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We investigate the effect of local Coulomb correlations on electronic transport through a variety of coupled
quantum dot systems connected to Fermi liquid leads. We use a functional renormalization group scheme to
compute the gate voltage dependence of the linear conductance, the transmission phase, and the dot occupan-
cies. A detailed derivation of the flow equations for the dot level positions, the interdot hybridizations, and the
effective interaction is presented. For specific setups and parameter sets we compare the results to existing
accurate numerical renormalization group data. This shows that our approach covers the essential physics and
is quantitatively correct up to fairly large Coulomb interactions while being much faster, very flexible, and
simple to implement. We then demonstrate the power of our method to uncover interesting new physics. In
several dots coupled in series the combined effect of correlations and asymmetry leads to a vanishing of
transmission resonances. In contrast, for a parallel double-dot we find parameter regimes in which the two-
particle interaction generates additional resonances.
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I. INTRODUCTION

Electronic transport through multilevel quantum dots and
several coupled dots is currently of great experimental and
theoretical interest due to the possible application of such
systems in interferometers and for charge- and spin-based
quantum information processing.1–12 The smallness of the
mesoscopically confined electron droplet—the quantum
dot—leads to fairly large energy level spacings and at suffi-
ciently small temperatures T only a few levels must be con-
sidered. The physics is strongly affected by charging effects1

�Coulomb blockade� and local Coulomb correlations, e.g.,
leading to the Kondo effect.13–18

We present here a method to describe the low-temperature
transport through both a single multilevel dot and several
coupled dots. To keep the notation short when referring to
both situations in the following we denote the dot�s� as the
mesoscopic system. We investigate the linear response con-
ductance G through the setup as a function of a gate voltage
Vg that shifts the energy levels. The connection between the
mesoscopic system and the leads �the reservoirs� is modeled
by low-transmission tunneling barriers.

The transport through a single-level dot with spin degen-
eracy �see Fig. 1�A�� is well understood. For simplicity we
only consider equal couplings to the left and right lead. At
small T and for noninteracting dot electrons G�Vg� shows a
Lorentzian resonance of unitary height 2e2 /h placed roughly
at the energy of the single-particle level of the dot. The full
width 2� of the resonance sets an energy scale � that is
associated with the strength of the tunneling barriers. Includ-
ing a Coulomb interaction U between the spin up and down
dot electrons the line shape is substantially altered as can be
seen from the exact T=0 Bethe ansatz solution.19 For in-
creasing U /� it is gradually transformed into a box-shaped
resonance of unitary heights with a plateau of width U and a
sharp decrease of G to the left and right of it.14,15,20,21 For
gate voltages within the plateau the dot is half-filled imply-

ing a local spin-1 /2 degree of freedom on the dot. Thus the
Kondo effect13 leads to resonant transport throughout this
Kondo regime. A linear chain of a few coupled single-level
dots �see Fig. 1�B�� presents a simple extension of the single-
dot case and was studied recently.22–24 This system can
equally be viewed as a short Hubbard chain.

In more complex cases in which electrons can pass the
mesoscopic system following different paths, not only corre-
lations but also quantum interference plays an important role,
leading, e.g., to the Fano25 effect. Realizations of such a
situation that have been studied theoretically are: �i� A single
dot coupled to two leads that are in addition coupled by a
direct transmission channel �Aharonov-Bohm interferometer
with an embedded dot� as sketched in Fig. 1�C�.26 �ii� A
system of two dots, one directly connected to the two leads
and the other side-coupled to the first one27–29 shown in Fig.
1�D�. �iii� Parallel double dots coupled to common
leads30–33 �see Fig. 1�E�� that have also been realized
experimentally.4–8,10,11 The combined effect of multipath in-
terference through several nearly degenerate levels of a
single dot and correlations is discussed as one of the possible
reasons for the puzzling behavior of the transmission phase
measured in an Aharonov-Bohm interferometer.34 Without a
direct hopping between the dots the setup in Fig. 1�E� can
either be viewed as two dots each having a single level or a
single dot with two levels. For certain parameter sets the
cases Figs. 1�D� and 1�E� are equivalent �see below�.32

The numerical renormalization group �NRG� is a reliable
method to investigate physical properties of systems with
local Coulomb correlations35,36 and was successfully used to
study the linear transport through a single-level dot.20,21,26

Unfortunately, the computational resources required strongly
increase with the number of interacting degrees of freedom.
This usually limits the applicability of NRG to mesoscopic
systems with two spin-degenerate levels28–30,32,31,33 and even
in these cases a complete analysis of the parameter depen-
dencies is practically impossible. For a linear chain of dots
using special symmetries and a direct relation between the
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linear conductance and phase shifts it was possible to com-
pute G at T=0 for up to four dots.22,23

Thus alternative reliable methods are needed to systemati-
cally investigate parameter dependencies and study more
complex systems with a larger number of degrees of free-
dom. Simple methods such as low-order perturbation theory
or the self-consistent Hartree-Fock approximation �SCHFA�
already fail to correctly describe the Kondo physics13 in a
single-level dot and are thus inappropriate. Equations-of-
motion techniques were successfully used to compute G�Vg�
at high temperatures, but even sophisticated decoupling
schemes only qualitatively capture the small-T Kondo
regime.37 Similarly, perturbation theory in the coupling of
the mesoscopic system to the leads works at large T, but fails
for the large conductance resonances at small T.38 In tem-
perature and parameter regimes in which charge fluctuations
dominate a real-time renormalization group method39 can be
used.31 A zero-temperature method that has frequently been
used is exact diagonalization of a small cluster of lattice sites
containing the dot followed by an embedding procedure.40 It
has been criticized28,41 to produce severe artifacts in G�Vg�
and even in the case of a single-level dot, where at least the
qualitative behavior comes out correctly, the quantitative
agreement with NRG data is rather poor.42 Also the mean-
field slave-Boson approach43 was used, first to study the
single-level dot. Within this method G�Vg� falls off too
quickly away from the plateau region as compared to the
Bethe ansatz and NRG data.44,45 Furthermore, the method
does not capture the correct dependence of G�Vg� on a mag-
netic field that lifts the spin degeneracy of the single level.46

Despite these shortcomings the method was also used for
more complex dot systems.47 Recently, a method based on
the Gunnarsson-Schönhammer variational approach48 has
been applied to the dot with a spin-degenerate level49 and a
linear chain of three dots.24 It remains to be seen if this
approach can with equal success be used in the presence of a
magnetic field and for multipath systems.

We propose here a T=0 approach to study transport
through mesoscopic systems with local Coulomb correla-
tions that is based on the functional renormalization group
�fRG�. The fRG was recently introduced50 as a new powerful
tool for studying interacting Fermi systems. It provides a
systematic way of resumming competing instabilities51 and
goes beyond simple perturbation theory even in problems
which are not plagued by infrared divergences.52,53 The fRG
procedure we use starts from an exact hierarchy of differen-
tial flow equations for the one-particle irreducible vertex
functions,52,54–56 i.e., the self-energy, the irreducible two-
particle interaction, etc. It is derived by replacing the free
propagator by a propagator depending on an infrared cutoff

� and taking the derivative of the generating functional with
respect to �. We will apply two different truncation schemes
to the models sketched in Fig. 1. Both result in a simple set
of coupled differential equations that can easily be integrated
numerically and in certain cases even analytically. By an
explicit comparison of our results for G�Vg� and the occu-
pancies to NRG and Bethe ansatz data we show that the
method works well for surprisingly large U /�. The method
can easily be extended to other setups and thus provides a
useful and reliable tool to investigate transport through quan-
tum dots. In two short publications it was earlier used to
compute G�Vg� for a single dot with Luttinger-liquid leads57

and for a spin-polarized parallel double dot.33

This paper is organized as follows. In Sec. II we present
our general model. We then derive the fRG flow equations in
Sec. III. In Secs. IV–VI we discuss our results for the gate
voltage dependence of the linear conductance of the systems
of Fig. 1 and for the cases shown in A–D we explicitly com-
pare them to existing NRG and Bethe ansatz data. For each
situation we judge the quality of our approximate method
and discuss the limits of its applicability. In Secs. V–VII
�setup of Figs. 1�B, D, and E�� we go beyond situations that
have previously been studied. We conclude in Sec. VIII with
a brief summary and an outlook.

II. THE MODEL

Our general Hamiltonian

H = Hlead + Hdirect + Hdot + Hcoup �1�

consists of four parts. For simplicity the two leads are as-
sumed to be equal and described by a tight-binding model

Hlead = − ��
�

�
l=L,R

�
m=0

�

�cm,�,l
† cm+1,�,l + H . c . � �2�

with cm,�,l
�†� being the annihilation �creation� operator for an

electron with spin direction �= ↑ ,↓ localized on lattice site
m of the left �l=L� or right �l=R� lead. The hopping matrix
element in the leads is denoted by �. To describe the system
sketched in Fig. 1�C� we need a term that directly links the
left and right lead58

Hdirect = �
�

�tLRc0,�,R
† c0,�,L + H . c . � . �3�

The coupled quantum dots are modeled as

FIG. 1. Dot geometries considered in the
present paper.
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Hdot = �
�

�
j

� j,�dj,�
† dj,� − �

�
�
j�j�

tj,j�dj,�
† dj�,� + H . c .

+
1

2 �
�,��

�
j,j�

Uj,j�
�,���nj,� −

1

2
��nj�,�� −

1

2
� �4�

with annihilation �creation� operators dj,�
�†� and the site occu-

pancy nj,�=dj,�
† dj,�. With this dot Hamiltonian we equally

describe multilevel and multidot situations or even mixtures
of both. The dot or level index j runs from 1 to N. The level
positions � j,� consist of constant parts � j,�

0 and a variable gate
voltage Vg that is used to shift the energy levels: � j,�=� j,�

0

+Vg. Our notation allows for both spin-degenerate levels and
levels that are split by a magnetic field. For j’s that belong to
different dots it is meaningful to introduce nonzero hopping

matrix elements tj,j�. The two-particle interaction Uj,j�
�,�� van-

ishes for j= j�and �=��. Besides this restriction we allow for
both intralevel interactions of spin up and spin down elec-
trons as well as interlevel interactions. Finally, the coupling
between dot and lead states is given by

Hcoup = − �
�

�
l=L,R

�
j

�tj
lc0,�,l

† dj,� + H . c . � �5�

with overlaps tj
l that enter the energy scale of the dot level

broadening � j
l =� � tj

l�2	lead, where 	lead denotes the local den-
sity of states at the end of each semi-infinite lead. As usual
we later take 	lead to be energy independent �wide-band
limit�. The choice of the nonzero tj

l and tj,j� introduces a
spatial geometry between the dots. For ringlike geometries
�Figs. 1�C� and 1�E�� one might also be interested in study-
ing the effect of a magnetic flux piercing the ring. This can
be modeled by including appropriate phase factors in the
hopping matrix elements tLR, tj

l, tj,j� along the ring.26,31,33 All
the systems shown in Fig. 1 follow from this Hamiltonian by
special choices of the parameters. Obviously, it can also be
used to model other cases of interest.

III. THE METHOD

Applying the Landauer-Büttiker formalism59 the T=0 lin-
ear conductance for noninteracting electrons can be ex-
pressed as

G�Vg� = G↑�Vg� + G↓�Vg� , �6�

with

G��Vg� =
e2

h
�T��0,Vg��2, �7�

where the transmission is given by

T���,Vg� = 2��2	lead���G0,�,L;0,�,R�� + i0� �8�

and the energy � is measured relative to the chemical poten-
tial 
. Here G denotes the retarded one-particle Green func-
tion �the resolvent in the present single-particle problem� of
the system. For the leads described by Eq. �2� the local den-
sity of states at site m=0 is �if they are decoupled from the
rest of the system�

	lead��� =
1

2��2
	4�2 − �� + 
�2��2� − �� + 
�� . �9�

The transmission phase ���Vg� is given by the phase of
T��0,Vg�.

The noninteracting Green function matrix element involv-
ing lead states G0,�,L;0,�,R can be related to matrix elements
involving only the dot states with quantum numbers j ,�, and
	lead. The explicit form of this relation depends on the choice
of nonzero tj

l. It can be obtained using a standard projection
technique60 and is based on the relation

PG1p�z�P = �zP − PH1pP − PH1pQ

�zQ − QH1pQ�−1QH1pP�−1, �10�

where H1p is an arbitrary single-particle Hamiltonian,
G1p�z�= �z−H1p�−1 is the resolvent, and P, Q are projectors
with P+Q=1.

For Fermi liquids, as discussed here, the same T=0 rela-
tions Eqs. �6�–�8� between matrix elements of the one-
particle Green function and the conductance hold in the pres-
ence of interactions.61 To obtain G� and �� we thus have to
determine the one-particle Green function of the dot system
in the presence of the interaction and the leads. From this the
level occupancies 
nj,�� can also be determined by integrat-
ing G j,�;j,��z� along the imaginary axis.62

As a first step we integrate out the noninteracting leads
within a functional integral representation of our many-body
problem.62 They provide a frequency dependent one-particle
potential for those indices j for which tj

l �0. On the imagi-
nary frequency axis it is given by

Vj,�;j�,��
lead �i�� = �

l

tj
l�tj�

l �*glead�i����,��, �11�

where glead�i�� denotes the spin-independent Green function
of the isolated semi-infinite leads taken at the last lattice site

glead�i�� =
i� + 


2�2 �1 −	1 −
4�2

�i� + 
�2� . �12�

After this step, instead of dealing with an infinite system we
only have to consider the dot system of N interacting levels.
We here take 
=0. In the computation of the Green function
projected onto the dot system the sum of the dot Hamiltonian

at Uj,j�
�,��=0 and Vj,j�

lead�i�� can be interpreted as a frequency
dependent “effective Hamiltonian” and in the following will
be denoted by h�i��.

We now set up our fRG scheme. As a first step we replace
the noninteracting dot propagator G0, as obtained from Eq.
�4� and the projection of the leads, by a cutoff-dependent
propagator that suppresses the infrared modes with Matsub-
ara frequency �� � ��,

G0
��i�� = ����� − ��G0�i�� = ����� − ���i� − h�i���−1

�13�

with � running from � down to 0. For convenience we use a
sharp cutoff �see below�. Using G0

� in the generating func-
tional of the irreducible vertex functions62 and taking the
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derivative with respect to � one can derive an exact, infinite
hierarchy of coupled differential equations for vertex func-
tions, such as the self-energy and the irreducible two-particle
interaction. In particular, the flow of the self-energy �� �one-
particle vertex� is determined by �� and the two-particle
vertex ��, while the flow of �� is determined by ��, ��, and
the flowing three-particle vertex �3

�. The latter could be com-
puted from a flow equation involving the four-particle ver-
tex, and so on. At the end of the fRG flow ��=0 is the self-
energy � of the original, cutoff-free problem we are
interested in.52,56,65 A detailed derivation of the fRG flow
equations for a general quantum many-body problem that
only requires a basic knowledge of the functional integral
approach to many-particle physics62 and the application of
the method for a simple toy problem are presented in Ref.
63. In practical applications the hierarchy of flow equations
has to be truncated and ��=0 only provides an approximation
for the exact �. As a first approximation we here neglect the
three-particle vertex �irreducible three-particle interaction�.
The contribution of �3

� to �� is small as long as �� is small,
because �3

� is initially �at �=�� zero and is generated only
from terms of third order in ��. Furthermore, �� stays small

for all � if its initial values Uj,j�
�,���for the details of the initial

conditions, see below� are not too large. By explicit compari-
son to NRG data below we will clarify the meaning of “not-
too-large” in the cases of interest. This approximation leads
to a closed set of equations for �� and �� given by

�

��
���1�,1� = −

1

2�
�
2,2�

ei�20+
S��2,2�����1�,2�;1,2�

�14�

and

�

��
���1�,2�;1,2� =

1

2�
�
3,3�

�
4,4�

G��3,3��S��4,4��

 ����1�,2�;3,4����3�,4�;1,2�

− ���1�,4�;1,3����3�,2�;4,2�

− �3 ↔ 4,3� ↔ 4��

+ ���2�,4�;1,3����3�,1�;4,2�

+ �3 ↔ 4,3� ↔ 4��� . �15�

The labels 1, 2, etc. are a shorthand for the quantum numbers
of the one-particle basis j ,� and the Matsubara frequencies
and the summation stands for a sum over the quantum num-
bers and an integral over the frequency. The full propagator
G� is given by the Dyson equation

G� = ��G0
��−1 − ���−1 �16�

and the so-called single-scale propagator S� by

S� = G�� �

��
�G0

��−1G�. �17�

The order of the projection onto the system of dots and the
introduction of a cutoff can equally be interchanged, leading
to the same set of flow equations.

We next implement our second approximation: the
frequency-dependent flow of the renormalized two-particle
vertex �� is replaced by its value at vanishing �external�
frequencies, such that �� remains frequency independent.
Since the bare interaction is frequency independent, neglect-
ing the frequency dependence leads to errors only at second
order �in the interaction strength� for the self-energy, and at
third order for the vertex function at zero frequency. As a
consequence, also the self-energy becomes frequency inde-
pendent. Then � j,�+� j,�;j,� can be viewed as the effective
�single-particle� level position and tj,j�+� j,�;j�,�, with j� j�
as the effective �single-particle� hopping between the levels.
In general both depend on all parameters of the problem, in
particular the two-particle interaction. This interpretation
will later be helpful to gain further insights in our results.

For a sharp frequency cutoff the frequency integrals on
the right-hand side �rhs� of the flow equations �14� and �15�
can be carried out analytically. At this point one has to deal
with products of delta functions ���� �−�� and expressions
involving step functions ���� �−��. These at first sight am-
biguous expressions are well-defined and unique if the sharp
cutoff is implemented as a limit of increasingly sharp broad-
ened cutoff functions ��, with the broadening parameter �
tending to zero. The expressions can then be conveniently
evaluated by using the following relation,55 valid for arbi-
trary continuous functions f:

���x − ��f����x − ��� → ��x − ���
0

1

f�t�dt , �18�

where ��=���. Note that the functional form of �� for finite
� does not affect the result in the limit �→0. For the approxi-
mate flow equations we then obtain

�

��
�1�,1

� = −
1

2�
�

�=±�
�
2,2�

ei�0+G̃2,2�
� �i���1�,2�;1,2

� �19�

and

�

��
�1�,2�;1,2

� =
1

2�
�

�=±�
�
3,3�

�
4,4�

�1

2
G̃3,3�

� �i��G̃4,4�
� �− i��

�1�,2�;3,4
�

�3�,4�;1,2
� + G̃3,3�

� �i��G̃4,4�
� �i��

 �− �1�,4�;1,3
�

�3�,2�;4,2
� + �2�,4�;1,3

�
�3�,1�;4,2

� �� ,

�20�

where the lower indexes 1, 2, etc., now stand for the single-
particle quantum numbers j ,� �not frequencies� and

G̃��i�� = �G0
−1�i�� − ���−1. �21�

Note that in contrast to G� in Eq. �16�, G̃� contains the
cutoff-free noninteracting propagator. Thus, by taking a
sharp cutoff the explicit cutoff function completely disap-
pears from the flow equation, making it smooth and easy to
integrate numerically.65 At the initial cutoff �=� the flowing
two-particle vertex �1�,2�;1,2

� is given by the antisymmetrized
interaction �see below�. Equation �15� preserves the antisym-
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metry under the exchange of the first and second two indices.
This reduces the number of independent �1�,2�;1,2

� . Further-
more, Eq. �20� preserves the spin conservation of the Hamil-
tonian. One can either use these symmetries to reduce the
number of both flow equations and independent summations
on the rhs of Eq. �20�, or directly implement this equation for
simplicity. In complex cases the first will considerably speed
up the numerical integration of the flow equations. To exem-
plify this we consider the single-level case. Then the only
physical interaction is the one between spin up and spin
down electrons and Eq. �20� reduces to a single equation
with no sum over quantum numbers left on the rhs.

The flow is determined uniquely by the differential flow
equations and the initial conditions at �=�. The flow of the
two-particle vertex starts from the antisymmetrized bare two-
particle interaction62 I1�,2�;1,2 while m-particle vertices of
higher order vanish in the absence of bare m-body interac-
tions with m�2. The self-energy at �=� is given by the
bare one-particle potential, that is, by those one-particle
terms which are not included already in G0. For fixed quan-
tum numbers j ,� in Eq. �4� these are terms of the form

−���,j�Uj,j�
�,�� /4. In a numerical solution the flow starts at

some large finite initial cutoff �0. Here one has to take into
account that, due to the slow decay of the rhs of the flow
equation for �� at large �, the integration of the flow from
�=� to �=�0 yields a contribution which does not vanish
in the limit �0→�, but rather tends to a finite constant.

Since G̃2,2�
� �i��→�2,2� / �i�� for �� � =�→�, this constant is

easily determined as

−
1

2�
lim

�0→�
�

�

�0

d� �
�=±�

�
2,2�

ei�0+ �2,2�

i�
I1�,2�;1,2 =

1

2�
2

I1�,2;1,2.

�22�

This exactly cancels the bare one-particle term �see above�.
In summary, the initial conditions for the self-energy and the
two-particle vertex at �=�0→� are

�1,1�
�0 = 0, �23�

�1�,2�;1,2
�0 = I1�,2�;1,2. �24�

For the flow at ���0 the factor ei�0+
in Eq. �19� can be

discarded.
In the following sections we use the above fRG-based

approximation scheme to study the conductance, the trans-
mission phase, and the level occupancies for the geometries
sketched in Fig. 1. For the single-dot case we also apply an
even simpler scheme for comparison, where the flowing two-
particle vertex is replaced by its initial value. The system of
flow equations then reduces to Eq. �19�.

IV. SINGLE DOTS

As a first example we study the single dot case of Fig.
1�A�. Since N=1 we suppress the dot index j=1. Further-
more, the Hamiltonian conserves the spin and the self-energy
and Green function is diagonal in the spin index �. The same

holds for the other setups studied. The level energies are �↑
=Vg−H /2, �↓=Vg+H /2, where H denotes a magnetic field,
and the interaction between up and down electrons occupy-
ing the dot level is U. We here consider the case with left-
right symmetry of the level-lead hoppings tL= tR= t�, but the
results can easily be generalized. Note that due to the shift of
the density by −1/2 in the last line of Eq. �4�, Vg=0 corre-
sponds to half filling of the dot. The projected noninteracting
propagator is given by13

G0,��i�� =
1

i� − �Vg + �H/2� + i� sgn���
, �25�

where on the rhs �= ↑ = +1 and �= ↓ =−1. We have per-
formed the wideband limit that leads to an energy-
independent hybridization �=�L+�R=2�t�2	lead. This is
achieved by replacing �→�� and t�→	�t� and taking �
→�. The flow equations for the effective level positions
V�

�=Vg+�H /2+��
� are

�

��
V�

� = −
U�

2�
�

�=±�

G̃�̄
��i�� =

U�V�̄
�/�

�� + ��2 + �V�̄
��2

, �26�

with the initial condition V�
�=�=Vg+�H /2 and �̄ denoting

the complement of �. The cutoff-dependent propagator

G̃�
��i�� follows from G0,��i�� by replacing Vg+�H /2→V�

�.
As already mentioned above, using symmetries the flow of
the two-particle vertex can be reduced to a single equation
for the effective interaction between spin up and spin down
electrons U�. It is defined by U�=��,�̄;�,�̄

� , has the flow
equation

�

��
U� =

�U��2

2�
�

�=±�

�G̃↑
��i��G̃↓

��− i�� + G̃↑
��i��G̃↓

��i���

=
2�U��2V↑

�V↓
�/�

��� + ��2 + �V↑
��2���� + ��2 + �V↓

��2�
, �27�

and initial condition U�=�=U.
Within this approximation the dot spectral function at the

end of the fRG flow is given by

	���� =
1

�

�

�� − V��2 + �2 , �28�

with V�=V�
�=0, that is a Lorentzian of full width 2� and

height 1 / ���� centered around V�. For the single dot, in-
stead of using Eq. �8� the transmission can be expressed in
terms of the dot spectral weight at the chemical potential64

G��Vg� =
e2

h
��	��0� . �29�

Within our approximation the spectral weight and thus the
conductance directly follows from the effective level posi-
tion V� at the end of the fRG flow.

In the following we consider strong couplings U /��1
and start out with the case H=0. The latter implies that V↑

�

=V↓
�=V� and G↑=G↓. The spectral function computed at

Vg=0 using NRG �that is believed to be very close to the
exact spectral function� shows a sharp Kondo resonance of
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height 1 / ���� and width TK, where TK is the Kondo tem-
perature, located around �=0. It has two additional broader
features at �= ±U /2 �Hubbard bands�. For −U /2�Vg�U /2
the Kondo peak is pinned at �close to� the chemical potential
and has fixed height.13 Using Eq. �29� this leads to the pla-
teau of width U in G�Vg� discussed in the Introduction. Al-
though our approximate spectral function neither shows the
narrow Kondo resonance nor the Hubbard bands, we show
that by a pinning of V� it captures the pinning of the spectral
weight. We reproduce the line shape of the conductance
quantitatively up to very large U /�.

To gain some analytical insight we first replace U�→U
and solve Eq. �26�. The solution is obtained in implicit form

vJ1�v� − �J0�v�
vY1�v� − �Y0�v�

=
J0�vg�
Y0�vg�

, �30�

with v=V� /U, vg=Vg� /U, �=�� /U, and Bessel functions
Jn, Yn. For �Vg � �Vc, with vc=Vc� /U being the first zero of
J0, i.e., Vc=0.7655U, this equation has a solution with a
small �V�. For U�� the crossover to a solution with �V�
being of order U �for �Vg � �Vc� is fairly sharp. Expanding
both sides of Eq. �30� for small �v� and �vg� gives V
=Vg exp�−U / �����. Inserting this in Eq. �28� leads to an
exponential pinning of the spectral weight at 
. In Fig. 2 we
show V�Vg� for U /�=4� as the dashed line. For �Vg � �U /2
we find V=Vg−sgn�Vg�U /2. Applying Eq. �29� the exponen-
tial pinning of the spectral weight at 
=0 for small �Vg� and
the sharp crossover to a V of order U when �Vg � �Vc leads to

the plateau in G�Vg� shown as the dashed line in Fig. 3. For
U�� the width of the plateau is 2Vc=1.531U, which is
larger than the width U found from the exact Bethe ansatz
solution21 �solid line in Fig. 3� and with NRG.

This can systematically be improved including the flow of
the interaction Eq. �27�. As the dashed-dotted and solid lines
in Fig. 2 we show the effective level position and the effec-
tive interaction at the end of the fRG flow. The dashed-dotted
line in Fig. 3 is the resulting G�Vg�. Away from Vg=0 the
effective interaction first decreases and the plateau becomes
narrower. The approximate conductance then agrees quanti-
tatively with the exact Bethe ansatz result �solid line in Fig.
3�. For decreasing U /� the agreement of fRG and Bethe
ansatz data systematically improves and for U /��6 the two
curves can barely be distinguished. The agreement becomes
only slightly worse than in Fig. 3 for U /� as large as 25, the
largest U /� for which Bethe ansatz data are available in the
literature.21 Also for more complex dot geometries including
the flow of the effective interaction considerably improves
the agreement with NRG and from now on we exclusively
use this truncation scheme.

We next consider the case of finite magnetic fields. For
H�0 the Kondo resonance in the NRG solution of the spec-
tral function splits in two peaks with a dip at �=0, resulting
in a dip of G�Vg� at Vg=0. In Figs. 4 and 5 we compare the
total G=G↑+G↓ and partial G↑ conductance obtained from
our fRG truncation scheme including the flow of the interac-
tion and from NRG66 for U /�=3� and different H. In the
caption we give H in units of TK

NRG=0.116�, where TK
NRG is

determined from the width of the Kondo resonance at the

FIG. 2. �Color online� Gate voltage dependence of the effective
level position and interaction for a single-level dot at U /�=4� and
H=0. Dashed line: V=V�=0 without flow of the interaction.
Dashed-dotted line: V=V�=0 with flow of the interaction. Solid line:
Effective interaction U�=0.

FIG. 3. �Color online� Gate voltage dependence of the linear
conductance for the same parameters as in Fig. 2. Solid line: Exact
Bethe ansatz solution from Ref. 21. Dashed line: fRG approxima-
tion without flow of the interaction. Dashed-dotted line: fRG ap-
proximation with flow of vertex.

FIG. 4. �Color online� Gate voltage dependence of the total
conductance G of a single dot with U /�=3� and H /�=0, 0.058,
0.116, and 0.58 from top to bottom. In units of the Vg=0 Kondo
temperature TK

NRG/�=0.116 these fields correspond to H=0,
0.5TK

NRG, TK
NRG, and 5TK

NRG. Solid line: NRG data from Ref. 66.
Dashed line: fRG approximation with flow of vertex.

FIG. 5. �Color online� Gate voltage dependence of the partial
conductance G↑ of a single dot for the same parameters as in Fig. 4.
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particle-hole symmetric point Vg=0 using NRG.66 The
agreement between NRG and fRG results is excellent. In
particular, at Vg=0 the NRG and fRG data for H=TK

NRG are
almost indistinguishable.

This observation suggests that our approximate scheme
indeed contains the Kondo temperature TK that depends ex-
ponentially on a combination of U and the level position13

TK
exact � exp�−

�

2U�
�U2/4 − Vg

2�
= exp�− ��

8

U

�
−

�

2

Vg
2

�2

�

U
� . �31�

The prefactor of the exponential depends on the details of the
model considered. To leading order its U and Vg dependence
can be neglected. To investigate the appearance of an expo-
nentially small energy scale within our approximation we
define a Kondo scale TK�U ,Vg� by the magnetic field re-
quired to suppress the total conductance down to half the
unitary limit G�U ,Vg ,H=TK�=e2 /h. For fixed U�� this
definition is meaningful for gate voltages which for H=0 are
in the conductance plateau. In Fig. 6 we show TK�U ,Vg� for
different Vg as a function of U on a linear-log scale. The
curves can be fitted by a function of the form �see Eq. �31��

f�U/�� = a exp�− �b
U

�
− c

�

U
� ,

with Vg dependent coefficients a, b, and c. On the scale of
Fig. 6 the original data and the fits are indistinguishable. We
find that b�Vg� barely changes with Vg and is given by b
�0.32, which is close to the exact value � /8�0.39 �see Eq.
�31��. Furthermore, the prefactor a depends only weakly on
Vg and c�Vg� increases approximately quadratically with
Vg /� as shown in the inset of Fig. 6. Both these results are
consistent with the behavior of the exact Kondo temperature
Eq. �31�. We thus conclude that TK�U ,Vg� can be estimated
from the H dependence of G obtained within the fRG. The
Kondo temperature can also be obtained from the local spin
susceptibility.13 Computing this using our fRG scheme leads
to results equivalent to the ones discussed above.

For the single dot at T=0 the exact conductance, trans-
mission phase, and dot occupancies are directly related by a
generalized Friedel sum rule:13 G� / �e2 /h�=sin2��
n���, ��

=�
n��. As 0� 
n���1 the argument of sin2 is restricted to

a single period and the relation between G�, 
n��, and �� is
unique. In many approximation schemes the Friedel sum rule
does not hold exactly. Within our method we map the many-
body problem onto an effective single-particle one for which
the Friedel sum rule is fulfilled. For gate voltages within the
H=0 conductance plateau the �spin independent� dot filling
is 1 /2 and the �spin independent� phase is � /2. For suffi-
ciently large U /� the crossover to 
n��=1 and ��=� to the
left of the plateau as well as 
n��=0 and ��=0 to the right is
fairly sharp.

As a more complex single-dot problem we study the case
of a dot embedded between two leads, that are also coupled
directly �see Fig. 1�C��. In that case the conductance shows
the characteristics of both the Kondo and the Fano effect, as
was discussed earlier based on NRG results.26 We focus here
on H=0.

To derive expressions for the dot Green function and the
conductance we first consider a three-site system of the dot
and the last sites of the left and right leads. The effect of the
other lead sites is taken into account by projecting them out,
which leads to a single-particle potential on the last sites of
the leads similar to Eq. �11� but with tj

l replaced by �. At
U=0 the projected “effective Hamiltonian” �see Eq. �10�� for
both spin directions reads �for the hopping between the leads
and dot we still assume tL= tR= t��

h��i�� = ��2glead�i�� tLR − t�

tLR �2glead�i�� − t�

− t� − t� Vg
� �32�

in a basis left lead—right lead—dot. We here consider
t� , tLR�R �for the model with an enclosed magnetic flux, see
below�. The Green function matrix element entering Eq. �8�
is given by the 1−2 matrix element of the resolvent of
h��i��, Eq. �32�. Within our truncation scheme the same
holds for U�0 if Vg is replaced by the effective dot level
position V�=0 in h3,3�i��. To determine the flow equations for
V� and U� we employ Eq. �10� a second time and project
onto the dot site. After taking the wideband limit the cutoff-
dependent dot Green function is

G̃�
��i�� = �i� − V� + �

t̃LR + i sgn���

1 + t̃LR
2 −1

, �33�

with t̃LR=�tLR	lead. The first lines of Eqs. �26� and �27� also
hold in the presence of the direct hopping tLR, which com-
pletes the derivation of the flow equations.

At U=0 the interference of the direct energy independent
transmission channel and the resonant channel leads to a
Fano line shape of G�Vg�.25 The line shape resulting from the
presence of both the Kondo and the Fano effect is shown in
Fig. 7 for26 U /��5.05� and different strength of the direct
hopping between the left and right lead. The latter is mea-
sured by the U=0 transmission probability TLR�tLR� that
would result if only the direct link would be present, that is
for t�=0. For TLR=0 one recovers the single-dot problem
discussed above. In the opposite limit of perfect direct trans-
mission TLR=1 the U=0 Fano antiresonance at Vg=0 �see
the q=0 curve in Fig. 1 of Ref. 25� is extended to a broad

FIG. 6. �Color online� The Kondo scale TK as a function of U
for different Vg: Vg=0 �solid�, Vg /�=1 �short dashed�, Vg /�=2
�dashed-dotted�, and Vg /�=4 �long dashed�. Inset: The fitting pa-
rameter c as a function of �Vg /��2.
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region with G�Vg��0 due to the presence of the Kondo ef-
fect. The results for 0�TLR�1 lie in between these two
limiting cases. The fRG data again agree well with the NRG
results.

Similar to the single dot without a direct link for the
present geometry one can derive unique relations between
the conductance, the transmission phase, and the
occupancy.26 Thus the last two observables do not carry any
additional information and we do not show them here. In
addition to the gate voltage dependence also the dependence
on an enclosed magnetic flux was studied. Replacing tLR
→exp�i��tLR a flux can easily be included in our approach
and we reproduce the results of Ref. 26.

Our results for the single-level dot show that although the
fRG truncation scheme is set up for small U, it works quan-
titatively for very large U. For H=0 the method captures the
aspect of Kondo physics essential to obtain the plateau in
G�Vg�, namely the pinning of spectral weight. From this one
can expect that the method gives reliable results also for
more complex dot systems, as will be explored below. Using
a truncation scheme in which the full frequency dependence
of the two-particle vertex is kept �leading to a frequency
dependent self-energy� it was shown that one can also repro-
duce the Kondo resonance and Hubbard bands of the spectral
function,52 although with a much higher numerical effort.67

V. LINEAR CHAINS OF DOTS

We next study a linear chain of N single-level dots as
shown in Fig. 1�B�. For this problem one already has to
specify a variety of parameters. The interdot hopping matrix
elements might not only be restricted to nearest neighbors
but extend over a longer range. In addition, depending on the
experimental realization of the chain, the hoppings of equal
range might not all be the same but explicitly depend on the
pair of dots considered. Besides the on-site interaction �that
might depend on j� one could introduce longer-range inter-
actions. The on-site energies � j,� might vary from site to site.
Within our approach all these situations can be investigated,
as the parameters only enter the projected noninteracting
propagator and the initial conditions for the two-particle ver-
tex. We consider here the cases N=3 and N=4, but also

N=10 has been studied with our method. We focus on H
=0, nearest-neighbor interdot hoppings of equal amplitude,
equal on-site energies, and equal local interactions. We veri-
fied that including a nearest-neighbor interaction and a small
variation of the interdot hoppings only weakly affects our
results.

At U=0 the projected “effective Hamiltonian” is a tridi-
agonal NN matrix with off-diagonal entries

h�;j,j±1�i�� = − t �34�

and diagonal elements

h�;j,j�i�� = Vg − i sgn�����1
L� j,1 + �N

R� j,N� . �35�

The �spin-independent� projected noninteracting propagator
then follows from the matrix inversion

G0,��i�� = �i� − h��i���−1. �36�

The flow equations for the present setup are obtained by
inserting this G0 into Eq. �21� and using the resulting cutoff-
dependent full propagator in Eqs. �19� and �20�. The initial
conditions are given by Eqs. �23� and �24�. Although we start
out with a purely local interaction, during the fRG flow Eq.
�20� all types of two-particle interactions not forbidden by
spin conservation and antisymmetry of the vertex, e.g., long-
range density-density interactions and pair hoppings, are
generated in � j1�,�1�,j2�,�2�;j1,�1,j2,�2

� . We observe the same for the

setups of Figs. 1�D� and 1�E�. With this two-particle vertex
the flowing self-energy Eq. �19� becomes a full NN ma-
trix. During the fRG flow the interaction does not only lead
to a renormalization of the level positions and the nearest-
neighbor hoppings, but also generates longer-range single-
particle hoppings. Applying Eqs. �6�–�10� the conductance
can be computed from the 1−N matrix element of the pro-

jected Green function at �=0 by �note that G̃�=0=G�=0�

G��Vg� =
e2

h
4�1

L�N
R�G�;1,N

�=0 �0��2. �37�

The occupancy of dot j follows from integrating G j,j
�=0�i��

over �.
For the special case of equal nearest-neighbor inter-

dot hoppings t, equal hybridizations �1
L=� � t1

L�2	lead=�N
R

=� � tN
R�2	lead=� /2, equal local interactions U, and equal

� j,�=Vg, G�Vg� at T=0 were computed using NRG.22,23 For
this class of parameters the Hamiltonian has a high symme-
try and the conductance is related to scattering phase shifts.
The latter can be extracted from energies of the system
which allowed us to obtain results for a chain of up to four
dots. In Fig. 8 we show a comparison of the NRG and fRG
results �for G and the total dot occupancy 
n�=� j,�
nj,��� for
N=4, U /�=2�, and t /�=1. For gate voltages at which the
four-site chain is occupied by an odd number of electrons
one finds a transmission peak of unitary height. Each corre-
sponds to transport through mainly one of the four dot levels.
For U /�=2� the plateaulike line shape of the individual
resonances induced by the Kondo effect is only weakly de-
veloped. It becomes more pronounced if larger U /� are con-
sidered. The overlap of the resonances decreases for increas-

FIG. 7. �Color online� Gate voltage dependence of the total
conductance G of a single dot in the Fano geometry of Fig. 1�C�
with U /��5.05�, H=0, and different TLR. Symbols: NRG data
from Ref. 26 �circles TLR=0, squares TLR=0.1, diamonds TLR=0.6,
triangles TLR=1�. Solid lines: fRG approximation with flow of
vertex.
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ing t /�. For even N the width of all the resonances is almost
equal and of order U /N. In a wide region around Vg=0,
G�Vg� is small because close to half-filling of the chain
charge fluctuations are strongly suppressed. For odd N, as in
Fig. 9, half-filling corresponds to an odd number of electrons
on the chain. This implies a wide plateau of unitary height
around Vg due to the suppressed charge fluctuations �com-
pare the solid lines in the upper U /�=� and lower panel
U=0 of Fig. 9� and only the resonances away from Vg=0
have width U /N.22 The �spin-independent� transmission
phase ���Vg� and the total occupancy are related by 
n�
=2�� /�.23,68 Across every transmission resonance the phase
continuously changes by � in analogy to the behavior of the
phase at U=0. Note that in contrast to the single-dot case ��

is not restricted to the interval �0,��.
For U /� smaller than the one of Fig. 8 the agreement

between NRG and fRG further increases, e.g., for N=4,
U /�=1.67�, and t /�=4.167 both data sets are almost indis-

tinguishable �for the NRG data see Fig. 5 of Ref. 23�. We
encounter serious deviations of the fRG data and NRG re-
sults if U /� is significantly increased �i.e., for U /�=8.33;
for NRG data see Fig. 4 of Ref. 23�. In that case regions of
gate voltages appear in which some of the components of the
effective interaction become orders of magnitude larger than
the initial U leading to a conductance that is too small. For
these Vg it is no longer justified to neglect the frequency
dependence of the two-particle vertex and the higher-order
vertices. In particular, this happens for Vg on-resonance and
in addition for even N in the deep valley around Vg=0. In-
dications of this breakdown of our approximation scheme for
U /��10 can already be observed in the Vg=0 valley, and
the large �Vg� resonances in Fig. 8: in these gate-voltage re-
gimes our approximation significantly underestimates G.

In Fig. 9 we show how an increasing left-right asymmetry
of the �1

L and �N
R affects the conductance for N=3 for small

to intermediate t /�. The parameters are U /�=�, with fixed
�=�1

L+�3
R, and t /�=1. For comparison in the lower panel

we show the U=0 case. With increasing asymmetry the
height of the peaks decrease. While for fixed asymmetry the
interaction leads to an enhancement of the outer two peaks, it
suppresses the peak located around Vg=0. Therefore, at
U�0 the central peak disappears quickly if �1

L /�3
R increases.

It is important to note that with increasing asymmetry the
gate voltage dependence of the total occupation 
n� and the
transmission phase �� �which are still related by 
n�
=2�� /�� barely change. Thus these observables do not show
any indication of the disappearance of the central resonance.
The same holds for the �effective� dot level positions of the
chain obtained by diagonalizing the “effective Hamiltonian”
at the end of the fRG flow �computed in the presence of the
leads� after disconnecting the three sites from the leads. In
particular, for all �1

L /�3
R studied one of the level energies

�eigenenergies of the isolated chain at �=0� goes through
zero at Vg=0. For levels which are not too strongly �suffi-
cient separation of the resonances� and not too asymmetri-
cally coupled to the leads one would thus expect a peak at
Vg=0 �see, e.g., the U=0 case�. Surprisingly, during the fRG
flow the effective asymmetry of the coupling to the outer two
levels �as obtained from the eigenvectors of the isolated
chain at �=0� is reduced compared to the initial value, while
the asymmetry of the central level is significantly increased
by the presence of the interaction. Furthermore, the sum of
the effective couplings of the central level to the left and
right leads is increased which implies that the level is broad-
ened. The combined effect of the asymmetry and broadening
explains the vanishing of the central peak. For increasing
peak separation, that is for increasing t /�, the central reso-
nance becomes more robust against a left-right asymmetry.

The above observation might be important for the inter-
pretation of future experiments on linear chains of quantum
dots because asymmetric dot-lead couplings are generic in
realistic dot systems. As shown, such an asymmetry might
lead to a two peak structure although a chain of three sites is
studied.

VI. SIDE-COUPLED DOUBLE DOTS

The side-coupled double dot of Fig. 1�D� shows a very
interesting low-energy physics. Close to half-filling it is ei-

FIG. 8. �Color online� Gate voltage dependence of the conduc-
tance G and the total occupancy 
n� of a linear chain of N=4 spin-
degenerate dots �see Fig. 1�B�� with U /�=2� and t /�=1. Circles:
NRG data from Ref. 23. Solid line: fRG approximation with flow of
vertex.

FIG. 9. �Color online� Gate voltage dependence of the conduc-
tance G of a linear chain of N=3 spin-degenerate dots with asym-
metric coupling to the leads. The parameters are U /�=� �upper
panel�, U=0 �lower panel�, t /�=1, �1

L /�3
R=1 �solid line�, �1

L /�3
R

=2 �short dashed line�, �1
L /�3

R=4 �dashed-dotted line�, and �1
L /�3

R

=9 �long dashed line�. Note that here Vg is shown in units of �.
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ther dominated by a two-stage Kondo effect for small t1,2 or
the formation of a local “molecular” spin-singlet between the
electrons on the two dots for large t1,2. Both regimes can be
distinguished by the temperature dependence of the G�Vg�
curves as is nicely discussed in Ref. 28 �see also Ref. 29�
based on NRG data. In the two-stage Kondo effect, first at
high energies the spin of the embedded dot gets screened at
the Kondo scale TK

0 of the system with t1,2=0. In the second
stage the heavy quasiparticles screen the spin on the side-
coupled dot at a much lower scale T0.

The U=0 projected “effective Hamiltonian” for spin di-
rection � reads �in the wideband limit�

h��i�� = ��1,� − i��1
L + �1

R�sgn��� − t1,2

− t1,2 �2,�
� . �38�

As for the linear chain of dots the projected noninteracting
propagator G0�i�� entering the flow equations �19� and �20�
follows by the matrix inversion Eq. �36�. Starting out with a
local interaction U �and maybe a nearest-neighbor density-
density interaction U�� all two-particle interactions not ex-
cluded by symmetries are generated �see above�. Also in the
self-energy matrix all four matrix elements flow, that is, both
the level positions and the interdot hopping are renormalized.
As for the single dot we can use Eq. �29� to compute the
conductance from the spectral weight of the embedded dot
with j=1 taken at �=0.28

In Figs. 10 and 11 we compare fRG results for G�Vg� to

NRG data. Two different parameter sets with purely local
interaction U, �1

L=�1
R=� /2, and �1,�=�2,�=Vg are used. In

Fig. 10 the parameters are in the spin-singlet regime: U /�
=8, t1,2 /�=4.28 The fRG and NRG data agree well. From the
gate voltage dependence of the many-body eigenvalues of
the double dot system without the leads29 it becomes clear
that each of the plateaulike resonances centered around ±Vg

p

can be understood as the resonance in the single dot case,
with the difference that the approximate width of the two
peaks is �=U /2+2t1,2�1−	1+ �U /4t1,2�2� instead of U.
Around Vg=0 both dots are half-filled and a local spin-
singlet is formed leading to a suppression of the conduc-
tance. The parameters U /�=2 and t1,2 /�=0.2 of Fig. 11 are
taken from the two-stage Kondo regime.28 As U /� is mod-
erate the first stage of the Kondo effect is not well pro-
nounced which explains that the conductance away from half
filling �that is for �Vg � �U /2� vanishes only slowly with in-
creasing �Vg�. For these gate voltages the fRG and NRG data
are almost indistinguishable. The second stage of the Kondo
effect generates a dip at �=0 in the spectral function of dot
j=1 at half filling28 that leads to the suppression of G near
Vg=0. For small t1,2 the scale U / t1,2

2 relevant in the second
stage of the Kondo effect becomes very large and, not sur-
prisingly, our approximation deviates quantitatively �not
qualitatively� from the NRG data for �Vg � �U /2. For these
gate voltages some of the flowing interactions become large
and our truncation scheme is questionable. Within our ap-
proximation the parameter regime of very large U / t1,2

2 , in
which in addition to the two-stage Kondo effect a Fano-like
feature in G�Vg� was observed,29 is out of reach.

In Figs. 10 and 11, in addition to G we show the dot
occupancies 
nj�, with nj =nj,↑+nj,↓, computed by fRG. Be-
cause of the large interdot hopping in Fig. 10 the occupan-
cies behave similarly for all Vg. For small t1,2 �Fig. 11� the
side-coupled dot j=2 is coupled very weakly to the leads and
the particle number of this dot changes very abruptly across
the transmission resonances. Close to Vg=0 the occupancies

nj� depend nonmonotonically on Vg. This follows from an
interaction-induced nonmonotonicity of the effective level
positions. Similar behavior was observed in a spin-polarized
parallel double-dot model.33,69,70 In contrast the total dot
charge 
n�= 
n1�+ 
n2� is monotonic. Similar to the single-dot
case it is directly related to the conductance28

G/�e2/h� = 2 sin2�
n��/2� . �39�

The �spin-independent� transmission phase �� for the param-
eter sets of Figs. 10 and 11 is shown in Fig. 12. Experimen-
tally this phase is accessible if the side-coupled double dot is
placed in one arm of a “two-path” Aharonov-Bohm interfer-
ometer and the current oscillations as a function of a mag-
netic flux enclosed by the two arms are measured. Such mea-
surements were already performed for single multilevel
dots.34 Across a transmission resonance the phase continu-
ously changes by �. Associated to G�Vg=0�=0 is a phase
jump of �. From �� the conductance can be computed as
G / �e2 /h�=2 sin2 ��. Note that this relation together with Eq.
�39� only implies ��= �
n��+m��, with m�Z and the ob-
served phase jumps by � are not excluded. The weak shoul-

FIG. 10. �Color online� Gate voltage dependence of the total
conductance G and total occupancies 
nj� of a spin-degenerate side-
coupled double-dot system �see Fig. 1�D�� with U /�=8 and
t1,2 /�=4. Solid line with left y-axis: NRG data for G from Ref. 28.
Dashed line with left y-axis: fRG approximation of G with flow of
vertex. Thick solid line with right y-axis: fRG approximation of

n1� �embedded dot�. Thin solid line with right y-axis: fRG approxi-
mation of 
n2� �attached dot�.

FIG. 11. �Color online� As in Fig. 10 but for U /�=2 and
t1,2 /�=0.2.
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der at ���� /2 for the parameters of Fig. 10 is related to the
Kondo effect and develops into a plateau if U /� is increased.

From the H=0 conductance curves the two regimes �local
spin-singlet and two-stage Kondo� cannot be distinguished
unambiguously. In particular, in both cases G is suppressed
very strongly close to half-filling. The G�Vg� curves in the
two regimes change quite differently in the presence of a
magnetic field that lifts the spin-degeneracy of both levels:
�1,↑=�2,↑=Vg−H /2, �1,↓=�2,↓=Vg+H /2. As for the single
dot case studying the magnetic field dependence also enables
us to define Kondo temperatures. For the two parameter sets
of Figs. 10 and 11 G�Vg� for different H is shown in Figs. 13
and 14. In the two-stage Kondo regime we define a scale TK

0

for the first stage of the Kondo effect considering the single
dot case, i.e., setting t1,2=0. For the parameters of Fig. 14 we
obtain TK

0 /�=1.16 in good agreement with the NRG estimate
TK

0 /�=1.28 Because of its very small energy scaleT0�TK
0 the

second stage of the Kondo effect gets destroyed already by a
tiny magnetic field H�TK

0 and the local minimum of G at
half-filling evolves into a maximum as shown in Fig. 14. We
define T0 by the magnetic field required to obtain G�U ,Vg

=0,H=T0�=e2 /h. For the parameters of Fig. 14 this leads to
T0 /�=0.003. For larger t1,2 �spin-singlet regime�, as shown
in Fig. 13, the spin-singlet is the ground state up to moderate
H and Vg=0 remains a minimum. The magnetic field depen-
dence of the two resonances is similar to the single dot case.
In this parameter regime it is meaningful to define a Kondo
temperature TK by G�U ,Vg= ±Vg

p ,H=TK�=e2 /h. For the pa-
rameters of Fig. 13 we obtain TK /�=0.13, which is close to
the NRG result TK /�=0.156.28 In both parameter regimes
the evolution of G�Vg� with H is similar to the one with T
discussed in Ref. 28.

For the present setup we also studied the role of �a� asym-
metric dot-lead couplings �1

L��1
R, �b� asymmetric local in-

teractions U1,1
↑,↓�U2,2

↑,↓, and �c� a nearest-neighbor interaction

U
j, j̄
�,��, with j̄ denoting the complement of j. In case �a� the

overall height of G decreases with increasing asymmetry
while the line shape remains invariant similar to the case of a
single dot.64 Asymmetric local interactions and nearest-
neighbor interactions only lead to quantitative changes but
no new physics.

VII. PARALLEL DOUBLE DOTS

As our most complex example we finally study the paral-
lel double dot of Fig. 1�E�. The large number of parameters
allows for a variety of different regimes and we here refrain
from giving a complete account of the physics of this setup.
Instead, we focus on a few cases to exemplify that our ap-
proximation scheme can be used to uncover interesting ef-
fects. A more detailed discussion will be given in an upcom-
ing publication. We here only consider the case without an
interdot hopping. If present initially such a term can always
be tuned away by a basis transformation on bonding and
antibonding dot states. Note that in the noninteracting case
the double dot can equally be viewed as a single two-level
dot. Including the interaction both cases might be distin-
guished by the choice of nonvanishing matrix elements �see
below�. Correlated multilevel dots have recently attracted
much interest in connection with the puzzling observation of
“universal” phase lapses in a series of measurements of the
transmission phase through quantum dots.34 The conductance
for the present setup with full spin polarization and small
level detuning was studied earlier using the simplest fRG-
based approximation scheme �considering only the flow of
the self-energy� and NRG. In the absence of spin-Kondo
physics the interdot �interlevel� interaction leads to novel
correlation-induced resonances located exponentially �in U�
close to Vg=0.33

The noninteracting projected “effective Hamiltonian” of
the present setup is given by

h��i�� = ��1,� − i�1 sgn��� − i� sgn���
− i�* sgn��� �2,� − i�2 sgn���

�
�40�

with

FIG. 12. �Color online� Gate voltage dependence of the �spin-
independent� transmission phase �� for the two parameter sets of
Figs. 10 and 11.

FIG. 13. �Color online� Gate voltage dependence of the total
conductance G for the parameters of Fig. 10 and different magnetic
fields H=0 �solid line�, and H=0.065�=0.5TK �dashed line�, and
H=0.13�=TK �dashed-dotted line�.

FIG. 14. �Color online� Gate voltage dependence of the total
conductance G for the parameters of Fig. 11 and different magnetic
fields H=0 �solid line�, H=0.003�=T0=0.0026TK

0 �dashed line�,
and H=0.03�=10T0=0.026TK

0 �dashed-dotted line�.
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� j = �
l

� j
l, � = 	�1

L�2
L + ei�	�1

R�2
R. �41�

We furthermore define

� = �
j

� j = �
j

�
l

� j
l . �42�

Here � denotes a magnetic flux that goes through the ring
geometry. If the system is viewed as a single two-level dot, �
is restricted to 0 and �, on which we will focus on the
following. We denote the relative sign of the hopping matrix
elements tj

l by s=ei�= ±1. The noninteracting propagator
G0�i�� follows by the matrix inversion Eq. �36�. For generic
parameters during the fRG flow Eqs. �19� and �20� the level

positions are renormalized and a �real� direct interdot hop-
ping is generated. Applying the projection technique Eq. �10�
the conductance can be computed from the matrix elements
of the projected Green function at �=0

G��Vg� = 4
e2

h
�	�1

L�1
RG�;1,1

�=0 �0� + 	�2
L�1

RG�;1,2
�=0 �0�

+ s	�1
L�2

RG�;2,1
�=0 �0� + s	�2

L�2
RG�;2,2

�=0 �0��2. �43�

The large number of parameters make it essential to analyze
the conductance for the noninteracting case before consider-
ing the effect of two-particle interactions. A closed expres-

sion for G��Vg� at Uj,j�
�,��=0 can be obtained from Eq. �43� by

replacing G�=0�0� by G0�0�

G��Vg� =
e2

h

4��1
L�1

R�2,�
2 + �2

L�2
R�1,�

2 + 2s	�1
L�1

R�2
L�2

R�1,��2,��

��1
L�2

R + �2
L�1

R − 2s	�1
L�1

R�2
L�2

R − �1,��2,��2 + ��1,��2 + �2,��1�2
. �44�

We focus here on the spin-degenerate case with H=0. For
generic level-lead couplings33 � j

l and �=�2,�−�1,��0 the
gate voltage dependence ��1/2,�= �� /2+Vg� of Eq. �44� is
characterized by two peaks �of height �e2 /h� and a conduc-
tance zero. The latter follows from perfect destructive inter-
ference at a particular Vg. Associated to the zero is a jump of
the transmission phase by �. Further details of G��Vg� de-
pend on s. For s= +1 the conductance zero is located be-
tween the two conductance peaks for all �. For �→0 the
peak positions depend on the asymmetry of the � j

l and the
separation of the peaks is small if the � j

l are almost equal.
For equal � j

l and �=0 the zero disappears. For s=−1 and
fixed � j

l the position of the conductance zero with respect to
the peaks depends on �. For �→0 it is located between the
two conductance peaks, while it lies outside for large �. In
the crossover regime between these limiting cases one of the
peaks vanishes, while the other becomes broader and splits
up into two resonances separated by a minimum with non-
vanishing conductance. For � j

l with 1-2 symmetry and �
→0 the conductance vanishes for all Vg as the model can be
mapped onto a model with two levels, each one only coupled
to one of the leads. In this �and only this� case a pseudo-spin
variable is conserved leading to an orbital Kondo effect if a
nearest-neighbor interaction is added.31,32 For fixed, asym-
metric � j

l and �→0 the separation of the two conductance
peaks for s=−1 is much larger than for s= +1. For certain
classes of parameters, some of them we mentioned already
�e.g., equal � j

l and �=0; see Ref. 33 for details�, G�Vg� does
not follow the behavior described above. Here, we do not
investigate these special cases but focus on the generic be-
havior.

In Fig. 15 we show G�Vg� for a generic set of � j
l, s= +1,

and different �. We assume a purely local interaction U,
which might experimentally be realized if the setup is imple-
mented as two single-level dots of sufficient spatial separa-

tion. Close to half-filling the conductance is strongly sup-
pressed. In particular this holds for small �. We note that
around Vg=0 the flowing two-particle vertex becomes large
which indicates that our approximation scheme becomes less
accurate. Further down we return to this issue. For � /��1
the curves of Fig. 15 are similar to the one of Fig. 11 ob-
tained for the side-coupled double dot with small interdot
hopping t1,2. We argue that this similarity follows from a
relation between the two double-dot geometries which we
investigate next.

Taking the even and odd linear combination of dot states
the noninteracting side-coupled dot �index s� with �t1

L�s, �t1
R�s,

�t1,2�s, and �� j,��s=Vg can be mapped on the parallel dot with
parameters

t1
L = �t1

L�s/	2, t1
R = �t2

R�s/	2,

t2
L = �t1

L�s/	2, t2
R = �t2

R�s/	2,

�1,� = Vg − �t1,2�s, �2,� = Vg + �t1,2�s, �45�

that is, �=2�t1,2�s. Note that small �t1,2�s correspond to small
�. This subset of the large parameter space of the parallel
double dot is characterized by a 1-2 symmetry of the hop-
pings and s=1. A local interaction of the side-coupled dot

Us�
j

nj,↑
s nj,↓

s �46�

maps onto

Us

2 ��
j

nj,↑nj,↓ + n1,↑n2,↓ + n1,↓n2,↑� +
Us

2
�d2,↑

† d1,↑d2,↓
† d1,↓

+ d2,↑
† d1,↑d1,↓

† d2,↓ + d1,↑
† d2,↑d2,↓

† d1,↓ + d1,↑
† d2,↑d1,↓

† d2,↓� �47�

for the parallel double dot. Besides the usual density interac-

KARRASCH, ENSS, AND MEDEN PHYSICAL REVIEW B 73, 235337 �2006�

235337-12



tions correlated hoppings are also generated by this
transformation.71

These considerations show that the cases studied in Figs.
11 and 15 �for � /��1� are related but not completely
equivalent as in Fig. 15 we only considered a local interac-
tion and no 1-2 symmetry of the � j

l. Slowly increasing the
amplitudes of the additional interactions Eq. �47� and tuning
the � j

l towards 1-2 symmetry we convinced ourselves that
both the symmetry and the additional interactions do not play
an essential role and the results for the parallel double dot
with � /��1 of Fig. 15 can be interpreted as for the side-
coupled double dot in the two-stage Kondo regime. The
strong suppression of the conductance of the parallel double
dot around half filling for small � then follows from the
second stage of the Kondo effect. From the side-coupled dot
we already know that our approximation scheme overesti-
mates this suppression and we believe that the same holds
for the present geometry. Note that for �=0, G�Vg� is sym-
metric around Vg=0 as the Hamiltonian is symmetric under a
particle-hole transformation if in addition Vg→−Vg. Despite
the asymmetry of the � j

l the two resonances have almost
unitary height. For small � the occupancies of the two levels
are similar, sharply change across the two resonances, and
display a plateau at 1 close to Vg=0. The transmission phase
increases by � across the resonances and jumps by � in
between the peaks.

For large �, G�Vg� in Fig. 15 can be understood from the
eigenvalues of the many-body dot Hamiltonian without the
leads, in analogy to the limit of large �t1,2�s for the side-
coupled dot. Each of the resonances then corresponds to a
single-level resonance, as discussed in Sec. IV. Because of
the asymmetry of the � j

l, the conductance does not reach the
unitary limit and the two resonances have different line
shapes. Associated with the resonances is a change of one of
the 
nj� from 2 to 0 �change of the phase from 0 to �� and a
plateau at 1 �at � /2 for the phase� within the resonance. For
the � j

l of Fig. 15, 
n2� changes across the peak at Vg�0 and

n1� across the one at Vg�0. The plateaus in 
nj� and �� are
due to the Kondo effect that is active at each of the reso-
nances. At the conductance zero between the conductance
peaks the transmission phase jumps by �.

Scanning the parameter space with fixed s= +1 we en-
countered an interesting correlation effect for a model with

almost equal local and nearest-neighbor density interactions,
small �, and generic � j

l. It is exemplified in Fig. 16. In the

lower panel of Fig. 16 we show G�Vg� for �=0 and Uj,j�
�,��

=U�1−� j,j���,���. Increasing U, the peak conductance in-
creases, the two maxima become flat, and for U larger than a
� j

l dependent critical Uc��� j
l�� both split up into two peaks.

For U�Uc the height of all four resonances is equal and U is
independent. The two outermost peaks are located at Vg
� ±U and the inner two at Vg� ±U /2. This scenario is quite
similar to the appearance of additional correlation induced
resonances in a spin-polarized model of a parallel double dot
with nearest-neighbor interaction as discussed in Ref. 33.
The resonances follow from the combined presence of cor-
relations and quantum interference. In the upper panels of
Fig. 16 we show that the effect is robust against a small level

detuning � and a small asymmetry of the Uj,j�
�,��. It will be

further investigated in an upcoming publication. One can ex-
pect that in experimentally realized single two-level dots the
inter- and intra-dot density interactions are indeed �almost�
equal and the additional resonances should thus be observ-
able in such systems.

We next study the case s=−1. As for s= +1 above we first
investigate systems with purely local interactions �two well-
separated single-level dots� and further down a situation with
�almost� equal local and nearest-neighbor interactions �a
single two-level dot�.

In Fig. 17 we show G�Vg� for s=−1, generic � j
l, a purely

local interaction, and different �. Without loss of generality
we consider � j

l with a fairly large 1-2 asymmetry. Otherwise

FIG. 15. �Color online� Gate voltage dependence of the total
conductance G of a parallel double dot �see Fig. 1�E�� with generic
� j

l, spin-degenerate levels, purely local interactions, and different
level detunings �. The parameters are U /�=4, �1

L /�=0.27, �1
R /�

=0.33, �2
L /�=0.16, �2

R /�=0.24, s=1, � /�=0 �solid line�, � /�=1
�dashed line�, and � /�=5 �dashed-dotted line�. FIG. 16. �Color online� Gate voltage dependence of the total

conductance G of a parallel double dot with generic � j
l, spin-

degenerate levels, and �almost� equal local and nearest-neighbor
density interactions. The parameters are �1

L /�=0.5, �1
R /�=0.25,

�2
L /�=0.07, �2

R /�=0.18, and s=1. Lower panel: Equal level posi-
tions on both dots �=0 and equal local and nearest-neighbor inter-
actions U with U /�=0.5 �solid line�, 1 �long dashed line�, 2
�dashed-dotted line�, and 4 �short dashed line�. Upper left panel:
Stability of the resonances for nonvanishing level detuning � at
U /�=2. � /�=0.03 �solid line� and � /�=0.07 �dashed line�. Upper
right panel: Stability of the resonances for asymmetric interactions
at �=0. U1,1

�,�̄ /�=1.9, U2,2
�,�̄ /�=2.1, U

j, j̄
�,�

/�=1.8, U
j, j̄
�,�̄

/�=2 �solid

line� and U1,1
�,�̄ /�=1.8, U2,2

�,�̄ /�=2.2, U
j, j̄
�,�

/�=1.7, U
j, j̄
�,�̄

/�=2.2
�dashed line�. Note that here Vg is shown in units of �.
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the conductance at small � is very small. This follows from
the fact that for 1-2 symmetric � j

l and �=0, G�Vg�=0 for all
Vg, as discussed above. The thin solid curve shows the case
with �=0 and U /�=1, that is qualitatively similar to the U
=0 case. Increasing U �at �=0� each of the two peaks splits
up into two with a conductance zero in between. In Fig. 17
this is shown as the thick solid line for U /�=4. The dashed
and dashed-dotted lines show how the conductance evolves
with increasing level detuning � at fixed U /�=4. The con-
ductance zeros either vanish or are pushed towards larger
�Vg�. The overall conductance increases. For large � the two
remaining resonances can be understood as in the single-dot,
single-level case. Across the resonance centered around −� /2
�+� /2� level 2 �1� gets filled. As the �2

l are small the effec-
tive interaction U / ��2

L+�2
R� relevant for the Kondo effect is

large and the resonance at Vg�0 has a well-developed pla-
teaulike line shape. These results can most easily be under-
stood by making contact with the case of left-right symmet-
ric � j

l. In this case the off-diagonal element � �see Eq. �41��
of the noninteracting “effective Hamiltonian” �40� vanishes.
As the interaction is purely local no such term �that is a
hopping between j=1 and j=2� is generated during the fRG
flow and the double-dot problem separates into two single-
dot problems. In particular, G�;1,2

�=0 vanishes and the conduc-
tance Eq. �43� is given by the sum of two single-level Green
functions. Breaking of the left-right symmetry leads to a
small initial off-diagonal element, that stays small during the
fRG flow. For that reason also the results of Fig. 17 can be
understood from the single-level case. For example, this ex-
plains the position Vg� ±� /2 of the resonances at large �. A
more detailed discussion will be given elsewhere.

In Fig. 18 we show how the four-peak structure obtained
for a sufficiently large local interaction U at �=0 and
s=−1 disappears in the presence of a nearest-neighbor inter-
action U� �single two-level dot�. Starting out with four peaks
of almost equal height at U�=0, for increasing U� the two
outermost peaks gain weight, while the inner two peaks lose
weight. At U�=U only two resonances remain.

VIII. SUMMARY AND OUTLOOK

In the present paper we have introduced an approximate
method to study electronic transport through systems of

quantum dots with local Coulomb correlations. Our fRG-
based approximation scheme results in a set of coupled dif-
ferential flow equations for the interaction-dependent effec-
tive level positions and interlevel hoppings as well as the
interaction matrix elements. We have solved the flow equa-
tions for a variety of dot systems and computed the linear
conductance, the transmission phase, and level occupancies.

For several setups and parameter sets we compared our
results to existing exact Bethe ansatz and high precision
NRG data. For a single dot the agreement is excellent up to
the largest Coulomb interaction for which Bethe ansatz or
NRG data are available. In particular, we showed analyti-
cally that our approach covers the signatures of the Kondo
effect. The method performs very well also in the presence of
a magnetic field lifting the spin degeneracy and in the case of
an additional direct transmission channel between the leads
�Fano effect�. The field dependence of G�Vg� allows us to
extract the Kondo temperature that compares well to the ex-
act expression. For linear chains of dots �short Hubbard
chains� we found quantitative agreement with NRG data up
to fairly large interactions. We studied the effect of a left-
right asymmetry of the level-lead couplings that leads to the
surprising vanishing of resonances if sufficiently large. For a
side-coupled double-dot system we demonstrated that our
method can be used to describe both the “molecular” spin-
singlet regime at large interdot hoppings t1,2 and the two-
stage Kondo regime at small t1,2. For not too small t1,2 and
too large interactions the approximate results agree well with
NRG data. Our approximation scheme becomes questionable
if U / t1,2

2 becomes too large. We showed that the occupancies
in the two-stage Kondo regime depend nonmonotonically on
the gate voltage. At T=0 the different physics of the two
regimes can be probed by a magnetic field lifting the spin
degeneracy. Finally we demonstrated that the physics of a
parallel single-level double dot �single two-level dot� is very
rich. For a certain parameter regime we showed that G�Vg�
can be understood in analogy to the side-coupled double dot.
For other classes of parameters we surprisingly found addi-
tional resonance peaks that should be observable experimen-
tally in existing double-dot setups �two-level dots�. A more
complete analysis of the transport properties of the parallel
double dot �single two-level dot� will be given in an upcom-
ing publication.

FIG. 17. �Color online� Gate voltage dependence of the total
conductance G of a parallel double dot with generic � j

l, spin-
degenerate levels, purely local interactions, and different level de-
tunings �. The parameters are U /�=4 �thick lines�, U /�=1 �thin
line�, �1

L /�=0.5, �1
R /�=0.35, �2

L /�=0.05, �2
R /�=0.1, s=−1, � /�

=0 �solid line�, � /�=0.6 �dashed line�, and � /�=6 �dashed-dotted
line�.

FIG. 18. �Color online� Gate voltage dependence of the total
conductance G of a parallel double dot with generic � j

l, s=−1,
spin-degenerate levels, �=0, local interaction U /�=4, and different
nearest-neighbor interactions U�=0 �solid line�, U� /�=2 �dashed
line�, and U� /�=4 �dashed-dotted line�. The � j

l are as in Fig. 17.
Note that here Vg is shown in units of �.
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The present paper shows that our approximation scheme
is a simple-to-implement and reliable method to study trans-
port through dot systems with a significant number of inter-
acting degrees of freedom. It can be used to study setups that
due to their complexity cannot be tackled by NRG. Even in
problems that can be investigated by NRG our method is far
superior in terms of the numerical effort required, e.g., en-
abling efficient analysis of parameter dependencies.

In summary, we have shown that the fRG based approxi-
mation scheme is a very promising tool to investigate the
interesting physics of quantum dot systems resulting from
Coulomb correlations �Kondo effect� and quantum interfer-
ence.
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