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An improved virtual crystal approximation in the empirical pseudopotential formalism is proposed with the
accumulated strain effect taken into proper account. Then as applied to the long-period trilayer superlattices,
Si/Si0.75Ge0.25/Si0.5Ge0.5, the enhanced optical anisotropy in this strained structure in the presence of an
external electric field, namely, the giant quantum confined Pockels effect, is confirmed. This enhanced Pockels
effect is attributed to the type-II indirect optical transitions associated with two different chemical bonds with
different orientations at the Si0.5Ge0.5-Si interface. Varying the structure parameters, the dependence of the
Pockels coefficient on the thickness of each constituent layer is explained, and the optimized structure is
obtained. Moreover, a new structure, the graded-SixGe1−x /Si superlattice with varying profiles of x in the
graded layers, is proposed, in which the whole graded region can contribute to the Pockels effect; thus a
Pockels coefficient as large as 10−9 cm/V is predicted. Three types of graded-SixGe1−x /Si superlattices, i.e.,
the x profile as functions of sawtooth, parabola, and antiparabola, are investigated, and the most promising
structure is obtained, and explained by the competition between the quantum confinement of carriers and the
spatial variation rate of the composition x in graded layers.
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I. INTRODUCTION

Recently, optical nonlinearity in low-dimensional systems
has become a rapidly growing field in both the fundamental
physics and technical applications. With the development of
crystal growth techniques, there have been continuous efforts
towards realizing the next generation of optoelectronic de-
vices by engineering the electronic and optical properties,1–5

in particular the second order optical nonlinearity, which is
crucial for modulation, switching in optoelectronics circuits,
and phase matching in nonlinear optics.6 So far, however,
most of researches on this topic have focused on the III-V
semiconductor system,7–19 and little has been done on the
Si-based heterostructure, because the electro-optic coefficient
in bulk Si vanishes due to its Oh point-group symmetry,
though a number of research groups have investigated pecu-
liar linear optical properties in some Si-based heterostruc-
tures.20–23

By breaking the intrinsic inversion symmetry, the hetero-
structure can be asymmetric and of novel physical properties
unavailable in bulk materials. A few years ago, a novel Si-
based trilayer heterostructure, Si/Si0.75Ge0.25/Si0.5Ge0.5, was
proposed by one of the present authors �Zhu� and his
co-workers,24 in which an enhanced Pockels effect, i.e., the
electric-field induced biaxial birefringence within the plane
perpendicular to the field, was predicted by using the empiri-
cal tight-binding �ETB� method. In calculating the momen-
tum matrix elements �MMEs�, a technique of taking the
k-space gradient of the ETB Hamiltonian is invoked, so that
no additional empirical parameters are required.25,26 How-
ever, as recently pointed out in Ref. 27, in this method the
intra-atomic term, i.e., the MMEs between different atomic
states localized on the same atom, are completely neglected,
which in fact does have very important contributions. Thus, a
more accurate calculation is required to evaluate the second
order optical nonlinearity in such a kind of heterostructure.
Among various methods for energy band calculation, we

choose the empirical pseudopotential method �EPM�, be-
cause the MMEs in this method are directly calculated in
terms of the plane waves superposing the eigenstates.

In this article, we will apply the EPM to calculating the
electronic structure and optical nonlinearity of the Si-based
trilayer superlattices, Si/Si0.75Ge0.25/Si0.5Ge0.5, suggested in
Ref. 24. In order to simplify the calculation, we adapt the
virtual crystal approximation �VCA� to this long-period
strained structure as the zeroth-order approximate potential.
With the enhanced Pockels effect confirmed, the enhance-
ment mechanism is explored and attributed to the type II
indirect optical transitions associated with the two different
chemical bonds with different orientations at interfaces.
Based on this, we propose another set of Si-based hetero-
structures, the graded-SixGe1−x /Si superlattices grown on the
�001� Si substrate, in which the Pockels-active region is ex-
tended from the interfaces to whole graded layers, so that an
even larger Pockels coefficient can be expected. We also sug-
gest the optimized structure for the trilayer and graded su-
perlattices for their optoelectronic applications.

II. METHOD

The EPM is a sophisticated method for the band structure
calculation. If the crystal potential of the superlattice can be
written as the superposition of the atomic potential V� with
t� denoted the coordinate of the atom � in a supercell,28,29

the single particle Schrödinger equation reads

�−
�2

2m
�2 + �

R,�
V��r − R − t����n�r� = En�n�r� , �1�

where R represents the superlattice vector. Expanding in
terms of the plane waves with the reciprocal lattice vectors
�g’s� of the superlattice, the matrix elements of Hamiltonian
can be expressed as
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Hg,g��k� =
�2�g + k�2

2m
�g,g� + �

�

e−i�g�−g�·t�Vf
���g� − g�� ,

�2�

where Vf
���g�−g � � is the form factor of the atom � associated

with the reciprocal lattice vector g�−g, and k represents the
wave vector of the electron in superlattices.

The form factors of Si and Ge in bulk materials are taken
from the expression30

Vf��g�� =
a1��g�2 − a2�

ea3��g�2−a4� + 1
�1

2
tanh�a5 − �g�2

a6
� +

1

2
� , �3�

where parameters ai �i=1,2 ,3 ,4 ,5 ,6� are listed in Table I,
and Vf��g � � are normalized by the cell volume of the
crystal.30 The alloy form factors are chosen as the weighted
average of those of the bulks. We note that the band offset
has already been included in the form factors Vf

���g�−g �
=0� ��=Si,Ge�, thus no additional parameter is needed.

This method has been successfully applied to the short-
period superlattices.31–33 However, its application to the
long-period superlattice is restricted by the requirement of
huge computer memory and ultralong CPU time which in-
crease with the size of the supercell in the third power. To
circumvent this difficulty, the VCA is usually adopted, where
the superlattice is treated as the perturbation to an overall
virtual crystal,34 so that a smaller number of plane waves can
give rise to the eigenstates near the band gap with reasonable
accuracy.

In general, the perturbation potential in the VCA, which
represents the difference between the overall virtual crystal
and the actual superlattice, can be expressed as

�H�r� = �
g,�

e−ig·�t�+r�Vf
���g�� − �

G,�
e−iG·���+r�V0��G�� , �4�

where �� labels the coordinate of atom � in the unit cell of
the overall virtual alloy of Si and Ge, G is the reciprocal
lattice vector of the virtual crystal. Since the virtual crystal
has the same symmetry as the bulk and we are interested
only in the bands around the band gap, it is sufficient to
expand the eigenfunctions of the zeroth order Hamiltonian
by 65 plane waves with different G vectors. Following the
usual procedure, we expand the superlattice eigenstate by
wave functions of 20 bands of the virtual alloy �4 valence
plus 16 conduction bands� with wave vectors differed by g’s.
The form factors for the superlattice and virtual alloy are
represented as Vf

���g � � and V0��G � �, respectively.30

This technique works well in calculating the band struc-
ture of several types of superlattices, but not for the long-
period strained superlattice. In strained superlattices, it is

usually assumed that each layer will be expanded or com-
pressed along the growth direction �z axis�, while keeping
the in-plane lattice constant �a	� equal to that of the substrate.
Then, the lattice constant along z axis simply reads28,29

a� = ai�1 − Di�a	

ai
− 1�� , �5�

where ai is the lattice constant of bulk material, and Di is the
elastic modulus of the corresponding bulk material grown on
the substrate �001�, which is 0.776 for Si, 0.751 for Ge, and
the weighted average for the alloy, respectively. Thus, due to
the 4% lattice mismatch between bulk Si and Ge, the atomic
positions in the strained superlattice will deviate from that in
the virtual crystal, and this deviation will be accumulated
and become significant when the period is sufficiently long.

To estimate the error caused by the strain accumulation by
using the conventional VCA method, we have calculated the
energy band gaps in a set of strained superlattices, Sin /
�Si0.75Ge0.25�n / �Si0.5Ge0.5�n with different layer width n, in
which the coordinate origin of the supercell is chosen in the
middle plane of the Si, Si0.75Ge0.25, and Si0.5Ge0.5 layers,
respectively, denoted as the A, B, and C configurations in
Table II. As shown in the first three lines of the table, when
increasing the supercell size, the calculated band gaps with
different origin vary substantially, with the largest deviation
as large as 10%. However, if the conventional VCA was
feasible, the different supercell origins should not affect the
band structure. This problem is caused in fact by the highly
restricted basis space used in the VCA calculation, in which
20 bands instead of 65 bands are used to reduce computation
time.

To overcome the difficulties in VCA caused by the accu-
mulated deviation in the long-period strained superlattices,
we propose a mended VCA, in which the zeroth-order
Hamiltonian is chosen as

HG,G�
0 �gz + k� =

�2�G + gz + k�2

2m
�G,G�

+ �
�

e−i�G�−G�·t�Vf
���G� − G�� , �6�

where gz is the reciprocal lattice vector of the superlattice
along the z direction. In the later calculation, totally 50 gz’s
will be used for the superlattices with a supercell of 100
monolayers.35 Then, the perturbation potential is

TABLE I. Parameters of the pseudopotentials for Si and Ge
�atomic units, i.e., a1 in hartree a.u.3�.

a1 a2 a3 a4 a5 a6

Si 106.0686 2.2278 0.6060 −1.9720 5.0 0.3

Ge 54.4512 2.3592 0.7400 −0.3800 5.0 0.3

TABLE II. The band gap of superlattices of Sin /
�Si0.75Ge0.25�n / �Si0.5Ge0.5�n calculated with different methods �Unit:
eV�.

n 12 16 20 24 28 32

A 0.969 0.895 0.824 0.776 0.740 0.711

B 0.976 0.905 0.835 0.778 0.717 0.642

C 0.969 0.895 0.825 0.777 0.742 0.714

Mended VCA 0.970 0.899 0.830 0.786 0.754 0.731

Supercell model 0.969 0.897 0.826 0.778 0.748 0.726
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�H�r� = �
g,�

e−ig·�t�+r�Vf
���g�� − �

G,�
e−iG·�t�+r�Vf

���G�� . �7�

With this prescription, the virtual alloy in the zeroth-
approximation is some kind of average over not only the
compositions but also the strained atomic positions, whereby
the Hamiltonian is independent of the coordinate origin of
the supercell.

By taking the wave functions of the virtual crystal as the
basis set, i.e., 	n�gz+k� with the band index n and wave
vector gz+k, the wave function of the superlattice �i�k� can
be expanded as

�i�k� = �
n,gz

Ai,n,gz
�k�	n�gz + k�

= �
n,gz

Ai,n,gz
�k��

G
an,G�gz + k�ei�gz+k+G�·r, �8�

where the band index for the superlattice is denoted as i. The
Hamiltonian matrix elements under the mended VCA can
then be expressed as

Hn,gz,n�,gz�
�k� = En�gz + k��n,n��gz,gz�

+ �
G,G�

an,G
* �gz + k�


an�,G��gz� + k��
�

e−i�g·t�


Vf
����g���1 − �n,n��gz,gz�

� , �9�

with �g=G�−G+gz�−gz
�g1x̂+�g2ŷ+�g3ẑ.
To examine the validity and efficiency of the mended

VCA, the band gaps of the sample superlattices are calcu-
lated and compared with the results by the supercell model.
As listed in the last two rows of Table II, the band gaps
calculated by the mended VCA are very close to those by the
supercell model. Furthermore, it should be noted that the
time needed for calculating the dispersion relations of struc-
ture with n=32 by the supercell model is about 40 times of
that by the mended VCA. Hence, the mended VCA is proved
to be suitable for calculating the long-period strained super-
lattices with reasonable accuracy.

Now, as an application, we calculate the quantum con-
fined Pockels effect in the Si-based trilayer superlattices,
Si/Si0.75Ge0.25/Si0.5Ge0.5.

24 Unlike bulk Si, the present sys-
tem has a point-group symmetry of C2v, in which the princi-
pal axes of the ellipsoid of the dielectric constant tensor are

along the �001�, �110�, and �1̄10� directions, respectively.
When an external electric field F is applied along the

superlattice growth direction along the z axis, an additional
term eFz is added to the Hamiltonian. For the sake of sim-
plicity, in calculating the energy band structure, the usual
truncation approximation for the electric field along the
growth direction is adopted,36,37 i.e., the coupling between
the nearest supercells induced by the field is neglected. To
minimize the influence of the Gibbs’ phenomenon induced
by the truncation approximation, we choose the midplane of
the barrier �Si0.75Ge0.25 in trilayer superlattices and Si in
graded superlattices� as the electric field truncation position.
Then the perturbation due to the electric field in the mended
VCA can be written as

�Hn,gz,n�,gz�
�k� = − �

G,G�

an,G
* �gz + k�an�,G��gz� + k�


�� iLz

2�g3
+

1

�g3
2�e−i�g3Lz

+ � iLz

2�g3
−

1

�g3
2�� eF

Lz
�0,�g1

�0,�g2
,

�10�

in which �g3�0 and Lz is the superlattice period along the z
direction.

With the calculated eigenfunctions of the superlattice, the
imaginary part of the dielectric function can be readily ob-
tained through

��̂��� =
4
2e2

m2�2 �
k,c,v

��̂ · Pc,v�k��2�„Ev�k� + � � − Ec�k�… , �11�

where �̂ denotes the unit polarization direction of the incident
light with energy ��, and the momentum matrix element
Pc,v�k� can be written as

Pc,v�k� =
m0

�
�

n,n�,gz

Ac,n,gz

* �k�Av,n�,gz
�k�


�
G

an,G
* �gz + k�an�,G�gz + k�G . �12�

In later calculation, 145 k points in one quarter of the mini-
zone are used, and the delta function will be replaced by a
Lorentzian with a half-width of 20 meV. Through Kramers-
Kronig relation the real part of the dielectric function can be
obtained,39 whereby the refractive index along three princi-
pal directions, n110 �labeled as n1�, n1̄10 �n2�, and n001 �n3� are
deduced as

n1�F� = n1�0� −
1

2
n1

3�0��r13 + r63�F ,

n2�F� = n2�0� −
1

2
n2

3�0��r13 − r63�F ,

n3�F� = n3�0� −
1

2
n3

3�0�r33F , �13�

where r13, r63, and r33 are the Pockels coefficients of the
system.

III. Si/Si0.75Ge0.25/Si0.5Ge0.5 TRILAYER SUPERLATTICES

Figure 1 shows the calculated Pockels coefficients in the
superlattice �Si�34/ �Si0.75Ge0.25�32/ �Si0.5Ge0.5�34. It is seen
that, r63, which scales the asymmetric part of the in-plane
anisotropic response to the electric field, is equal to 5.8

10−10 cm/V, which is significant for optoelectronic appli-
cations, confirming the previous conclusion based on ETB
calculation qualitatively.24

Being of the inversion symmetry, all the bulk Si,
Si0.75Ge0.25, and Si0.5Ge0.5 are not expected to have finite
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Pockels effect. It is the broken inversion symmetry in the
trilayer structure that is generally responsible for the Pockels
effect. The enhanced Pockels coefficient at photon energy
less than or about the band gap calculated in this peculiar
structure can be understood from its band structure, in par-
ticular the type-II band alignment, where electrons and holes
are separated spatially, and the different response of the con-
fined electrons and holes to the electric field. As shown in
Fig. 2�a�, the solid and dashed lines represent the envelope
functions of the first hole and electron subbands without
electric field, respectively. Obviously, the electrons �holes�
are mainly confined to the Si �Si0.5Ge0.5� layers, while the
Si0.75Ge0.25 layers act as the barriers for both electrons and
holes. Because only a small portion of the wave function
penetrates into the barriers, the present structure has the
type-II band alignment, and indirect optical transitions arise
only within a narrow region adjacent to the Si0.5Ge0.5-Si in-
terfaces. In other words, three types of interfaces between
different constituents in this structure are nonequivalent, and
the most relevant to the in-plane optical anisotropy is the
different chemical bonds associated with different orienta-

tions, �110� and �1̄10�, in two sides of the Si0.5Ge0.5-Si inter-
face.

In the presence of an external electric field, electrons and
holes will polarize towards opposite directions. As shown in
Fig. 2, the envelope functions of the conduction subbands
shift to the left, while those of the holes move to the right.
The redistribution of the envelope functions changes the
electron-hole overlap around the Si0.5Ge0.5-Si interface, re-
sulting in the variation of the in-plane anisotropy.

Since the layer thickness plays a dominant role in deter-
mining the energy of quantized levels and the wave function
penetration, the overlap integral of the electron and hole
wave functions around the interfaces in such a type-II quan-
tum structure will also depend on structure parameters, in
particular the layer thickness. Thus a systematic study of
Pockels coefficients as a function of the layer thickness in
the trilayer superlattice is required to find an optimized struc-
ture with stronger Pockels effect. Because the size of super-
cell in strained superlattices must be less than the critical
length, we fix the total number of monolayers in a supercell

to be 100. As mentioned above, since the Si0.75Ge0.25 layer
plays the role of potential barrier for both electrons and
holes, its width should be thick enough to confine both the
electrons and holes. Hence, we keep the number of mono-
layers in the Si0.75Ge0.25 layer a constant of 32, and the struc-
ture to be optimized is �Si�n / �Si0.75Ge0.25�32/ �Si0.5Ge0.5�68−n.
The Pockels coefficient r63 as a function of the thickness of
the Si layer �n� is depicted in Fig. 3 at the photon energy of
0.8 eV �1.55 �m�, which corresponds to the canonical wave-
length of the transmitting signals through optic fiber cables.38

It can be seen that r63 reaches the maximum value when
n
40.

The physics behind such a thickness dependence of r63 is
as follows. First, the penetration of wave function into po-
tential barriers depends on the barrier height, carrier effective
mass, and well width. The thinner layer, lower barrier height
and lighter mass favor more penetration. Second, the electric
field induced polarization of confined carriers depends on the
well width and field strength. The thicker well and stronger
field result in more significant carrier shift. Three panels in
Fig. 2 indicate that, for thin wells, the penetration of the hole
into the Si layers is less than the electron’s penetration into
the Si0.5Ge0.5 layers; on the other hand, when the well is
thick enough, the penetration of the wave function of the

FIG. 1. The calculated Pockels coefficient for superlattice
�Si�34/ �Si0.75Ge0.25�32/ �Si0.5Ge0.5�34 in an external field of
20 kV/cm along the growth direction.

FIG. 2. �Color online� Envelope functions of subbands in three
different structures, �a� �Si�34/ �Si0.75Ge0.25�32/ �Si0.5Ge0.5�34,
�b� �Si�8 / �Si0.75Ge0.25�32/ �Si0.5Ge0.5�60, and �c� �Si�60/
�Si0.75Ge0.25�32/ �Si0.5Ge0.5�8. Here V1 and C1 denote the first va-
lence and conduction subband without electric field, respectively;
those with the superscript m stand for the subbands in the presence
of a longitudinal field of 50 kV/cm.
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lowest subbands is negligible. As mentioned above, only dif-
ferent types of chemical bonds with different orientation ex-
tremely adjacent to the Si0.5Ge0.5-Si interface will contribute
to the Pockels coefficient. Thus the structure associated with
a thicker Si0.5Ge0.5 or Si layers as shown in Figs. 2�b� and
2�c� has smaller r63, in spite of that the penetration of another
type of carrier is significant, as the interband transition in-
volves both types of carriers. Besides, the maximum value of
r63 is reached at n�40, when the Si layer is slightly thicker
than that of Si0.5Ge0.5, because the confinement of holes to
the Si0.5Ge0.5 layer is stronger than that of electrons to the Si
layer �see Fig. 3�.

IV. GRADED-SixGe1−x /Si SUPERLATTICES

Stimulated by the fact that the enhanced Pockels effect is
mainly contributed by the different chemical bonds with dif-
ferent orientations at the interfaces, we propose a new novel
structure for the Pockels effect, i.e., the graded-SixGe1−x /Si
superlattices. In this system, each monolayer in the graded
region SixGe1−x links different bonds with varying alloy
compositions, thus the Pockels-active region is effectively
expanded.

As plotted in Fig. 4, three types of graded-SixGe1−x /Si

superlattices with different profiles of x are considered, in
which among 100 monolayers of each supercell, the first 50
monolayers are pure Si layers while the Si content in the next
50 monolayers varies continuously with the layer index as a
function of the sawtooth, parabola, and antiparabola, respec-
tively. Clearly, the inversion symmetry in these structures is
broken, and a lower point-group symmetry C2v exists. Since
r63 has great application potential in the optoelectronics, we
focus on it in the following discussion.

Figure 5 shows the Pockels coefficient r63 in three differ-
ent graded-�SixGe1−x�50/ �Si�50 superlattices as functions of
the photon energy. Obviously, the Pockels effect is enhanced
in all three cases. At the photon energy of 0.8 eV the cal-
culated Pockels coefficient r63 is as large as 9.70
10−10

cm/V, 12.61
10−10 cm/V, and 4.30
10−10 cm/V for the
graded layer with the Si content as a function of the antipa-
rabola, sawtooth, and parabola, respectively. This indicates
that the sawtooth superlattice performs best in its quantum
confined Pockels effect.

Since the band gap for the antiparabola, sawtooth, and
parabola-graded superlattices is 0.877 eV, 0.914 eV, and
0.951 eV, respectively, the contribution to the Pockels coef-
ficient around 0.8 eV comes mainly from the optical transi-
tions between several lowest hole and electron subbands. On
the other hand, because the electrons are confined to the pure
Si layers while holes to the graded-SixGe1−x /Si layers, the
type II band alignment leads to the spatially indirect optical
transitions in the region of interest. Thus, two factors, the
overlap integral between wave functions and difference be-
tween chemical bonds with different orientations, should be
combined to determine the quantum confined Pockels effect
quantitatively.

The penetration of wave functions into potential barriers,
particularly the penetration of conduction subbands into the
SixGe1−x layers will affect the indirect transition strength at
the graded region. Take the sawtooth graded superlattice as
an example. As shown in Fig. 6, the first and second electron
subbands are mainly confined to the Si layers which hardly
penetrate through the abrupt interface of Si-Si0.5Ge0.5. As a
result, the overlap integral at the abrupt interface between the
confined holes and electrons is negligible. Although the low-
est two hole subbands can penetrate through the Si-
Si0.5Ge0.5 interface significantly, the optical transition in the

FIG. 3. Calculated Pockels coefficient r63 as a function of the
number of monolayers in the Si layer at fixed photon energy ���
=0.8 eV�.

FIG. 4. The silicon content profiles in three graded-
�SixGe1−x�50/Si50 superlattices.

FIG. 5. Calculated Pockels coefficient r63 for graded-
�SixGe1−x�50/ �Si�50 superlattices in an external field of 20 kV/cm.
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pure Si region contributes little to the in-plane birefringence
because of the same type of chemical bond there. Thus, the
in-plane anisotropy may arise only from the optical transi-
tions in the graded region of SixGe1−x.

Another decisive factor determining the biaxial response
is the difference between the neighboring �110� and �1̄10�
orientated chemical bonds. In the graded SixGe1−x region,
along the �001� direction the chemical bonds vary as the x
profile varies, which affects the difference between chemical
bonds with different orientations in the vicinity of a mono-
layer. Therefore, in addition to the barrier penetration of the
wave functions, the in-plane optical anisotropy will critically
depend on the variation rate of profile x in the graded re-
gions.

In the presence of an external electric field, the electron
and hole will polarize oppositely. As shown in Fig. 7�b�, the
envelope functions of the first two conduction subbands shift
to the left significantly, while the first two valence subbands
moves to the right slightly. The redistribution of the envelope
functions changes the electron-hole overlap in the SixGe1−x
layers, resulting in the variation of the in-plane anisotropy,
i.e., quantum confined Pockels effect.

Comparing the envelope functions of the first and second
valence/conduction subbands in three types of graded super-
lattices �Fig. 7�, it is obvious that the profile form in the
graded layers affects distribution of holes rather small, but
influences the electrons significantly. The electron penetra-
tion in the parabola �antiparabola� superlattice is stronger
�weaker� than that in the sawtooth superlattice. Hence, the
overlap integral in the graded layers of the parabola is the
largest, and that in the antiparabola is the smallest. On the
other hand, the difference of chemical bonds along the �001�
direction depend on the derivative of the profile function,
which takes its turn from antiparabola, sawtooth, and pa-
rabola, with antiparabola as the biggest. Combining these
two factors together, it is not surprising that the quantum
confined Pockels effect in the sawtooth superlattice is the
most prominent.

V. CONCLUSION

In conclusion, taking the accumulated strain effect into
account, we have proposed the mended VCA in the empirical

pseudopotential calculation for the energy band as applied to
the strained superlattices of the long period. In this way, we
confirmed the enhanced quantum confined Pockels effect in
the Si/Si0.75Ge0.25/Si0.5Ge0.5 trilayer superlattice. The en-
hanced Pockels effect can be attributed to the type II optical
transitions associated with different chemical bonds with

�110� and �1̄10� orientations adjacent to the Si0.5Ge0.5-Si in-
terface, and the different response of electrons and holes to
the electrical field. The dependence of the Pockels coefficient
on the layer thickness is studied and an optimized structure
with a maximum value of Pockels coefficient is reached.
Moreover, we propose three types of graded-SixGe1−x /Si su-
perlattices grown on the �001� Si substrate, which is ex-
pected to exhibit stronger quantum confined Pockels effect.
Based on the electronic structure calculation, the enhanced
Pockels coefficients are attributed to the type II indirect op-
tical transitions in the graded region of SixGe1−x. The depen-
dence of the Pockels coefficient on the profiles of x in three
types of graded layers is studied, suggesting an optimized
structure with a sawtooth profile, which might be the candi-
date for application of silicon-based materials in optoelec-
tronics and photonics.

ACKNOWLEDGMENTS

We would like to acknowledge Jian-Bai Xia and Qi-Ming
Wang for valuable discussions. This work is supported by
the Natural Science Foundation of China �Grants Nos.
10374056, 10334040, 60336010�, and the Program of
Basic Research Development of China �Grants Nos.
2001CB610508 and 2002AA311153�.

FIG. 6. �Color online� Absolute values of the subband envelope
functions in the sawtooth superlattice. The V and C denote the
valence and conduction subband and the subscript 1 and 2 stand for
the first and second subbands.

FIG. 7. �Color online� Absolute values for the subband envelope
functions in the superlattice with the graded layer profile as the
antiparabola �a�, sawtooth �b�, and parabola �c�, respectively. The V
and C denote the valence and conduction subband, and the subscript
1 and 2 stand for the first and second subbands, respectively. The
superscript m represents the subbands in the presence of an electric
field of 50 kV/cm, and the curves X denote the silicon content in
the graded superlattice labeled by the right ordinate.
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