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Spin and valley-orbit splittings are calculated in symmetric SiGe/Si/SiGe quantum wells �QWs� by using
the tight-binding approach. In accordance with the symmetry considerations an existence of spin splitting of
electronic states in perfect QWs with an odd number of Si atomic planes is microscopically demonstrated. The
spin splitting oscillates with QW width and these oscillations related to the intervalley reflection of an electron
wave from the interfaces. It is shown that the splittings under study can efficiently be described by an extended
envelope-function approach taking into account the spin- and valley-dependent interface mixing. The obtained
results provide a theoretical base to the experimentally observed electron spin relaxation times in
SiGe/Si/SiGe QWs.
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I. INTRODUCTION

At present various semiconductor materials are being in-
volved in spintronics activities. SiGe/Si quantum well �QW�
structures are among them. Silicon-based systems can be
particularly promising due to a comparatively weak spin-
orbit interaction and long electron spin-relaxation times. Al-
though bulk Si and Ge have an inversion center, QW struc-
tures grown from these materials can lack such a center and
allow the spin splitting of the electronic subbands, even in
the absence of structure inversion asymmetry.1 An ideal
SiGe/Si/SiGe QW structure with an odd number of Si
atomic planes is characterized by the D2d point-group sym-
metry and, therefore, allows spin-dependent linear-in-k
terms in the electron effective Hamiltonian

H�1��k�� = ���xkx − �yky� , �1�

where �x ,�y are the spin Pauli matrices, k� is the two-
dimensional wave vector with the in-plane components
kx ,ky, and x � �100� ,y � �010�.

In the present work we use both the microscopic tight-
binding model and the envelope-function approach to calcu-
late the spin splitting of the conduction subbands in
diamond-lattice QWs. The obtained results are of particular
interest in connection with the experimental studies of elec-
tron spin relaxation in Si/SiGe heterostructures.2,3 The con-
sideration of a Si/SiGe structure with perfect interfaces and
without built-in electric fields allows one to put the upper
limit to the electron spin-relaxation time.

In a bulk homogeneous sample of Si, two of six equiva-
lent minima of the conduction band �1 are located in two
points, k0 and −k0, along the direction �001� of the first
Brillouin zone as illustrated in Fig. 1. The point-group sym-
metry of a Si/SiGe�001� QW reduces1 and allows mixing
between four bulk Bloch states attached to the k0 and −k0
valleys.4–6 The valley-orbit mixing occurs under electron re-
flection from a heterointerface: an electron with the wave
vector k1�k0 is reflected not only to the state k2 attached to
the same valley k0 but also to the state k2� in the second
valley −k0, see Fig. 1. The reflected wave is a superposition
of two waves with their phase difference dependent on the
distance z from the interface as 2k0z. In the QW grown along

the �001� direction, quantum-confined electron states are
standing waves formed as a result of multiple reflection of
the four waves k1, k2, k1, k2�, or ±k0± �k1−k0�, from the both
heterointerfaces.

The spin splitting in conduction subbands is directly re-
lated to spin dependence of the electron oblique-incidence
reflection from an interface. Spin-dependent reflection of an
electron wave from interface consists of intra- and inter-
valley contributions. The latter should oscillate with the QW
width L in the same way as the spin-independent valley-orbit
splitting. Thus, interface-induced spin splitting �spin contains
two contributions: one oscillating with L and another being
smooth. Their relation can be obtained in microscopic evalu-
ations.

The paper is organized as follows. In Sec. II we extend
the envelope function method to take into account intra- and
inter-valley spin-dependent contributions to the effective in-
terface potential. In Sec. III we develop the sp3s* tight-
binding model in order to calculate the dependence of the
coefficient � in Eq. �1� on the QW width, discuss the results
of calculations and compare them with the analytical equa-
tions derived in Sec. II. The paper is concluded by Sec. IV.

II. EXTENDED ENVELOPE FUNCTION METHOD

Let us consider a QW layer A sandwiched between barri-
ers B and C on the right- and left-hand sides, respectively.

FIG. 1. Schematic representation of the lower conduction bands
�1 �solid curve� and �2� �dashed� in bulk Si along the �−X direction
in the first Brillouin zone. Horizontal bars in figure illustrate exten-
sion of the e1 quantum-confined state in the k space; k1, k2, k1� and
k2� are wave vectors of four Bloch states mixed in a QW.
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We assume that the three bulk materials j=A,B,C have the
diamond-like lattice, the structure is grown along the princi-
pal crystallographic axis z � �001�, and the lowest conduction
subband e1 is formed by electronic states in the two � val-
leys with the extremum points ±k0j = �0,0 , ±k0j�. Note that,
in the Si1−xGex solid solution, the extremum-point position is
a function of the content x and values of k0j are layer depen-
dent. Because of the lattice constant mismatch some of the
structure layers are strained. The layers B and C are assumed
to be thick enough for the tunneling tails of the quantum-
confined e1 states to decay within these layers so that they
can be considered as semi-infinite.

In the generalized envelope function approximation the
electron wave function ��r� inside the layer j is written as

��r� = eik�·���1�z; j��k0j
�r� + �2�z; j��−k0j

�r�� . �2�

Here

�k0j
�r� = eik0jzuk0j

�r� ,

�−k0j
�r� = e−ik0jzu−k0j

�r� �3�

are the scalar Bloch functions at the two � extremum points,
u±k0j

�r� are the Bloch periodic amplitudes, �1�z ; j� and
�2�z ; j� are the smooth spinor envelope functions defined
within the layer j, � is the in-plane component of the three-
dimensional radius-vector r.

The two-valley effective Hamiltonian H is presented as a
sum of the zero-order valley- and spin-independent term

H0 =
�2

2
�−

d

dz

1

ml�z�
d

dz
+

kx
2 + ky

2

mt�z� � �4�

and the interface-induced 	-functional perturbation

H� = VL	�z − zL� + VR	�z − zR� . �5�

Here ml and mt are the longitudinal and transverse effective
masses for electrons in the � valley, zL and zR are the coor-
dinates of the left- and right-hand side interfaces, VL and VR
are both valley- and spin-dependent operators. Hereafter we
assume that the latter contain no differentiation d /dz; this
assumption excludes the need in symmetrization of VL,R and
the 	 function.

The form of VL ,VR can be specified by applying the sym-
metry considerations. A single �001� interface is character-
ized by the C2v point-group symmetry allowing two linear-k�

spin-dependent invariants, namely

h�k� = �xkx − �yky and h��k� = �xky − �ykx.

It follows then that the matrices Vm �m=L ,R� acting on
the bispinor vector with components
�1,1/2 ,�1,−1/2 ,�2,1/2 ,�2,−1/2 can be presented in the form of a
2
2 block matrix

Vm = � Smh�k� + Sm� h��k� �mI + Pmh�k� + Pm� h��k�
�m

* I + Pm
* h�k� + Pm�

*h��k� Smh�k� + Sm� h��k�
�

�6�

with its components being linear combinations of the Pauli
matrices and the 2
2 unit matrix I. Here k	k�, and

Sm ,Sm� ,�m , Pm , Pm� are coefficients characterizing the right-
hand �m=R� and left-hand �m=L� interfaces; the first two of
them �Sm ,Sm� � are real while others are complex. The diago-
nal components Vm;11=Vm;22 give intra-valley contributions,
whereas the off-diagonal components Vm;12=Vm;21

† describe
interface-induced inter-valley mixing. It is more convenient
to perform the further considerations for a particular case of
coinciding barriers, C=B, and coinciding extremum points,
k0B=k0A. Then we briefly discuss how these considerations
are generalized with allowance for C�B and different posi-
tions of extremum points k0j.

The choice of the electron Hamiltonian in the form of
Eqs. �4� and �5�, corresponds to a particular set of boundary
conditions. For the structure B/A/B with k0B=k0A	k0, this
set reads

��zL + 0� = ��zL − 0�, ��zR + 0� = ��zR − 0� ,

1

ml�B�

d�

dz
�

zL−0
=

1

ml�A�

d�

dz
�

zL+0
+

2

�2VL��zL� ,

1

ml�B�

d�

dz
�

zR+0
=

1

ml�A�

d�

dz
�

zR−0
−

2

�2VR��zR� , �7�

where ��zL,R±0�, �d� /dz�zL,R±0 are the envelope function and
its first derivative at z approaching the interface L ,R from
the right- �+0� and left-hand �−0� sides.

The next step is to analyze the phases of the coefficients
�m , Pm , Pm� in the off-diagonal components of Vm and estab-
lish a relation between VL and VR. First of all, we take into
account that the translation of the radius-vector r by a three-
dimensional Bravais-lattice vector a results in a multiplica-
tion of the Bloch functions �±k0j

�r� in Eq. �3� by the factors
exp�±ik0jaz�, respectively. Therefore, one can present the co-
efficients in the off-diagonal components of Vm as7,8

�m = �me−2ik0zm,

Pm = pme−2ik0zm, Pm� = pm� e−2ik0zm, �8�

where the complex coefficients �m , pm , pm� are independent of
the interface position. In the following we assume the origin
z=0 to lie in the QW center.

The structure B/A/B is invariant under the mirror rotation
operation S4 with the transformation center at z=0, if the
number N of atomic planes in the layer A is odd, and under
the space inversion operation i, if N is even.1 This symmetry
property allows one to establish the relations between the
coefficients in Eq. �6� for the left- and right-hand side inter-
faces. Since both operations result in the reciprocal transfor-
mation �k0j

�r�↔�−k0j
�r� one has

� 0 �L

�L
* 0

� = �0 1

1 0
�� 0 �R

�R
* 0

��0 1

1 0
�

or, equivalently, �L=�R
* . Taking into account that, under the

mirror-rotation operation S4, the C2v-group invariants h�k�
and h��k� transform, respectively, into h�k� and −h��k�
while, under the space inversion i, both h�k� and h��k�
change their sign, we also obtain the relations
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SR = SL, SR� = − SL� , pR = pL
*, pR� = − pL�

* �9�

for odd N and

SR = − SL, SR� = − SL� , pR = − pL
*, pR� = − pL�

* �10�

for even N. Hereafter we use the notations � ,S ,S� , p , p� in-
stead of �R,SR,SR� , pR, pR� . By using Eqs. �9� and �10� we can
reduce the components in the matrix �6� to

VR,11 = VR,22 = Sh�k� + S�h��k� , �11�

VL,11 = VL,22 = Sh�k� − S�h��k� ,

VR,12 = VR,21
* = e−ik0L��I + ph�k� + p�h��k�� ,

VL,12 = VL,21
* = eik0L��*I + p*h�k� − p�*h��k��

if N is odd, and to

VR,11 = VR,22 = Sh�k� + S�h��k� ,

VL,11 = VL,22 = − Sh�k� − S�h��k� ,

VR,12 = VR,21
* = e−ik0L��I + ph�k� + p�h��k�� ,

VL,12 = VL,21
* = eik0L��*I − p*h�k� − p�*h��k�� �12�

if N is even. Here L=zR−zL is the QW width, it is given by
L=Na0 /4 with a0 being the zinc blende lattice constant.

Equations �11� and �12� present the results of the extended
envelope-function method and yield relations between coef-
ficients in the matrices VL and VR for macroscopically sym-
metric QWs.

If the barriers are grown from different materials B and C
then the coefficients in Eqs. �11� and �12� should be labeled
by the interface index, C/A or B/A, e.g., S�C/A� and
p��B/A�. The different positions of the extremum points k0j

are easily taken into account by replacing �1�z ; j� and
�2�z ; j� �j=B,C� in Eq. �2� and in the boundary conditions
�7� by

�̃1�z; j� = ei�k0j−k0A�zj�1�z; j� ,

�̃2�z; j� = e−i�k0j−k0A�zj�2�z; j� ,

where zj is the coordinate of the interface between the layers
A and j=C or B. This replacement allows to retain the form
of the perturbation H� defined by Eqs. �5�, �6�, and �8�.

A. Valley-orbit splitting

The numerical calculations presented in the following
sections confirm the hierarchy

EX − E�k0� 
 Ee1 
 �v-o 
 �spin 	 �±k �13�

illustrated by Fig. 2�a�. Here E�k0� and EX are the
conduction-band energies at the extremum point k0 and the X
point in the bulk material A, Ee1 is the quantum-confinement
energy for the lowest conduction subband, �v-o and �spin are
the valley-orbit and spin splitting of the e1-subband states.

Therefore, we can line up the discussion in series starting
from the quantum confinement, turning then to the valley-
orbit splitting and finally to the spin splitting. As above we
start from the analysis of the symmetric structure B/A/B
shown schematically in Fig. 2�b� and then generalize the
results on asymmetric structures with different barriers B and
C.

For eigenstates of the zero-approximation Hamiltonian
H0 the inter-valley mixing is absent and the envelope func-
tions referred to the first and second �001�-valleys form iden-
tical sets. In particular, for the e1 subband states in the
B/A/B structure, the envelope has the standard form

��z� = c� cos qz , 
z
 � L/2

cos�qL/2�exp�− æ�
z
 − L/2�� , 
z
 � L/2
� .

�14�

Here q= �2ml�A�Ee1 /�2�1/2, æ= �2ml�B��V−Ee1� /�2�1/2 and c
is the normalization factor. The size-quantization energy Ee1
satisfies the transcendental equation tan�qL /2�= �æ /q�

�ml�A� /ml�B��.

Now we switch on the inter-valley mixing taking into
account zero-k terms in Eqs. �11� and �12� proportional to �
and �*. According to Eqs. �5�, �11�, and �12� the matrix ele-
ment of the inter-valley coupling is given by

M1,s;2,s� = 
��L/2�
2�VR,12 + VL,12�

= 2
��L/2�
2
�
cos�k0L − ���	ss�, �15�

where 
�
 and �� are the modulus and the phase of �, and s,
s�= ±1/2 are the electron spin indices. Thus, the energies of
the split e1 states at kx=ky =0 are

Ee1,± = ± 2
��L/2�
2 · 
� cos�k0L − ���
 �16�

and the envelopes are

�1�z;e1, ± � = ± ��2�z;e1, ± � = ��z�/�2, �17�

where ��z� is defined in Eq. �14� and �=sign�cos�k0L
−����. Therefore, the parity of the lower state 
e1,−� �with
respect to the operation S4 if N is odd and i if N is even�
follows the sign of � and reverses with the reversal of �.

FIG. 2. Schematic representation of �a� hierarchy of the e1 sub-
band splittings and �b� the Si/Si1−xGex structure under consider-
ation. We remind that, in this structure, the conduction band offset
is mostly determined by the strain.
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Equation �16� expresses an oscillating character of
�v-o�L� in terms of the envelope function method. It will be
shown in Sec. III that this agrees with the tight-binding nu-
merical results.

For an asymmetric C/A/B structure, the inter-valley ma-
trix element and e1-subband energies are generalized to

M1,s;2,s� = 
��L/2�
2��Re−ik0AL + �Leik0AL�	ss�,

Ee1,± = ± 
��L/2�
2�
�R
2 + 
�L
2

+ 2
�R�L
cos�2k0AL + ��L
− ��R

��1/2, �18�

where ��m
is the phase of �m �m=R,L�.

B. Spin-orbit splitting

The next step is to take into account spin-dependent terms
in Vm. Since the symmetry forbids spin-splitting of the elec-
tron states in the B/A/B system with an even number of
atomic planes in the A layer, we set N to be odd. Then the
inter-valley mixing is described by the matrix elements

M1,s;2,s� = 2
��L/2�
2�
�
cos�k0L − ���	ss� + 
p
cos�k0L

− �p�hss��k� − i
p�
sin�k0L − �p��hss�
� �k�� , �19�

where �p, �p� are the phases of p and p�. Assuming the
valley-orbit splitting to exceed the spin-orbit splitting we are
able to rewrite the Hamiltonian in the basis �17� and obtain
the following 2
2 spin-dependent effective Hamiltonians in
the subbands �e1, ± �

H��k;e1, ± � = 
��L/2�
2�VL,11 + VR,11 ± � Re�VL,12 + VR,12�� ,

�20�

and finally

H�k;e1, ± � = Ee1,± + �±h�k� , �21�

where the coefficients in the linear-k term are given by

�± = 2
��L/2�
2�S ± 
p
� cos�k0L − �p�� . �22�

While deriving Eq. �22� we took into account both the intra-
and inter-valley contributions to Vm and retained only the
terms up to the first order in S and p. In agreement with the
symmetry arguments, neither the S�-dependent nor
p�-dependent contributions to Vm give rise to linear-k terms.
Note that, for the sake of completeness, in addition to the
linear-k terms one can include in the right-hand side of Eq.
�22� a spin-independent quadratic-k term �2k2 /2m�. Here
m�

−1= �e1
m�
−1�z�
e1� and the angle brackets mean averaging

over the e1 state defined in Eq. �14�.
In addition to a smoothly decreasing term in �± predicted

in Ref. 1, Eq. �22� contains an oscillating term. The reason
for the oscillations is mixing of valley states at the QW in-
terfaces. Tight-binding calculations presented below show
that 
p
�S, i.e., the oscillating part of �± is dominating.

For an asymmetric structure C/A/B, the linear-k contribu-
tion to the Hamiltonian H�k ;e1, ± � takes the form

H�1��k;e1, ± � = �±h�k� + �±h��k�

with

�± = 
��L/2�
2�SR + SL ± Re�e−i��pRe−ik0L + pLeik0L��� ,

�± = 
��L/2�
2�SR� + SL� ± Re�e−i��pR�e−ik0L + pL�eik0L��� ,

�23�

and �=arg��Re−ik0L+�Leik0L�. For the symmetric structure,
ei�=�= ±1.

III. TIGHT-BINDING CALCULATIONS AND DISCUSSION

In order to estimate values of spin and valley-orbit split-
tings we have performed calculations of the electron disper-
sion in the e1 conduction subband by using one of the em-
pirical tight-binding models. More precisely, we have fixed
on the nearest-neighbor sp3s* tight-binding model optimized
for the conduction band.9 This model is a reasonable com-
promise between the numerical load and the accuracy of rep-
resentation of the band structure. It is capable of reproducing
the indirect gap although it shifts the position of the conduc-
tion band minimum from the experimentally measured point
k0=0.85
2� /a0 to the point k0=0.62
2� /a0. Note that a
value of k0 is hardly reproduced even in the more sophisti-
cated methods, namely, the second-nearest neighbor sp3s*

and nearest-neighbor sp3d5s* tight-binding models,10,11 lead-
ing to k0a0 /2�=0.758 and 0.813, respectively. The applica-
bility of the sp3s* model is confirmed by the fact, see below,
that values of the valley-orbit splitting �v-o calculated in this
work and by using the sp3d5s* model5 are of the same order
of magnitude.

The empirical sp3s* tight-binding method was previously
applied for calculation of the spin splitting in bulk GaAs and
GaAs-based QWs.12 The linear-in-k splitting in a QW was
compared with the cubic spin splitting in bulk GaAs where
the component kz was replaced by � /dGaAs with dGaAs being
the width of the GaAs layer. The agreement was obtained
after replacing dGaAs by an effective value dGaAs

eff and adjust-
ing the coefficient � in the cubic-in-k contribution to the
electron effective Hamiltonian H�1��k�. The need in the in-
troduction of the effective parameters dGaAs

eff and �eff can be
related to an additional contribution to H�1��k� coming from
the reduced symmetry of interfaces, or, in other words, from
the anisotropic orientation of interface bonds.13 In contrast to
the zinc blende lattice heterostructures, in diamond-lattice
QWs the Hamiltonian H�1��k� has no bulk inversion asym-
metry term proportional to � and is contributed only by the
interface inversion asymmetry term described by the coeffi-
cient � in Eq. �1�.1

In the tight-binding method the electron Hamiltonian is
presented by a set of matrix elements taken between atomic
orbitals. If a heterostructure is grown from diamond-like
semiconductors along the �001� principal axis one can write
the tight-binding free-electron wave function

� = �
n,�

cn,��n,�,k�r� �24�

in terms of planar orbitals
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�n,�,k�r� = �
m

eik·rm���r − rm� . �25�

Here n=0, ±1, ±2. . . is the number of atomic planes perpen-
dicular to the growth direction z � �001�, �� is the orthogo-
nalized atomic orbital with � being the orbital index, the
index m enumerates atoms in the nth atomic plane, rm is the
position of the mth atom in this plane, in particular, zm
=na0 /4, k is the two-dimensional in-plane electron wave
vector. The index � runs through 2N values where N is the
number of orbitals taken into consideration and the factor is
due to electron spin. For convenience we use below the Car-

tesian coordinate system x� � �11̄0� ,y� � �110� ,z � �001�. In the
nearest-neighbor approximation we obtain the following set
of equations

Ûy�
† �2l�C2l−1 + Ê0�2l�C2l + Ûx��2l�C2l+1 = EC2l,

Ûx�
† �2l − 1�C2l−2 + Ê0�2l − 1�C2l−1 + Ûy��2l − 1�C2l = EC2l−1

�26�

for the vectors Cn containing 2N components cn,�. Here

Ê0�n� is k-independent diagonal matrices, Ûx� and Ûy� are kx�
and ky� dependent matrices. The diamond lattice has two
atoms per unit cell and can be represented as two face-
centered cubic sublattices shifted with respect to each other
by �3a0 /4 along the �111� direction. The atomic planes with
even n=2l and odd n=2l+1 �l=0, ±1. . . � belong to the dif-
ferent sublattices and differ in the direction of chemical
bonds. As compared with the pair of planes 2l and 2l+1, the
orientation of chemical bonds between atoms in the planes
2l−1 and 2l is rotated around the axis z by 90°. For brevity

we omit here the detailed form of matrices Ûx�,y��n�; for
kx�=ky�=0 these matrices can be readily obtained from those
for the zinc blende based heterostructures given in Ref. 14.

The matrices Ê0, Ûx�,y� are formed by the tight-binding pa-
rameters, which are usually extracted from fitting bulk-
material band structure to experimental one. The tight-
binding parameters for Si and Ge are listed in Table I. The
diagonal energies are referred to the valence band top of each
material. The parameters for Si were taken from Ref. 9; those
for Ge are not so critical for the purpose of this work, we
collected them from Ref. 15 and added a value of 0.30 eV
for the spin-orbit splitting of the p orbitals.11 For SiGe alloys,
we have used the virtual crystal approximation and the linear
interpolation of the tight-binding parameters. The strain was
taken into account only by shifting the diagonal energies E0,�
in Si or Ge by the same value, the strain-induced splitting of
the p-orbital states was ignored. The shift of diagonal ener-
gies for the barrier material is equal to �Ec−�Eg, where �Eg

is the difference in the band gaps of the well and barrier bulk
materials and �Ec is the conduction-band offset. For a
Si1−xGex /Si/Si1−xGex QW structure with the strained Si layer
and the Ge content x=0.25 we used a value of �Ec
=0.15 eV relying on Refs. 2, 5, 16, and 17.

Squares in Fig. 3 show results of tight-binding calcula-
tions of the valley-orbit splitting �v-o in symmetrical
Si0.75Ge0.25/Si/Si0.75Ge0.25 QWs as a function of the number
N of Si atomic planes sandwiched between the thick barriers
Si0.75Ge0.25. The valley-orbit splitting exhibits pronounced
oscillations with the increasing QW width, in agreement with
Refs. 4–6. The oscillation periods in Fig. 3 of the present
work and in Fig. 3 of Ref. 6 vary considerably due to the
difference in values of k0 obtained in the sp3s* model used
here and the sp3d5s* model. However, the splittings �v-o are
of the same order of magnitude, e.g., at N�60 the oscillation
amplitudes differ only by a factor of �2 which can be ex-
plained by the obvious sensitivity of �v-o to the model used.

Crosses in Fig. 3 represent the calculation of �v-o in the
envelope-function approximation, Eq. �16�, with k0=0.62

2� /a0. While calculating the electron envelope function at
the interface, ��L /2�, we used values of V=150 meV for the
conduction-band offset and of 0.907m0 �m0 is the free elec-
tron mass� for the longitudinal effective mass ml�A� as ob-
tained in the sp3s* tight-binding model optimized for the
conduction band,9 and, for simplicity, took ml�B� equal to
ml�A�. The modulus 
�
 and the phase �� were considered in
Eq. �16� as adjustable parameters. Their best fit values turned
out to be 
�
=385 meV·Å, ��=0.3�. It is seen from Fig. 3

TABLE I. Tight-binding parameters used in the calculations in eV.

Es Ep Es* Vss Vxx Vxy Vsp Vs*p �

Si −3.65866 1.67889 3.87576 −7.97142 1.69558 23.32410 8.87467 5.41174 0.045

Ge −5.88 1.61 6.39 −6.78 1.61 4.90 5.4649 5.2191 0.30

FIG. 3. Valley-orbit splitting �v-o in Si1−xGex /Si/Si1−xGex �x
=0.25� QW versus the number of Si mono atomic layers. Analytical
results shown by crosses calculated using Eq. �16� with 
�

=385 meV·Å, ��=0.3�.
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that the simple analytical theory developed in Sec. II in com-
plete agreement with the results of more sophisticated tight-
binding calculations.

In Figs. 4 and 5 the spin-orbit splitting for the two valley-
orbit subbands Ee1,− and Ee1,+ are presented. This is the first
calculation of the spin splitting, no previous theoretical esti-
mations are available in order to compare with. We define the
splitting �spin in Fig. 5 as the energy difference between the
states with the spin parallel and antiparallel to the x axis for
ky =0. Then if the antiparallel state lies higher the sign of
�spin is negative as in case of the upper valley-orbit split
subband Ee1,+, see curve 2 in Fig. 4. The calculation shows
that, up to k�106 cm−1, the linear dependence

�spin�k� = 2�±k �27�

holds, in agreement with the Hamiltonian �22�. It is the
variation of �± with odd N which is shown in Fig. 5. As one
can see from Figs. 3–5 the valley-orbit and spin splittings are
conveniently presented in the meV and �eV scales confirm-
ing our assumption �13�.

Figure 5 shows that the spin splitting �spin is an oscillat-
ing function of the QW width. This demonstrates that the
inter-valley spin-dependent mixing at the interfaces prevails
over the intra-valley contribution to �±. Squares and dia-
monds in Fig. 5 show results of tight-binding calculation.
The spin splitting is plotted only for odd number of Si mono-
atomic planes because, for even N, �spin in the symmetric
structures vanishes. Conventional and 
-shaped crosses are
obtained as the best fit using Eq. �22� and choosing the same
values for k0 and �� as in Fig. 3 and the additional adjustable
parameters 
p
=0.53
10−18 eV cm2, �p=0.17�, S=0.15
p
.

Now we compare the value of �− estimated in this work
with that extracted by Wilamowski et al.2 from spin-
resonance measurements in a Si/Si1−xGex QW structure with
x=0.25. Note that the value �−=0.55
10−12 eV·Å pre-
sented in this reference for a 120-Å-thick QW should be
decreased by a factor of 1.6, i.e., in fact �−=0.34

10−12 eV·Å, see Ref. 18. Our estimation of �− gives a
value smaller by a factor �6. This means that in the sample
studied in Ref. 2 the Rashba �or structure-inversion
asymmetry19� contribution to the spin splitting dominates
over the intrinsic contribution considered here. Nevertheless,
the experimental value of the spin splitting is not so far from
the limit for a perfect QW structure.

It is also worth noting that the interface roughness with
monoatomic height steps results in the formation of an-
tiphased domains. In the QW with an odd number of Si
atomic planes, within each domain, the local symmetry is
still D2d. However, the coefficient � in Eq. �1� has opposite
signs in different domains, see Ref. 1 and references therein.

FIG. 4. Spin splitting of the valley-orbit split subbands in a
Si0.75Ge0.25/ �Si�NSi0.75Ge0.25 QW with N=25 as a function of the
in-plane wave vector for k � �100�. Curves 1 and 2 correspond to the
subbands Ee1,+ and Ee1,−, respectively. The definition of the sign of
�spin is given in the text.

FIG. 5. Spin-splitting constant � in Eqs. �21�
and �27� versus the QW width determined by the
number of Si monoatomic layers �odd N are
taken in consideration only�. The spin splitting of
the lower subband Ee1− is shown by diamonds
�tight-binding calculation� and 
-shaped crosses
�envelope function approximation�, those for the
upper subband Ee1+ are shown by squares and
conventional crosses.
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IV. CONCLUSION

The sp3s* tight-binding model has been developed in or-
der to calculate the electron dispersion in heterostructures
grown from multivalley semiconductors with the diamond
lattice, particularly, in the Si/SiGe structures. The model al-
lows one to estimate the valley-orbit and spin-orbit splittings
of the electron quantum-confined states in the ground sub-
band. In the employed tight-binding model, the spin-orbit
splitting is mostly determined by the spin-dependent orbit-
valley mixing at the interfaces. For this reason the coeffi-
cients �± describing the linear-in-k splitting are strongly os-
cillating functions of the odd number, N, of the Si
monoatomic layers.

In addition to the numerical calculations, an envelope-
function approximation has been extended to take account of

spin-dependent reflection of an electronic wave at the inter-
face and interface-induced inter-valley mixing. The depen-
dencies of the valley-orbit and spin-orbit splittings upon the
number of Si atomic planes calculated in the tight-binding
microscopic model are successfully reproduced by using
simple analytical equations derived in the envelope-function
theory and fitting the parameters that enter into these equa-
tions. It follows then that the envelope-function approach can
be applied as well for the description of electron-subband
splittings in a realistic Si/SiGe structure.
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