solutions of
the problem. While doing that an asymmetrically disposed TJ
singularity is also considered; this arises either due to the
initial configuration of the system or because of the very
intrinsic character of the anisotropic specific surface Gibbs
free energy, which translates into the surface stiffness con-
cept correlated with cusps in vicinal plane orientations in
Wulff construction crystalline solids.1 Even more severely
asymmetric surface profiles occur at grain-boundary–triple-
junction singularities during the morphological evolution un-
der electromigration �EM� forces and/or under thermal strain
field gradients generated by the steady-state heat flow

through the interconnects. However, the strong solutions of
these complications without the surface Gibbs free energy
anisotropy have already been formulated by the present au-
thor in terms of the well-posed free-moving boundary-value
problem. The results obtained by that approach were put into
action during the extensive computer simulations of surfaces
and interfaces by Ogurtani and co-workers.14–16,20

This paper is organized in the following manner. In Sec.
II, the variational formalism of the irreversible thermody-
namics of interfaces with GB-TJ singularities is elaborated
rigorously by utilizing the positive definite global internal
entropy production �GIEP� hypothesis. Here, the virtual dis-
placements of the GB TJ as well as the ordinary points at the
interfacial layer between two bulk phases are considered re-
gardless of their states, whether they are solid/solid or solid/
fluid composite systems. This unified approach results in a
strong solution of the global nonequilibrium problem without
referring to any thermokinetics relationships associated with
the interfacial or bulk drift-diffusion phenomenon used in the
context of the long-range mass-transfer processes. In Sec. III,
the results obtained in Sec. II are combined with the law of
conservation of particles to obtain a set of kinetic equations
for ordinary and singular points �corners, edges, and GB-TJ
singularities� along the solid surface layers, which relates the
displacement velocity field to the particle-flux density repre-
sentation. In the particle-flux formulation of GIEP, the asym-
metrical disposition of the GB with respect to the surface
layer is properly treated in addition to the anisotropy in sur-
face specific Gibbs free energy. In Sec. IV, the weak solution
of the extremum problem is formulated in the particle current
density representation without putting any restriction on the
asymmetrical disposition of bicrsytal samples. During the
numerical treatment of the weak solution, we faced serious
problems, which are solely associated with the naturally oc-
curring discontinuities in the surface flux density and its gra-
dient at the TJ singularity when the system is away from the
equilibrium configuration. These problems are discussed
thoroughly and remedies are proposed to smooth out those
discontinuities by passing from the finite interfacial model to
the Gibbs’ continuum geometric representation using a
simple mathematical technique familiar in calculus. In Sec.
V, the numerical methods for the weak solution are elabo-
rated, and the governing equation for the morphological evo-
lution of grain-boundary thermal grooving is put into man-
ageable matrix format. The tentative computer simulation
experiments are executed on various asymmetric �texture�
and symmetric GB configurations in nano-size ��100 nm�
bicrsytal metallic interconnect lines to demonstrate the dy-
namics of thermal grooving, and the results obtained are
compared with the available symmetric cases in the pub-
lished literature.18 Excellent agreements is found.

II. VARIATIONAL FORMULATION OF GLOBAL
INTERNAL ENTROPY PRODUCTION

In this section, a variational irreversible thermodynamic
method for the curved surfaces and interfaces in a two-
dimensional �2D� continuum, having anisotropic specific sur-
face Gibbs free energy, is developed by utilizing the more
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realistic monolayer model of Verschaffelt21 and
Guggenheim22 for the description of interfaces and surfaces,
rather than the Gibbs abstract geometric model.4

The nonequilibrium treatment of the composite system
considered here does not put any restriction on the state of
the individual bulk phases whether they are solids or fluids,
since it does not rely on any kinetic supplementary equa-
tions. Therefore, the findings of this section are also valid for
the solid state phase transformation taking place between
secondary phase particles and the matrix. The thermody-
namic composite system consists of two bulk regions divided
by a GB, and a realistic void phase �including the condensed
state� separated by a singly connected curved interfacial
layer �the generalized cylindrical surface in 3D�. The GB and
the void interfacial layers are both presumed to have finite
and invariant thicknesses. The realistic void phase has well-
defined thermodynamics properties, embedded in the bulk
matrix, and attached to a straight and inflexible GB that lies
along the y axis at the TJ, which is exposed to a lateral
displacement constraint, as partly illustrated in Fig. 1. How-
ever, in the mathematical formulation of the problem pre-
sented in this section, these constraints on the GB are lifted
completely to show the generality of our approach to this
rather intricate and highly popular problem in the literature.
The Gibbs specific surface free energy �GSFE� gg��� asso-
ciated with the GB is assumed to be anisotropic in this paper.
Here � is the angle between the tangent vector of the GB
profile and the y axis. In Sec. III, the above-mentioned con-
straints again will be reimposed on the GB at the later stage
of our treatment. This generalized approach not only contrib-
utes to the transparency of the treatment but also gives us an
opportunity to recover the torque term associated with the
anisotropic GB GSFE, which may have important contribu-
tions in the asymmetric cases.

In the present discussion, the subsystems are all com-
pletely open for the exchange of chemical species and en-
ergy, but the whole global system is closed. Each phase in-
cluding the autonomous interfacial layers has a well-defined
temperature and they are under complete thermal equilib-
rium. Therefore, all conceivable natural processes taking

place in the global composite system are isothermal and ir-
reversible.

The contribution due to the interfacial layer may be rep-
resented by the following anticlockwise contour integration
in 2D space having a singularity at x=0±� and y=0±�
where the TJ is situated initially at the origin of a global
laboratory reference system. Since there is a physical singu-
larity at the GB TJ, this point will be treated as an external
free end point �boundary�, and the left- and right-hand sides
of the surface layer with respect to the GB TJ are represented
symbolically by the ±���tj� finite position vector set. Simi-
larly, the vector variation operators ±��� used in the follow-
ing formulation denote the free virtual displacements of the
left and right end points of the surface layer in the variational
analysis, Hence, in the proposed analysis, the TJ is treated as
a completely free-moving boundary point �free end point�
having virtual displacements not only along the longitudinal
�y axis� but also along the transverse direction �x axis�. Then,
one may write the following functional for the global Gibbs
free energy of the system:

G�y� =
.

+��→−��
d� g��	� + �

x=0,y=−h

���TJ�

d� gg���

+ �
Sv

ds ğv + �
Sb

ds ğb

=
.

+��→−��
dx g��tan−1�ỹx���1 + ỹx

2 + �
Sb

ds ğb

+ �
x=0,y�−h�

���TJ�

dy gg�tan−1�x̃y���1 + x̃y
2 + �

Sv

ds ğv

�1�

where ỹ�x , t� and x̃�y , t� are the surface and GB profile func-
tions in the Cartesian coordinate system, ���tj� denotes the
temporal position of the GB-TJ singularity, g��	� is the
orientation-dependent surface specific Gibbs free energy, and
	 is the angle between the interface tangent vector and the x
axis, as described in Fig. 1. The second term in the above
equation represents the total Gibbs surface free energy of an
initially straight but flexible GB having anisotropic GSFE.
The symbol .+�→−� indicates anticlockwise contour integra-
tion over the singly connected void surface layer between +��
and −�� , where the temporal position of the TJ singularity is
situated at the origin of the global Cartesian coordinate sys-
tem for convenience. In Eq. �1� the GB-TJ singularity is
treated as an external point, which constitutes a free-moving
boundary in the formulation of the strong solution of the
extremum problem. In general for closed-loop interfaces,
ỹ�x , t� is a multivalued smooth surface profile function hav-
ing piecewise continuous derivatives, and it should be repre-
sented in the parametric form during the contour integration.
The third and fourth terms represent the global Gibbs free
energies associated with the bulk phases separated by the
interfacial layer. Sv and Sb are adjoining regions occupied,
respectively, by the void and the embedding bulk phase,
which are separated by the interfacial layer. The bulk solid
regions that are separated by the GB may even be different

FIG. 1. Triple-junction macrostructure illustrates the asymmetri-
cal evolution of the initially flat surface layer of a semi-infinite bulk
matrix. �t̂+ , t̂− , t̂g� is the set of unit tangent vectors at the TJ, asso-
ciated with the right- and left-side surface layers and grain-
boundary-region layers.
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phases, and that does not change the results of the present
formulation, since we have assumed an anisotropic surface
Gibbs free energy and have put no restriction on the inho-
mogeneity of the bulk Gibbs free energy densities. Here ğv
and ğb are the volumetric Gibbs free energy densities of the
void and the bulk phases, respectively, and in general they
may explicitly depend on the space and time. g��	� and
gg��� are specific surface Gibbs free energies of the interfa-
cial layer and the GB, and they are related to the volumetric
Gibbs free-energy densities by g�=h�ğ� and gg=hgğg, re-
spectively. Here h� and hg correspond to the thicknesses of
the interfacial layer and the GB, respectively. In the geomet-
ric description �Gibbs model� of the interfaces and surfaces,
where �h� ,hg�→0, these surface specific quantities still stay
invariant, similar to the specific surface particle densities de-
noted by 
� and 
g. The Gibbs free energy densities are
generalized Gibbs free energies, and they are functions of not
only the temperature and chemical composition but also the
local stress tensor as well as the applied electric and mag-
netic field intensities.20 Since we assumed that the system is
under thermal equilibrium, the variation of the GIEP, �Sint,
associated with the variation of the global Gibbs free-energy
functional of the composite system due to the virtual dis-
placement of the interfacial layer including the GB-TJ sin-
gularities may be given by the following expression:

�SIEP��y, ± ��� ,�y��0��

= −
1

T	�
.

+���→−���
d� g��	� + ��

y�−h�

����TJ�

d� gg���

+
.

+��→−��
�� d� �ğvb
 � 0 �2�

where the ±��� and �y��0� vector displacement notations indi-
cate that the end points of the above integral expression are
free-moving points both along the x and y axes. In Eq. �2�,
�ğvb= �ğv− ğb� is the volumetric Gibbs free-energy density
of the transformation �GFEDOT� associated with the trans-
formation of the bulk phase into a realistic void phase during
the scooping motion23 of the interface displacement. The
connection between the GFEDOT and the specific Gibbs free
energy of transformation �gvb between the parent phase and
the void phase is �gvb=h��ğvb. �Note that for evaporation of
the bulk or growth of the void region, �gvb0.� Here, we
have also assumed implicitly that ��ğvb�0, which may be
justified if one considers the fact that during the virtual dis-
placement of the interfacial layer by the scooping action only
the adjacent bulk regions are affected by the interfacial phase
transformation. In the rigorous sense, this assumption auto-
matically excludes the IEP associated with the bulk diffusion
taking place for the redistribution of chemical species that
are rejected by the interface displacement reaction in multi-
component systems �including athermal vacancies� during
the phase transformation. Therefore, �ğvb should be evalu-
ated at the bulk regions that are just adjacent to the interface
or beneath the surface layer.

Here the variations are considered not only with respect to
the variation of the surface and GB profile functions at the

ordinary points denoted by �ỹ�x , t� and �x̃�y , t�, but also in-
cludes the position of the TJ, which is assumed to be a com-
pletely free corner point �the refraction of the extremal�, and
may be described by the longitudinal ��±�y� and transversal
��±�x� displacement variations. Therefore, in the general
treatment of the problem there are no constraints imposed on
the lateral movements of the GB, which may separate two
anisotropic grains in the bulk matrix having completely dif-
ferent physicochemical properties including the texture.
Hence, one writes the following more explicit and exact ex-
pression in the Cartesian coordinate system by keeping in
mind that the surface profile function is multivalued and
piecewise continuous, and the integration is along the surface
contour:

�SIEP��y,�x,��±���,����TJ��

= −
1

T
lim

���→0
	�
.

+���→−���
dx g��tan−1�ỹx���1 + ỹx

2

+ ��
y�−h�

���TJ�

dy gg�tan−1�x̃y���1 + x̃y
2 +

.
+��→−��

�� d� �ğvb

� 0 �3�

In above expression ��=−�1+ ỹx
2�−1/2�y is the virtual dis-

placement of the interfacial layer along the surface normal
and it is directed toward the bulk phase according to the
convention adopted in our previous work.20 In the second
term of Eq. �3�, we assumed that the GB specific Gibbs free
energy is orientation dependent.

The variational problem described by Eq. �3� represents
the general variation of a functional, which considers the
arbitrary variations of the profile functions ỹ�x , t� and x̃�y , t�
and the arbitrary limits of integration �transversality condi-
tions�. This refraction extremal problem denoted explicitly
by �SIEP��y ,�x ,��±��� ,�y��0���0 can have a weak solution
if the Weiserstrass-Erdmann conditions are satisfied at corner
points such as the TJ.24 If we let the integrand in Eq. �3�
denote by FÜg��tan−1�ỹx���1+ ỹx

2, the following exact and
general expression25 can be written after first taking the
variation of the integrand and then applying integration by
parts, namely:

lim
���→0

�
.

+���→−���
dx g��tan−1�yx���1 + yx

2

= lim
���→0

��
+���

−���

dx F�x,y,yx�

= lim
���→0

�
+�

−�

dx	Fy −
d

dx
Fyx


�y + �Fyx
�x=−����y�− ���

+ �F − yxFyx
��x=−���− �� − �Fyx

�x=+���y�+ ���

− ��F − yxFyx
��x=+���+ ��� . �4�

The above relationship is written for a general type of
integrand function denoted by F�x ,y ,yx�. The second expres-
sion clearly and explicitly shows that the free variations of
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the end points are along the lateral and the longitudinal di-
rections as we proposed previously.

In the present case, the integrand has a simple form de-
pending only on the derivative of the profile function de-
noted as yx, which brings great simplification in the math-
ematical manipulations.

The Euler function Fy − �d /dx�Fyx
may be immediately

calculated using the fact that the ordinary derivative d /dx
operator acts on Fyx

explicitly and implicitly, which gives the
following results in two different formats using the definition
of the integrand function as described above:

	Fy −
d

dx
Fyx


 = −
d

dx
Fyx

= −
d

dx
�g�� cos�	� + g� sin 	� ,

�5a�

	Fy −
d

dx
Fyx


 = − yxxFyxyx
� − �d2g�

d	2 + g�� = − ��g�� + g�� .

�5b�

The explicit expression Eq. �5a� is a very important form
of the Euler equation and it will be used to obtain the weak
solution of the smoothed-out particle-flux density later in
Sec. IV. The implicit expression Eq. �5b� will be employed
for the strong solution in Sec. III. The implicit expression is
very popular in surface science for the description of the
surface Gibbs free-energy anisotropy and in crystalline solids
for the Wulff topographic representation of the vicinal sur-
faces. This function is also called Herring’s surface chemical
potential �=−��g�� +g�� in the literature. In this formalism,
g̃���g�� +g�� is called the surface stiffness and � is used to
denote the local curvature, which is assumed to be positive
for a concave bulk surface. One may apply exactly the same
variational procedure for the GB total specific Gibbs free
energy represented by the second term in Eq. �3�. Here, one
can use the analogy and employ the quasisimilarity transfor-
mation x�y to get the connections very conveniently. How-
ever, we will not proceed along that line, but impose a con-
straint on the GB: inflexibility �but the GB still can move
laterally as a rigid straight line�, and only keep the term due
to GB GSFE anisotropy, which does not drop out but rather
yields the so-called torque term in Herring’s celebrated
work.1

If one combines Eqs. �3�–�5� and then divides both sides
by the time increment �t, the following exact expression for
the rate of global internal entropy production �RGIEP�,
which is a positive definite quantity, may be written after
some rearrangements of the terms:

�Sint

�t
= −

1

T
lim

���→0
.

+�→−�

d���g̃� + �ğvb�
��

�t

+ 	��F − yxFyx
��x=−� − ��F − yxFyx

��x=+�

+
�gg���

��

����

�t
+ ���Fyx

�x=−� − Fyx
�x=+��

+ gg������ỹ�0��
�t

� 0. �6�

In the arrangement of the first integral in Eq. �6�, the
following identities are employed: ��=−�1+ ỹx

2�−1/2�y, d�
= �1+ ỹx

2�1/2dx, and �= ỹxx�1+ ỹx
2�−3/2. That means that the

positive direction of the surface normal is assumed to be
toward the solid bulk phase, and the local curvature � is
taken to be positive for a concave solid surface �trough�. The
Weiserstrass-Erdmann24 conditions state that the cofactors of
���� and ��ỹ�0�� should be identically zero to have a weak
solution in terms of a class of piecewise smooth continuous
functions �continuous functions with derivatives having dis-
continuities at separate points, i.e., TJs�.

Incidentally, in this paper we have given a tentative proof
of these conditions during the formulation of the problem
summarized by Eq. �4�, if one recalls the definition of the
weak solution. This shows the very close connection be-
tween the thermodynamic requirement of local equilibrium
�isothermal reversible process� at the TJ and the
Weiserstrass-Erdmann condition for the extremal �the sta-
tionary states in irreversible thermodynamics� having at least
a weak piecewise smooth solution between the corner points.
However, we are not interested in this extremal problem
here; our main objective is to formulate the problem outside
the isothermal reversible trajectory, namely, for the nonequi-
librium case ��Sint /�t��0. Since the system under consider-
ation is in thermal equilibrium �isothermal natural pro-
cesses�, then T�Sint /�t�0 corresponds to the power
dissipation function �Helmholtz function in German
literature26�, which has been extensively employed by Ogur-
tani and Seeger27 in the treatment of the non-Stokesian vis-
cosity associated with kinks �solitons� moving in an atmo-
sphere of paraelastic mobile interstitials. Therefore, one may
utilize this direct and physically more concrete approach for
the extraction of the generalized forces �drag forces� and the
conjugated velocities from Eq. �6�, rather than using Onsag-
er’s postulate28 on the decomposition of the entropy produc-
tion into an arbitrary set of generalized forces and conjugated
fluxes as mostly used in the literature. Then one may obtain
the following relationships, which may be very important for
interfaces separating two condensed phases, between those
generalized drag forces and conjugated velocities using the
linear connection between them, through the generalized
phenomenological mobilities:

d�

dt
= −

Rvb

kT
�b��g̃� + �ğvb�

�interface velocity at ordinary point� , �7�

�Vg
long� = −

dy�0�
dt

=
Rlongda

kT
���Fyx

�x=+�
x=−�� + gg����

=
Rlongda

kT
����g� sin 	 + g�� cos 	��x=+�

x=−��

+ gg���� �longitudinal velocity� , �8�

and
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�Vg
trans�TJ =

d�

dt
=

Rtransda

kT
���F − yxFyx

��x=−�
x=+� −

�gg���
��

�
=

Rtransda

kT
���g� cos 	 − g�� sin 	��x=−�

x=+�

−
�gg���

��
� �transverse velocity� �9�

where Rvb, Rlong, and Rtrans are generalized mobility coeffi-
cients associated with the growth and the TJ longitudinal and
transverse displacements. These generalized mobility coeffi-
cients have dimensions similar to the usual diffusion coeffi-
cients �L2 / t�. da is the mean interatomic distance, which con-
verts force per length to force per particle units, and �b is the
mean atomic volume of the bulk phase. The positive direc-
tions of Vg

long and Vg
trans are toward the bulk region pointing

along the GB line and the positive direction of the x axis
�−�→ +��. The angles 	− and 	+ used in the above relation-
ships are acute angles with proper signs between the surface
tangent vectors and the x axis as shown in Fig. 1. If one
chooses a GB configuration similar to that of the present
work, which is perpendicular to the initial flat surface, then
one has simple connections between these angles and the
corresponding dihedral angles �±, namely, 	+= �� /2−�+�,
	−= �3� /2+�−�. The general case where the GB is inclined
to the surface can be easily deduced by simply replacing the
angles 	± in every formula cited in this paper by the dihedral
angles denoted as �±. Then to study the dynamical behavior
of the GB-TJ singularity one obtains a set of mathematical
formulas in term of the dihedral angles, which are invariant
universal expressions and can be used for any arbitrary con-
figuration of the system.

It should be mentioned here that each term appearing in
the RGIEP is also a positive definite quantity, because the
corresponding variations ��y ,�x ,���� are completely arbi-
trary. Therefore, we have obtained very important linear
thermokinetics relationships �Eqs. �7�–�9��, which can also
be applied to phase transformations in condensed states
rather rigorously, without using any ad hoc kinetics argu-
ments. The mathematical results obtained in this section may
be directly used for computer simulations of the kinetics of
the interface controlled phase transformation of a secondary
phase particle in a bulk matrix, which is originally nucleated
at the GB region. It may be very interesting to proceed fur-
ther along the line proposed in this paper to study the case
where the GB is completely flexible and can move under the
action of the capillary forces. The contribution of a flexible
GB to the total GIEP can be represented by the following
explicit expression:

�Sint
GB

�t
= −

1

T
lim

���→0
.

y�−h�→y�0�
d���gg̃g�

��

�t
+ �gg sin �

+ gg� cos ��
��x�TJ�

�t
+ �gg cos � − gg� sin ��

��y�TJ�
�t

� 0 �10�

where �� /�t is the surface normal displacement velocity of

the GB. The torque term for a straight rigid GB comes from
the second term, and the contribution to the longitudinal dis-
placement may be deduced from the third term by simply
taking �→0 in Eq. �10�.

III. THE STRONG SOLUTION FOR SOLID SURFACES

In this section, the GIEP hypothesis �positive definite� is
elaborated further to suit the needs for the formulation of the
morphological evolution of solid surfaces in terms of the
particle-flux densities. To do that, some kinetics relation-
ships, which were derived for the ordinary points and the
GB-TJ singularities by employing the generalized law of
conservation of particles that also considers the phase tran-
sition explicitly, have been taken into account. This formu-
lation covers rigorously only those problems that are associ-
ated with a surface between a solid �bulk� and a vapor phase
�void� including inviscid incompressible liquids. In the ab-
sence of particle �mass� source or sink, the surface displace-
ment at the ordinary points �not at the singularities� along the
surface normal is governed by a balance between the diver-
gence of the atomic flux and the amount of mass accumu-
lated or depleted at the interface. However, in this paper a
more general case is considered, in which additional entropy
source terms associated with the normal components of the

incoming atomic flows from the bulk phase Ĵb and the real-

istic void region Ĵv due to condensation or evaporation pro-
cesses are included. These two terms are additive because of

the adopted positive directions of flows, Ĵvb= Ĵv+ Ĵb. Hence
the following kinetic expression applies for the conservation
of atomic species during the virtual displacement of the or-
dinary points on the curved surface layer, having no variation
in thickness due to stretching:

��cb − cv� − h��c��
d�

dt
=

�J�

��
− Ĵbv. �11�

cb, cv, and c� are the atomic volumetric concentrations asso-
ciated with bulk, void, and surface phases, respectively. As a
special case of the above expression, if one assumes that a
realistic void is a polyatomic dilute gas, in which cv�0, uses
the argument of Guggenheim22 related to the very existence
of the concept of the interfacial layers �h��0, and the ex-
pression �b=cb

−1, the following results are obtained �exclud-
ing the TJ singularity�:

d�

dt
= n̂ ·

�r�

�t
= �b	 �J�

��
− Ĵvb


and
�y�x,t�

�t
= − �b	 �J�

�x
− Ĵvb

y 
 , �12�

where n� and r� are the surface normal �directed toward the
bulk phase� and the position vectors, respectively. Jvb

y

= Ĵvb sec 	 is the y component of the net incoming flux into
the surface layer �2D surface phase� from the adjacent bulk
phase and the realistic void region. Equation �12� may also
be applied for an interfacial layer between a solid substrate
and an inviscid incompressible liquid or even for an amor-
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phous solid having high fluidity at high temperatures. Be-
cause these substances can easily allow and transmit mass by
convection currents or shear strain relaxation mechanisms
for the local shape changes caused by the virtual displace-
ment of the surface layers of the underlying crystalline sol-
ids, which are assumed to have high rigidity. These shape
changes are solely due to nonvanishing divergence �mass
accumulation� of the particle current density driven by the
interfacial drift diffusion. The drift-diffusion-induced shape
changes are very slow movements �creeping motion� com-
pared to the fast convection currents in the hypothetical low
viscosity fluids.

Equation �12� describes the law of conservation of mass
in terms of particle flux for the ordinary points, where the
flux is presumed to be describable by smooth functions hav-
ing derivatives that may have discontinuities at singularities.
Therefore, the above equation cannot be applied to the
GB-TJ singularities, where even the surface current density
shows a Dirac-type singularity because the local curvature
goes to infinity. The application of the same conservation law
to the free-moving GB TJ �without stretching but only
extending4� gives the following relationship if one takes
properly into account the mass gained or lost by the GB layer
�the phase transition� during longitudinal displacement:


gVg
long � J+ − J− − Jg, �13�

where, according to our adopted convention, J− and Jg are
incoming fluxes from the negative side of the void surface
layer and the GB region, and J+ is the void surface flux
coming out from the TJ by assuming that the positive direc-
tion of the surface particle flux is counterclockwise �from left
to right for the flat surfaces�. 
g��g

−1hg is the grain-
boundary specific surface particle density, and is an invariant
intensive quantity. 
gVg

long is the rate of particle loss or gain
by the GB layer during the displacement of the TJ. �g and
�� are the mean atomic volumes in the GB region and in the
solid surface layer, respectively, and roughly equal to their
counterparts for the bulk solid phase. The positive direction
of Vg

long is assumed to be toward the GB region. Actually, this
phase transformation is one of the main sources for the local
IEP at the GB-TJ singularity as demonstrated in our earlier
work,17 and furnishes the generalized force for the establish-
ment of the partial equilibrium at the GB-TJ singularity
along the longitudinal direction. The second main source for
the local IEP is the nonequilibrium lateral displacement of
the GB-TJ singularity, which furnishes the required general-
ized driving force for the lateral surface drift diffusion or for
the lateral displacement of the GB-TJ singularity, depending
upon whether the GB is subjected to the lateral constraint or
not, respectively. The latter case is closely associated with
the GB sliding, which may be formulated in the future.

To obtain an analytical relationship between the surface
drift-diffusion flux and the intrinsic thermophysical intensive
properties of the system, the generalized conservation ex-
pression for the ordinary points, Eq. �12�, may be substituted
into Eq. �6� together with our previous results summarized in
Eqs. �7�–�9�. If one applies the integration by parts to the first
integral expression in Eq. �6� that is initially modified by the

kinetic expression in Eq. �11� then the following relationship
arises:

�S

�t
=

1

T
lim

���→0
− ��b��g̃� + �ğvb��J��+�

−��

+ �b�
−�→−�

+�→+�

d� J�

�

��
��g̃� + �ğvb�

+ �b�
−�→−�

+�→+�

d� Ĵvb��g̃� + �ğvb� − ���g� cos 	

− g�� sin 	��x=+�
x=−� +

�gg���
��

�
�
−1Jtrans + ����g� sin 	

+ g�� cos 	��x=+�
x=−�� + gg����Vg

long � 0. �14�

Here, one has ���g̃�+�ğvb�J��−�→−�
+�→+�Þ ���g̃�+�ğvb�J��+�

−�

since J�→0 and �J� /�x→0 at infinity because of our as-
sumption of the validity of the natural boundary conditions
for the initial flat surface layer. The first term in the RGIEP,
which also appears in our discrete micro-finite-element
method formulation,16,20 written intentionally between angu-
lar brackets to emphasize its importance. This term and its
consequences are very important in general, excluding the
special case where the system has a complete reflection sym-
metry with respect to the GB orientation �bicrystal with twin
orientation�, and in addition there is no electrostatic and/or
elastostatic force �no external force field�. This term has been
missed without showing sufficient mathematical or physical
justification by Ramasubramaniam and Shenoy18 in their for-
mulation of the weak solution of the extremum problem es-
pecially in the derivation of their basic relationship, Eq. �13�
in Ref. 18, in contrast to the presentation of Eq. �A.5� in Ref.
18, where reflection symmetry is invoked verbally and prop-
erly.

In the above expression, the RGIEP is converted partially
into the particle-flux representation J�

trans�0�=
�Vg
trans by first

assuming the lateral motion of the TJ is restricted and then
postulating that the thermodynamic generalized force is di-
verted to act on the surface particle flux as a driving force to
establish the required lateral equilibrium at the GB TJ. Since
by hypothesis the RGIEP is a positive definite quantity for
any arbitrary variations in the particle fluxes �J� ,Jvb� and in
the displacements of the GB TJ, then all terms in the above
expressions, including the integrands under the integration
operations, are positive quantities, and can be decomposed
into generalized forces and conjugated fluxes accordingly to
Onsager’s hypothesis,29 which gives

J� =
M�

kT
�

�

��
��g̃� + �ğvb� �surface drift-diffusion flux� ,

�15�

Ĵvb = �b
Mvb

kT
��g̃� + �ğvb�

�evaporation and condensation flux� , �16�
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�J�
trans� =

Rtransda
g

kT
	�g�

+ cos 	+ − g��
+ sin 	+� −

�gg���
��

− �g�
− cos 	− − g��

− sin 	−�
 �transverse flux� ,

�17�

and

�Vg
long� =

Rlongda

kT
�− �g�

+ sin 	+ + g��
+ cos 	+� + �g�

− sin 	−

+ g��
− cos 	−� + gg���� �longitudinal velocity� .

�18�

Although the above relationships are necessary and suffi-
cient to build up the strong solution of the boundary value
problem if one combines them with the generalized mass
conservation laws �e.g., Eq. �12� for the ordinary points and
Eq. �13� for the GB-TJ singularities�, the following one extra
inequality also arises rigorously:

−
1

T
���b��g̃� + ğg�J��+�

−�� � 0. �19�

This connection in the case of the strong solution is em-
bedded in the boundary conditions through the kinetics rela-
tionships Eqs. �12� and �13�, but it will be fully recovered in
the weak solution of the extremum problem treated in this
paper. The importance of this IEP source may be more ap-
preciated in the case of corners and edges of the surface
layer, where the current density J�

c+=J�
c−�J�

corn and the bulk
Gibbs free energies of the individual phases, �ğvb

+ =�ğvb
− , are

strictly continuous functions of space. Then one may write
the following expression for the current density at the cor-
ners or edges using the Onsager linear connection in irrevers-
ible thermodynamics between the generalized forces and the
conjugated fluxes �by neglecting the cross terms�:

J�
TJ =

M�
±

kT

��b��+g̃�

+ − �−g̃�
−� =

M�
±

kT

����

+ − ��
−� , �20�

where M�
± denotes the generalized mobility associated with

discontinuous change in the chemical potential due to the
capillarity across the GB-TJ singularity or at the sharp cor-
ners and edges of the surface profile function. This mobility
has no apparent physicochemical connection with the surface
diffusion mobility denoted by M� at the GB-TJ singularity.
This relationship clearly and irrevocably shows that the non-
vanishing particle current flux takes place at the corners and
edges, where either the curvatures and/or the surface stiff-
ness �due to the abrupt change in slope� may show some
discontinuities. This nonvanishing particle current flux is
proportional to the difference in the surface chemical poten-
tials as defined in the sense of Herring’s relationship. To our
knowledge, this is the first reported analytical expression in
the present context obtained rigorously by the irreversible
thermodynamics of surfaces. This relationship also shows as
expected a priori that not only the gradient of the surface

chemical potential but also the difference acts as a driving
force for the surface particle flow. The same contribution
also appeared in the formulation of GIEP in our previous
publications �see Eq. �38� in Ref. 17 and Eq. �1� in Ref. 20�
without interpretation.

A careful examination of this section shows that the ther-
modynamics relationships cited by Eqs. �15�–�18� in con-
junction with Eqs. �12� and �13�, obtained previously by the
direct application of the law of conservation of particles �i.e.,
mass� into two completely distinct cases having different
contexts �ordinary and singular points�, constitute the basis
for the strong solution in terms of a moving free boundary
value problem. The governing partial differential equation
describing the kinetics of the surface morphological evolu-
tion in terms of the normal displacement velocity can be
obtained by substituting Eqs. �15� and �16� into Eq. �12�,
which gives

V� = n̂ ·
�r��

�t
= �b

2 �

��
	D�
�

kT
� �

��
���g̃� + �ğvb�

+ e�Z��/�b��
 − �b
2 Mvb

kT
��g̃� + �ğvb� . �21�

Here, the electromigration force, which is used in our com-
puter simulations, is also added as an external force on the
surface drift diffusion. In the above expression, e�Z� is the
effective electromigration charge and � is the electrostatic
potential. M�=D�
� and D��	 ,�� are the generalized mobil-
ity and the surface drift-diffusion coefficients, which may be
anisotropic and depend on the surface orientation 	 and the
tilt angle � of the principal axis of the diffusion dyadic with
respect to some chosen global coordinate system attached to
the specimen.

The set of the necessary and sufficient boundary condi-
tions at the GB-TJ singularity can be easily written in terms
of the incoming and outgoing surface fluxes �J�

±� plus the
displacement velocity Vg

long by using Eq. �13� and Eqs. �17�
and �18�. While doing that one should remember that there is
a complete freedom in the choice of the incoming and out-
going surface fluxes to the GB-TJ singularity as long as they
satisfy the law of conservation of particles presented by Eq.
�13�. In our earlier papers,17 we have composed them sym-
metrically with respect to the TJ by artificially dividing the
specific Gibbs free energy and the incoming GB flux into
two parts. In this paper, we take a different approach and
assign the transversal flux to the incoming flux; hence one
may write

J�
− = J�

trans + J�
TJ =

Rtransda
g

kT
	�g�

+ cos 	+ − g��
+ sin 	+�

− �g�
− cos 	− − g��

− sin 	−� −
�gg���

��

 + J�

TJ �22�

and
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J+ � Jg + J− + 
gVg
long = Jg + J�

TJ +
Rtransda
g

kT
�g�

+ cos 	+

− g��
+ sin 	+� −

�gg���
��

− �g�
− cos 	− − g��

− sin 	−��
+

Rlongda
g

kT
�− �g�

+ sin 	+ + g��
+ cos 	+� + �g�

− sin 	−

+ g��
− cos 	−� + gg� . �23�

The above two expressions plus the longitudinal GB-TJ
displacement velocity, Eq. �18�, constitute necessary and suf-
ficient boundary conditions for the governing equation �Eq.
�21�� presented above to form a well-posed boundary value
problem for the singly connected void surfaces or a solid
surface having infinite extent with natural boundary condi-
tions. These results are identical to those obtained by the
DMFE formulation with30 and without16 anisotropy in the
surface Gibbs free energies.

A careful examination of Eqs. �7� and �8� indicates that in
the case of thermodynamic equilibrium �reversible pro-
cesses�, which is represented by �SIEP=0, the following con-
nections concerning the equilibrium configuration of the TJ
may be deduced: Vg

long=0 and Vg
trans=0. These two equalities

may be multiplied by the unit vectors ĵ and î in the Cartesian
coordinate system, respectively. The summation of the re-
sults can be put into the following vectorial format after
some legal manipulations:

F� TJ = �ggt̂g + g�
+ t̂+ + g�

− t̂− + 	 �g�
+

�	+ k̂ � t̂+ +
�g�

−

�	− k̂ � t̂− +
�gg

��
k̂

� t̂g
+
� = 0 �24�

where t̂g, t̂+, and t̂− are the unit vectors associated with the
GB and right- and left-hand interfacial segments, respec-

tively, and pointed away from the TJ. k̂= t+� t− is a unit
vector normal to the cut surface presented in Fig. 1. This
relationship is also obtained by the author utilizing the gen-
eralized concept of the affinity of the interfacial displacement
reactions in anisotropic media, in the formulation of the ir-
reversible thermodynamics of surfaces using the micro-
discrete-element method,30 where the chemical potentials of
the individual species are orientation dependent.

The above vector representation is exactly identical in

mathematical form to �gi /�t̂i= ��gi /�	i�k̂� t̂i, which is
mostly used in the literature,31 but it has a completely differ-
ent context compared to the one obtained by Herring1 relying
on the Gibbs abstract geometric construction of a dividing
surface, where the notion of line tension is mixed up with the
immeasurable or ill-defined excess Helmholtz free-energy
difference.

IV. WEAK SOLUTION OF THE EXTREMUM PROBLEM

Before making any further advancement, we should show
that the awkward situation observed in the strong solution
related to the Dirac � function singularity in the gradient of

the current density may be relaxed by using the following
very plausible relationship denoted by Eq. �25�. This rela-
tionship is definitely valid in the discrete representation,
since the GB TJ is no longer a geometric point but is a 2D
region in the Guggenheim model22 for surfaces and inter-
faces. To connect the discrete and continuum representations
one may introduce the following popular procedure in the
calculus by using Eqs. �13� and �18�:

� �J�

�x
�

x=0
�
def

lim
hg→0

	 �J��−�
+�

hg

 = �b

−1Vg
long

= �b
−1R

long

kT
da����g� sin 	 + g�� cos 	��x=+�

x=−�� + gg� .

�25�

This relationship may justify the ad hoc usage of the
particle-flux gradient at the TJ by assuming that it is finite
and continuous there for the formulation of the weak solution
of the extremal problem. The following simple relationship,
which may be obtained from Eqs. �23� and �25�, is very
important for the later formulation of the weak solution, and
also shows the direct mathematical connection at the limit
between the finite interface model of Guggenheim and the
Gibbs geometric continuum model of interfaces at the GB-TJ
singularity:

J+ � Jg + J− + 
gVg
long Þ Jg + J− + hg� �J

�x
�

x=0
. �26�

In the development of the weak solution of the extremum
problem, there is only one criterion that should be satisfied in
the choice of functional, namely, its strong solution should
be consistent with the strong solution of the problem by the
RGIEP formalism, with some legitimate smoothing-out pro-
cedures applied to the boundary conditions. Now, let us write
the following variational functional over the range of admis-
sible particle fluxes using the standard technique.19,32

��J�, Ĵvb� � − T
�Sint�J�, Ĵvb�

�t
+ �

−�

+�

d�
J�

2

2M̂�

+ �
−�

+�

d�
Ĵvb

2

2M̂vb

+

�

2daM̂long
	�

�J�

�x



x=0

2

+

�

−2J�
2�0�

2daM̂trans
+

J�
2�0�

2M̂±
,

�27�

where the last term, which is missing in the above-cited ref-
erence �see Eq. �13� in Ref. 17�, is added to the newly de-
fined extremum problem to complete the rigorous treatment
of the problem. This contribution associated with the IEP
denoted by −�1/T���b��g̃�+ ğg��J��+�

−���0, which arises in
the integration of Euler’s integral in Eq. �14� by parts. As
stated above, this is closely related to the corners and edges
of the surface profile function like the GB TJ, where some
finite discontinuities may occur in the curvature and/or in the

specific Gibbs surface free energies. M̂�=R�
� /kT, M̂trans

=Rtrans
� /kT, M̂long=Rlong
� /kT, M̂vb=Rvb
� /kT, and M̂±

are the generalized mobility coefficients, which contain 1/kT
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terms as cofactors, implicitly.17 During the normalization of
the generalized mobilities with respect to the surface diffu-

sion mobility, one may realized that M̂vb and M± have two
and one order deficiencies compared to other mobilities,

namely, M̄vb=M̂vb�0
2 /M̂� and M̄±=M̂�0 /M̂�, where �0 is the

arbitrary scaling length. Hence, one may deduce the follow-
ing explicit extremum expression for the newly defined func-
tional denoted as Eq. �27� by substituting Eqs. �13� and �17�:

����J�,�Jvb� � ���J��0��b��g̃� + �ğvb��+�
−� − �b�

−�→−�

+�→+�

d� J�

�

��
��g̃� + �ğvb� − �b�

−�→−�

+�→+�

d� Ĵvb��g̃� + �ğvb� + ���g� cos 	

− g�� sin 	��x=+�
x=−� + gg��
�

−1J��0� − ����g� sin 	 + g�� cos 	��x=+�
x=−�� + gg��� �J�

�x
�

x=0
+


�
−2J�

2�0�

2daM̂trans
+ �

−�

+�

d� 
�
−1 J�

2

2M̂�

+ �
−�

+�

d�
Ĵvb

2

2M̂vb

+

�

2daM̂long
	�

�J�

�x

�

x=0

2

+
J�

2�0�

2M̂± � = 0. �28�

The variational treatment of the above expression, with re-
spect to the surface current density, �J�, and the incoming

bulk current flux, �Ĵvb, shows that the particle-flux densities
satisfying the extremum conditions of the functional
����J� ,�Jvb�=0 yield the following relationships:

J� =
R�
b

kT
�b

�

��
��g̃� + �ğvb�

�surface flux at ordinary points� , �29�

� �J�

�x
�

x=0
� M̂long

da

h�

����g� sin 	 + g�� cos 	��x=+�
x=−�� + gg� ,

�30�

�J��x=0 = �M̂transda��g� cos 	 − g�� sin 	�x=−�
x=+� − gg��� , �31�

Ĵvb = M̂vb�b��g̃� + �ğvb�

�evaporation and condensation flux� , �32�

and

J�
TJ�0� = �M�

±�b��g̃� + �ğvb��−�
+�

�surface flux at corner and edges� . �33�

A close inspection of the above set of equations shows
that they are simply smoothed-out versions of the counter-
part strong solution of the problem in the geometric con-
tinuum representation. Therefore, as expected a priori, the
weak solution of the GB grooving may lose some fine mor-
phological details especially at the groove tip in the case of
strong surface stiffness anisotropy, and that should be
checked by computer simulations and compared with the
strong solution.

To obtain the weak solution by the modified Ritz method
in the particle current representation, another strategy is
adopted, which is also employed by Ramasubramanian and
Shenoy18 in their paper for the symmetrical case. That is, the
derivative form of the Euler equation presented in Eq. �5� is
used in Eq. �14� during the integration by parts. Hence, one
may write

����J�,�Jvb� � ���b�
−�

+�

d���ğvb +
d

dx
�g�� cos�	� + g� sin 	��	 �J�

��

 − �b�

−�

+�

d���g̃� + �ğvb�Ĵvb + ���g� cos 	

− g�� sin 	�x=+�
x=−� + gg��
�

−1J��0�� +

�

−2J�
2�0�

2M̂trans
− ����g� sin 	 + g�� cos 	��x=+�

x=−�� + gg�	�b
�J�

�x



x=0
+

J�
2�0�

2M̂±

+ �
−�

+�

d� 
�
−1 J�

2

2M̂�

+ �
−�

+�

d�
Ĵvb

2

2M̂vb

+

�

2daM̂long
	�b�J�

�x



x=0

2 � = 0. �34�

The application of integration by parts on the first integral expression by assuming that the current densities �J� ,Jvb� and
their derivatives go to zero at x→ ±� yields the following relationship after some trivial cancellations:
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���J�,Jvb� � �− �b�
−�

+�

dx�g�� cos�	� + g� sin 	�
�2J�

�x2 + �b�
−�

+�

dx��ğvb�	 �J�

�x



− �b�
−�

+�

dx�1 + tan2 	��ğvbĴvb� + �b�
−�

+�

dx�g�� cos�	� + g� sin 	�
�

�x
��1 + tan2 	Ĵvb� − �b��g�� cos�	�

+ g� sin 	��1 + tan2 	�+�
−�Ĵvb�0� + ��g� cos 	 − g�� sin 	�x=+�

x=−� + gg��
�
−1J��0� +


�
−1J�

2�0�

2daM̂trans
− �gg�	�b

�J�

�x



x=0

+

�

2daM̂long
	�b

�J�

�x



x=0

2

+
J�

2�0�

2M̂±
+ �

−�

+�

dx�1 + tan2 	
J�

2

2M̂�

+ �
−�

+�

dx�1 + tan2 	
Ĵvb

2

2M̂vb

� = 0. �35�

The above expression does not carry any flux and flux
gradient discontinuity at the TJ. Therefore, the weak solution
method proposed by Ramasubramanian and Shenoy18 for the
symmetrically disposed bicrsytal is valid since J��0�=0,

even though there is a missing term �J�
2�0� /2M̂±� in their

formula as we mentioned previously in the development of
Eq. �28�. The extremum problem represented by Eq. �35�
may be solved by some standard methods using the continu-
ous complete sets of functions that satisfy the natural bound-

ary conditions at infinities. The expansion of J� and Ĵvb by
the properly selected complete set of functions involves un-
known sets of coefficients, which can be determined via the
minimization of the functional by using standard techniques.
The best candidate for the asymmetrical problem is the or-
thonormal Hermite function.33

V. NUMERICAL METHODS FOR THE WEAK SOLUTION

In this section, the general outline of the numerical pro-
cedure in terms of Hermite functions is provided for the
weak solution of thermal grooving problems. We obtained
very interesting results from our preliminary computer simu-
lation studies on the nanosized bicrystal interconnect lines
�w0�100 nm� having strong anisotropy in the surface spe-
cific Gibbs free energy �SSGTE�. In order to simplify the
mathematical manipulations, the growth �evaporation and
condensation� term is completely ignored in this treatment,
otherwise our tentative presentation is somewhat cumber-
some and bulky.

The surface profile function may be expanded in terms of
an orthonormal set of Hermite functions denoted by �n�x�.
This function manifold constitutes a well-behaved, complete,
and closed set in the infinite interval −��x� +�, and its
members vanish with their derivatives very smoothly and
extremely fast compared to the Laguerre functions, because
the Gaussian function exp�−x2� acts as a cofactor �weight
function� for the Hermite polynomial Hn�x� in the orthonor-
mality connections. That is, one may write �n�x�
=�nHn�x�exp�−x2 /2�, where �n= �n!2n���−1/2 is the normal-
ization factor. The recursion formulas for Hermite polynomi-

als may be expressible as Hn+1�x�=2xHn�x�−2nHn−1�x� and
dHn�x� /dx=2nHn−1�x�. These recursion formulas may be
used to derive the following useful connections for the nu-
merical evaluations of Hermite functions and their higher
derivatives:

�n+1 = ��2/�n + 1��x�n − ��n/�n + 1���n−1,

�n� = �n/2�n−1 − ��n + 1�/2�n+1,

�n� =
1

2
���n + 1��n + 2��n+2 − �2n + 1��n

+ ��n��n + 1��n−2� . �36�

The surface profile displacement velocity, which is given
by Eq. �12� in terms of the derivative of the surface current
density, takes the following form in the absence of the
growth term: �y�x , t� /�t=−�b�J��x , t� /�x. The expansion of
both the surface profile and the particle- flux density in terms
of the Hermite functions results in y�x , t�=�n=0

n=Nan�t��n�x�
and J��x , t�=�n=0

n=Nbn�t��n�x�, respectively. If one substitutes
them into the above-mentioned divergence connection, and
then applies the orthonormality properties of Hermite func-
tions, the following relationship may be deduced in the pres-
ence of the above recursion formulas:

dan

dt
= − �b �

m=0

m=N

bm�t���n��m� � � �b�bn−1
�n/2

− bn+1
��n + 1�/2� + O�10−10� . �37�

The antisymmetric transformation matrix ��n ��m� � be-
tween the particle velocity representation and the current
field may be given in terms of Kronecker � functions that is
even valid for the matrix elements n=0, which cannot be
extracted from the above formula explicitly:

��n��̄m� � � �n�m�� � − ��m + 1�/2�n,m+1 + �m/2�n,m−1.

�38�
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This formula contains matrix elements which are exactly
represented by the following specific exceptions: �0 �k��
��1,k /�2 and �N �k���−�N,k+1

�2 rows �k �0���−�1,k /�2
and �k �N����N,k+1

�2 columns. These matrix elements are
approximated in very high precision by better than O�10−10�,
according to the direct numerical evaluations of the associ-
ated integrals.

In the normalized and scaled space, one may show
the validity of the rigorous relationship �d /dt̄��ān�
=−�m=0

m=N��n ��̄m� ��b̄m�, as will be proven later in this section.

Here, b̄=�0�0b, ā=a /�0, and t̄= t /�0. In all these expressions,

�0 is the arbitrary characteristic length and �0��0
4 /�b

2M̂�g�
0

is the previously defined normalized time, which is also used
in the strong solution of the problem.17 In the numerical
simulations presented in this work, since the sidewall mor-
phological evolutions are under consideration, we will take
�0=w0�100 nm as has been done in the strong solution of
the problem. The overbar sign on the symbols indicates the
normalized and scaled quantities with respect to the length
and time domains. This evolutionary-type ordinary differen-
tial equation �ODE� may be integrated using stiffly stable

methods34 to obtain the instantaneous values of the coeffi-
cient vector �ā� of the surface profile in Hermite function
space as the basis from the backward information �implicit
method� about them.

The main objective as mentioned previously in the present
numerical approach is to determine the expansion coeffi-
cients of the particle current density from the extremum
problem presented formally in Eq. �34�. The usual procedure
is to substitute the Hermite function expansion of the current
density and obtained a function in terms of the expansion
coefficients, and then take the variation of that function de-
noted by ���b1 ,b2 , . . . ,bN� with respect to the free varia-
tions of the expansion coefficients presented as
��b1 ,�b2 , . . . ,�bN�. Then, the next step is to equate all the
cofactors of the free variations into zero, which results in a
matrix equation having a coefficient matrix of dimension of
�N+1�� �N+1�, where N+1 is the number of Hermite func-
tions used in the expansion procedure. To simplify the
present prototype illustration, the growth terms will be dis-
carded to reduce the size of the procedure, Hence, one may
write

���b1, . . . ,bN� � �	− �b�
n

bn�
−�

+�

dx�g�� cos�	� + g� sin 	��n� + �b�
n

bn��g� cos 	 − g�� sin 	�x=+�
x=−� + gg��h�

−1�n�0�

− �b�
n

bn�gg��n��0� + �b
h�

2daM̂long

�
n,m

bnbm�n��0��m� �0� + �b
1

2dah�M̂trans

�
n,m

bnbm�n�0��m�0�

+
1

2M̂�

�
n,m

bnbm�
−�

+�

dx�1 + tan2 	�n�m
 = 0. �39�

By taking variations of the right side of the above equation with respect to the expansion coefficients, and collecting the
terms associated with the arbitrary �bn variations, one may obtain the following system of linear algebraic equations:

− �b�
n

�bn�
−�

+�

dx�g�� cos�	� + g� sin 	��n� + �b�
n

�bn��g� cos 	 − g�� sin 	�x=+�
x=−� + gg��h�

−1�n�0� − �b�
n

�bn�gg��n��0�

+
�bh�

2daM̂long

�
n,m

��bnbm��n��0��m� �0� + 	 �b

dah�M̂trans

+
h�

−1

M̂±

�

n,m
��bnbm��n�0��m�0�

+
1

M̂�

�
n,m

��bnbm��
−�

+�

dx�1 + tan2 	�n�m = 0. �40�

The solution of the above extremum problem, which constitutes an inhomogeneous set of linear equations, may be
represented formally by the matrix notation A ·b=c. The elements of the scaled and normalized generalized mobility matrix A,
which is a symmetric matrix as one expects a priori, can be extracted from Eq. �40� and may be given by the expression

Am,n =
�0

M̂�

 �̄bh̄0�̄n��0��̄m� �0�

d̄aM̄long
+ 	 �̄b

d̄ah̄�M̄trans
+

1

h̄��M̄±�

�n�0��m�0� + �

−�

+�

dx̄�1 + yx
2�n�x̄��m�x̄�� �

�0

M̂�

Ām,n, �41�
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where the terms between the large square brackets are com-
pletely scaled with respect to �0. Similarly, the mobilities are
also normalized with respect to the surface drift-diffusion

mobility denoted as M̂�= �Dh� /�bkT�, including the mobil-

ity M̄±��0
2M̂± /M̂� associated with the corners and edges

�i.e., the GB-TJ singularity� of the interfacial layer. By the
way, this mobility has identical dimensionality compared to

the growth mobility presented previously by M̄vb=�0
2M̂vb.17

The higher dimensionalities in these mobilities are reflected
in the x /�t dependence �evaporation condensation� rather
than the x /�4 t or x /�3 t �the transport by surface diffusion� that
is the typical case in the Mullins theory of thermal
grooving,35 which presumes infinite GB-groove tip mobility.

The inhomogeneous part of the linear system, which may
be called the capillarity force vector and denoted by c, is
represented by the following expression in terms of vector
elements:

cn � g�
0�b�0

−1��
−�

+�

dx̄�ḡ�� + ḡ�yx�/�1 + yx
2�̄n��x̄�

− h̄�
−1��ḡ� cos 	 − ḡ�� sin 	�x=+�

x=−� + ḡg���n�0�

+ �ḡg��̄n��0�� � g�
0�b�0

−1C̄n. �42�

The solution of this system of algebraic linear inhomoge-
neous equations now may be represented by b=A−1c, which
involves a nonsingular matrix inversion operation only. Then
one may combine Eqs. �41� and �42� to obtain the following
explicit expression:

bm = ��bM̂�g�
0�0

−2��
n

Ām,n
−1 C̄n. �43�

Hence, by substituting the above finding in Eq. �39� and
using the normalization and scaling recipe presented previ-
ously, one may deduced the following rigorous relation be-
tween the rate of change in surface profile expansion coeffi-
cients and the capillary force vector through the generalized

mobility matrix denoted by Ā:

dāk

dt̄
= −

�0

�0
�b�

k

bm�k�m�� =

−
�0

�0
��b

2M̂�g�
0�0

−3��
m,n

�k�m̄��Ām,n
−1 C̄n =

− �
m,n

�k�m̄��Ām,n
−1 C̄n,

ǡ = − T̄Ā−1C̄ , �44�

where T̄k,m��k � m̄�� is the scaled transformation matrix,
which is advocated by the author in a precise format, and it is
introduced explicitly in Eq. �38�. In the case of a very high
tolerance index ��10−32� the above-mentioned specific rows
and columns should be numerically evaluated. The time in-
tegration of the stiff ODE denoted by Eq. �44� can be now
easily performed by using one of the stiff stable methods.

After trying all possible orders, which are in the range of k
�6 by employing the formulas presented in the literature
after the celebrated work of Gear,34 we have found that the
second-order36 works best for the present stiff ODE system.
The main difficulties in the computer simulations using
variational approach arise in the numerical integration of the

capillary integrand presented by the first term in C̄, and its
conjugated part given by the last term in the generalized

mobility Ā. In particular, the first integral is very trouble-
some when the higher-order Hermite functions �n�30� are
involved in the case of strong anisotropy. The situation be-
comes even worse if one tries to represent the cusped regions
in the Wullf construction of the Gibbs surface free energy by
a function having abrupt change in the slope �discontinuity in
the first derivative�. We have surmounted this difficulty by
dividing the integration domain into subsegments determined
by the roots of the integrand, and then applying the Gauss-
Legendre quadrature formula using up to 60-point abscissas
and weights for each subdomain, and summing them up to
get the final answer in any degree of precision. This modifi-
cation resulted in a very powerful integrator compared to
those standard integrators available in the literature, in terms
of error accumulation and computational speed, as long as
one stays in the same tolerance precision index level.

In Eq. �42�, the expression denoted by ḡ�� ḡ��	̂ , �̂ ;m� is
the angular part of the anisotropic surface specific Gibbs free
energy, and g�

0 corresponds to the minima in the Wullf con-
struction of surface free-energy topography. By following the
general trend, one may introduce the trigonometric represen-
tation by defining the tilt angle �̂ as such that the surface
normal of a selected vicinal plane coincides with the x axis
when �̂=0. Hence, one writes the angular part of the expres-

sion for anisotropic surface Gibbs free energy, where 	̂
=� /2−	 is the angle between the line normal vector of the
diffusion plane of a generalized cylindrical surface projected
into 2D space and the x axis of the global Cartesian reference
system as

ḡ��	̂,�̂;m� = �1 + B sin2�m�	̂ − �̂��� . �45�

Here, m̂=2m corresponds to the 2� / m̂ degree of rotational
folding associated with the zone axis of a given family of
planes over which diffusion takes place during the morpho-
logical evolution of the edges or the sidewalls of thin single-
crystal films. B�0 is the surface specific Gibbs free-energy
anisotropy constant, which is a positive quantity in the above
ad hoc representation, and measures fractional degrees of
roughness on the Wulff construction of the specific surface
Gibbs free energy. One may show that for the existence of
the absolute stability regimes,37 where the surface stiffness
should stay as a positive definite quantity in all conceivable
orientations, the following set of upper limits �threshold lev-
els� for the anisotropy constants must be obeyed: B
� �1,1 /7 ,1 /17� in the case of two-, four-, and sixfold sym-
metries, respectively.

In the numerical work, one may use the following very

good but tentative approximations: d̄a� h̄� and �̄b�da
3.

Here, h̄�=h� /w�, the normalized thickness of the interfacial
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layer with respect to the specimen width �or thickness�
should be supplied as an input parameter to the numerical
simulations, and its value definitely depends upon the actual
size of the interconnect specimen, namely, the width or the
thickness. The most accepted value of the interfacial layer �a
few monolayers� is roughly on the order of a few atomic
distances. Therefore, for a nanosized interconnect line �w0

�30–50 nm� to be used in ultralarge-scale integrated cir-
cuits for microelectronic applications, one has h��0.01.
There are three more additional input parameters

�M̄long ,M̄trans ,M̄±� to complete the parametric set required
for the numerical simulations, and they are, respectively, as-
sociated with normalized mobilities related to the GB-groove
tip displacement, the transverse current flow across the GB
TJ, and the mobility due to the abrupt variation of the capil-
lary chemical potential at the junction. Therefore, one has to
work in the four-dimensional parametric space for the com-
puter simulation experiments.

In Fig. 2�a�, the results of our tentative computer simula-
tion studies on the morphological evolution associated with
GB thermal grooving of the sidewall surfaces of an intercon-
nect bicrystal line having face-centered-cubic �fcc� structure
are presented in a 3D plot. To reveal the kinetics of the
groove tip displacement, the normalized groove depth is
plotted with respect to the normalized time on a double-

logarithmic scale as shown in Fig. 2�b�. This figure clearly
illustrates two stages of the power-law time dependence, and
its conversion at the sharp knee point at t̄=0.01, where the
time dependence changes abruptly from �t̄ dependence to �3 t̄
behavior for the system parameters used in this experiment.
In these simulations, only the first 15 orders of Hermite func-
tions are used in the expansion procedure, which resulted in
a reasonably good reproduction of the surface profile, since
the anisotropy constant B=0.1�1/7 is so chosen that no
Dirac � function singularity occurs in the surface stiffness
function at the vicinal planes. The slope variation on the
surface profile in the vicinity of the GB groove shows that
the groove wall on the left side �x0� of the GB TJ has a
tendency for the formation of a soft faceting close to the
take-off angle about 30° �Fig. 2�c��, which is in a good
agreement with the chosen tilt angle �̂=30° for the present
simulation work. Since the function used in the description
of the anisotropy does not have a discontinuity similar to the
one employed by Ramasubramaniam and Shenoy,18 no sharp
faceting can be expected in the present work. Here, one
should recall that originally flat sidewall surfaces of the bic-

rystal interconnect line correspond to the vicinal �01̄0�
planes in the case of zero tilt angle. This study gives two
universal analytical expressions which are given in the nor-
malized space, and they contain the wetting parameter ��

explicitly, namely, H̄depth= �3�� /2��t̄ and �2�� /3��3 t̄ for the
initial and final stages of the evolution process. The wetting
parameter may be given by ��=gg /2g�

0 , where gg and g�
0 are

the specific surface Gibbs free-energy densities associated,
respectively, with the grain boundary and the void surface
layers, and defined previously.

This experiment has shown that the groove depth dis-
placement kinetics does not depend very much on the longi-

tudinal mobility in the range of M̄long=0.1–10, and it does
not follow Mullins’ isotropic one-fourth power law3 for the
normalized run times used in these experiments because of
the extremely high anisotropy constant selected for the
SSGFE, which is just below the instability threshold level
above which the surface stiffness becomes negative. How-
ever, Ramasubramaniam and Shenoy in their simulation
studies have recovered this expected scaling power law for

their large junction mobilities M̃ �100–1000. Here one
should remark that the following connection exists between

their normalized mobility denoted by M̃ �Eq. �15� in Ref. 18�
and the normalized longitudinal mobility defined in this pa-

per, namely, M̃ ��̄b
−1M̄long� h̄�

−3M̄long, which clearly indi-
cates that there are many orders of magnitude difference be-
tween these quantities, depending upon the length scale �0
used in the simulations. Unfortunately, the above-cited au-
thors in their remarkably thorough paper have used the geo-
metric representation �i.e., the flux in dimensions of J��l2 / t�,
and the surface drift diffusion mobility as D�l6 /energy� t��,
and did not employ the physicochemical quantities to de-
scribe the kinetics of surface diffusion as well as the capil-
lary chemical potential in the conventional particle represen-
tation introduced by Herrings1 and Mullins.3 That makes it
very difficult to compare our results with theirs on a quanti-
tative basis especially in the normalized time domain. In the

FIG. 2. �Color online� The morphological evolution of a grain-
boundary groove subjected to anisotropic surface specific Gibbs
free energy �the surface stiffness�. Both grains have identical tex-
tures with fourfold rotational symmetries characterized by the �001�
top surface having the �100� direction oriented with �̂=30° tilt

angle. Anisotropy level B=0.11/7, M̄long=1,M̄trans=0.001, M±

=0.001, h�=0.1, and ��=0.6. �a� 3D groove evolution during the
first t̄=30. �b� Groove depth versus time plot that indicates initial �t̄
dependence and then switches to �3 t̄ behavior on a double-
logarithmic scale. �c� Facet formation with an angle �̂=30° at the
groove wall on the left side �x0�.
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present simulation study, both grains are assumed to have
exactly the same textures, and the top surface of the line
coincides with the �001�� �100� crystal plane of a face-
centered-cubic crystal.

In Fig. 3, the steady-state profile of a faceted groove is
presented, where the fourfold symmetry in the surface spe-
cific Gibbs free-energy anisotropy is described by the for-
mula used successfully by Ramasubramaniam and Shenoy18

to study symmetrical groove profiles, namely, ḡ�= �1−c
+c��sin�	−���+ �cos�	−�����. Here c is the anisotropy con-
stant bounded by 0�c�1, This function shows cusps that
are seen at the facets orientations �+n� /2, n=0,1 ,2 , . . .,
and can be shown to have origins in the energetics of crys-
tallographic surface steps.38 The windward side �x�0� of the
above figure is in excellent agreement with the result re-
ported by Ramasubramaniam and Shenoy �Fig. 8b in Ref.
18� using the exactly same physicochemical parameters for
their symmetrically disposed bicrystal specimens, where they
employed 30 Laguerre functions as basis in connection with
the standard Laguerre-Gauss-Radau quadrature software
compared to our usage of the modest number of 15 Hermite
functions in a standard FORTRAN run in a PC environment,
utilizing a completely home-designed integrator.

In Fig. 4 the results of a computer simulation carried out
on a fcc bicrystal metallic interconnect line having 300 nm

width �h̄�=0.001�, and a special microstructure �texture� as-
sociated with the �100� top surface are presented. In this
simulation, the grains on the left and right sides of the GB
are oriented, respectively, at �L=165° and �R=45° tilt
angles with respect to the longitudinal x axis of the intercon-

nect line. The high GB-TJ displacement mobility M̄long

=100 combined with the high transverse mobility M̄trans

=100 have resulted in a conversion in the power-law expo-
nent first from �t̄ to �3 t̄ and then from �3 t̄ to �4 t̄ dependence at
the normalized time given by the sharp knees on the log-log
plot represented by t̄knee=0.01 and 1, respectively. This ex-
periment definitely illustrates that for the longer annealing
times combined with the high transverse current mobility, the

grain-boundary kinetics recovers its isotropic power-law ex-
ponent as first derived by Mullins in his analytic treatment of
the isotropic case. The left side reaches the faceting angle
�L=165° very rapidly, in contrast to the right side, which is
being trapped at the smooth face with an inclination of �R
�25° instead of a 45° facet angle. On the other hand the
simulation experiment done on the sample having a grain
texture represented by the tilt angles �R�15° and �L
=150° showed almost excellent faceting at both faces of the
grain-boundary groove showing, respectively, exactly the

same facet angles, where M̄long=1 and M̄trans=1 are used in

connection with h̄�=0.1. The grooving kinetics for this ex-
periment are found to be describable by the power law rep-
resented by �3 t̄ without showing any knee on the log-log plot.

This unusual trapping phenomenon does not change if one
reflects the grain texture with respect to the GB, and/or uses
different sets of mobility parameters. This anomalous situa-
tion shows that at high tilt angles close to 45° and 90° for the
fourfold rotational symmetry, the equilibrium configuration
at the groove tip cannot be reached fully over the entire
duration of the simulation. This point should be further check
using much higher-order Hermite functions in the expansion
combined with very short time steps using increased run time
to see whether it is a numerical artifact or a physical reality.

FIG. 3. �Color online� Steady-state profile of the faceted groove
obtained by using a trigonometric function for the anisotropic SS-
GFE, which describes cusp formations in the Wulff construction at
�+n� /2, n=0,1 ,2 , . . ., having fourfold rotational symmetry, where
the tilt angle �R=15°, ��=0.6, and the anisotropy constant c=0.4

are utilized. Input data: M̄long=1.0, M̄trans=0.001, M̄±=0.001, and
h�=0.01.

FIG. 4. �Color online� Quasistationary surface profile of the fac-
eted groove and the associated GB-TJ displacement plot are ob-
tained by using a trigonometric function for the anisotropic SSGFE,
which describes cusp formations in the Wulff construction at �
+n� /2, n=0,1 ,2 , . . ., where �L=165° and �R=45°, ��=0.6, and

the anisotropy constant c=0.4 are utilized. Input data: M̄long=100,

M̄trans=100, M̄±=0.001, and h̄�=0.001. Time step is �t̄=0.002. �a�
3D groove evolution during the first t̄=30. �b� Groove depth versus
time plot that indicates initial �t̄ dependence then first switches to
�3 t̄ followed by another transition to �4 t̄ behavior on a double-
logarithmic scale. �c� Facet formation with an angle �̂=165° at the
groove wall on the left side �x0�.
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Similar trapping nonequilibrium behavior is also observed in
Ramasubramaniam and Shenoy’s experiments in a com-
pletely different context.

VI. DISCUSSION AND CONCLUSIONS

As we mentioned in the Introduction of this paper the
majority of the work on surfaces and interfaces relies on the
equilibrium configuration of the TJ singularity due to the
lack of a theoretical treatment of nonequilibrium problems
related to solid state surfaces and interfaces. There are a few
exceptions such as the celebrated work of Bedeaux and
co-workers39–41 and the studies of Shikhmurzaev.42,43 These
authors a the hydrodynamic approach applied to the Gibbs
geometric interface model, with completely different objec-
tives and context. Recently, an irreversible thermodynamic
treatment of solid surfaces and interfaces with TJ singulari-
ties in 2D and 3D anisotropic media was formulated by the
present author by further advocating the discrete micro-
finite-element method17 in connection with local and the glo-
bal internal entropy production associated with the displace-
ment of simply or multiply connected interfacial layers.30

The first serious attempt to obtain a weak solution of the
extremum problem associated with surfaces with symmetri-
cally disposed GB TJs by the variational method has been
made by Ramasubramanian and Shenoy;18 it relies on the
Herring treatment of the surfaces based on equilibrium ther-
modynamics and ad hoc thermokinetics connections. There-
fore, in principle their approach is nothing to do with the
irreversible thermodynamics treatment advocated in this pa-
per to get the strong as well as the weak solution of the
problem.

The various continuity conditions imposed on the GB-TJ
current density are not as trivial as suggested by Ramasubra-
maniam and Shenoy,18 by relying on the conclusion that the
�h /�t continuity of the surface displacement rate is sufficient
for the continuity of the gradient surface flux density. First of
all, the surface flux density as defined by Herring’s formula
and used in their formulation gives a Dirac � function singu-
larity at the GB TJ, and its derivative ���x� definitely gives a
generalized function for the gradient of the current density
and may be given in terms of a point-source function basis,
���x�Ü lim�→0�−�2x /�3���exp�−x2 /�2��, which shows plus/
minus infinite oscillation at the origin. It has operational
meaning only in the integral representation
�dx J�x����x�ÞJ��0�, as can be proved very easily. This
seemingly awkward mathematical dilemma comes from the
improper usage of equations such as Eq. �11� derived for the
ordinary points along sufficiently smooth curves or surfaces,
and applied directly to the singularities such as corners,
edges, and finally free-moving cusps such as GB TJs. In this
paper we have also proved as a by-product of the variational
GIEP formalism that at corners the Herring formula given by
Eq. �14�, which states that the current density is proportional
to the gradient of the surface chemical potential does not
apply, but rather the surface flux density becomes a function
of surface chemical potential difference, given by Eq. �19�.
One can easily design a simple gedanken experiment to

prove the validity of the above statements as proposed by the
author and fully quoted by Averbuch et al.9 in their analytical
paper on the subject of GB grooving under capillary and EM
forces.

The weak solution of the problem is formulated as an
extremum problem referring to the strong solution obtained
by the nonequilibrium thermodynamic formalism as a math-
ematical basis in terms of particle current density represen-
tation. The success of the weak solution of any problem in
engineering sciences is closely associated with its adaptabil-
ity to the well-known numerical methods that use one of the
class of complete and closed orthonormal functions satisfy-
ing the boundary conditions of the physical problem at some
points, especially at infinities. Therefore, the extremum prob-
lem should be cast in such a manner that the surface current
density and its first derivatives, which appear in the formu-
lation, should be continuous functions everywhere including
the GB-TJ singularity. This objective is accomplished in this
paper by using a simple mathematical technique in collabo-
ration with the feedback obtained from the DMFE method to
smooth out the discontinuities in the surface particle-flux
density and its derivatives at the GB TJ.

The procedure adopted allows us to handle the weak so-
lution in the function space characterized by C1�−� , +��,
and introduces an extreme simplification in the numerical
methods by permitting us to use Hermite orthonormal func-
tions in the morphological evolution of surfaces with asym-
metric GB voiding that are exposed to anisotropic surface
stiffness. In Sec. V, the numerical method for the weak so-
lution of the extremum problem is fully elaborated in a com-
pletely normalized and scaled parametric space in terms of a
rather compact matrix representation. The various critical but
tentative applications of the weak solution are demonstrated
and compared with the available literature, and found excel-
lent agreement with the special cases elaborated by Rama-
subramaniam and Shenoy,18 who have done pioneering work
in this field.

The present author, who has advocated both methods
dealing with the irreversible thermodynamics of solid sur-
faces and interfaces, believes that both formalisms may have
their own merits in the solutions of practical problems. The
DMFE method has profound flexibility in using the strong
solution in computer simulations of various practical prob-
lems having complicated boundary conditions, compared to
the variational formulation, which primarily employs the
weak solution of the problem in terms of a set of orthonor-
mal functions that satisfies the boundary conditions at least at
infinity. Furthermore, the DMFE method can be easily pro-
grammed for PC applications, even for the MATHCAD envi-
ronment. The variational formulation of the weak solutions
proposed in this paper may be easily extended for the 3D
space, as has been done recently for the discrete microele-
ment method,30 Then, it may be used in the treatment of 3D
systems having complicated specimen geometries by novel
programming techniques such that commercially available
finite element and/or boundary element method subroutines
could be used for mainframe computations. The main nu-
merical problem encountered by the author dealing with the
weak solution of the variational asymmetric problems is the
lack of any standard integrator in the literature to handle the
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integrand associated with the capillarity term, which shows
unusual oscillations and discontinuities especially in the vi-
cinity of the Dirac � function singularity at the cusp regions
if one has to use high-order Hermite functions as basis. That
is just opposite to the symmetrical case, where Laguerre
functions can be used as was done by Ramasubramanian and
Shenoy,18 and there is highly sophisticated software available
in the literature dealing with spectral elements theory in
mathematical physics. However, our group have succeeded
in developing our tailor-made integrator by closely inspect-
ing the behavior of the integrand function using the graphical
and computational facilities of MATCAD-13, and modifying
the Gauss-Legendre integrator accordingly.
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