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Inelastic scattering of light by electrons in a quantum well was studied. We considered the resonant Raman
scattering associated with intersubband electronic excitations. Evidence is provided that when the two lowest
subbands are considered four types of excitations are present. They give rise to two scattering lines associated
with single-particle excitations and another two associated with collective charge-density excitations, while
spin-density excitations are not considered. The shape of the Raman spectrum strongly depends on several
characteristics in the experiment, namely, the quantum well width, the concentration of the carriers, many-body
effects, the temperature, and, mainly, the momentum-transfer dependent on the laser-photon frequency and the
experimental geometry. Particular experimental results are satisfactorily described.
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I. INTRODUCTION

Further developments in present day frontier technologies
in the area of electronics and optoelectronics require an ever-
decreasing size of devices, and an associated functioning on
ever-smaller time scales. This leads to dealing with small
dimension systems, such as quasi-two-dimensional ones �as
in the case of quantum wells�, signifying that carriers have
discrete energy levels in one spatial dimension, but are free
to move in two spatial dimensions; quasi-one-dimensional
ones �so-called quantum wires�, meaning that carriers are
free to move in one spatial dimension, but have discrete en-
ergy levels in two spatial dimensions; and quasi-zero-dimen-
sional ones �so-called quantum dots and columns� when the
carriers have discrete energy levels in the three spatial di-
mensions.

These three cases of low-dimensional systems have been
investigated by means of resonant Raman scattering. Sirenko
et al.1 report resonant Raman scattering in nanostructures
with InP quantum dots in an In0.48Ga0.52P matrix: At resonant
excitation with the quantum dot excitons, broad band peaks
corresponding to acoustic and optical vibrations were ob-
served. Sassetti et al.2 considered interband collective elec-
tronic excitations in resonant Raman scattering of two-
subband quantum wires. Finally, for nanometric quantum
wells, an early work was carried out by Pinczuk et al.,3 while
another study was done more recently by Unuma et al.4 In all
these works, the collective electronic excitations were ana-
lyzed. It may also be noted that resonant Raman scattering is
relevant to the realization of intersubband Raman lasers, in-
volving the possibility of reaching the far-infrared region in
an operation at room temperature.5 We consider here the case
of a “quasi-two-dimensional” quantum well, present in a
semiconductor heterostructure. Our aim was to determine the
spectrum of elementary excitations in the electron system.

Such excitations can be recorded, as also in the case of three-
dimensional bulk samples, in Raman scattering experiments
�see, for example, Refs. 6–8�. Here we consider the case of
resonant scattering, which is experimentally discernible
�from the background of the whole sample� in quantum wells
�see, for example, Refs. 3 and 4�, and restricted to that origi-
nating in charge-density fluctuations, not considering that
due to spin-density fluctuations �which involves the media-
tion of spin-orbit interaction�.

The influence of many-body effects associated with the
Coulomb interaction �treated as usual in the random phase
approximation� are recorded. This is manifested in two as-
pects: the correction of the electron band-energy levels, and
the formation of collective states �charge-density waves�. We
clearly shown in the following sections that the spectrum of
excitations �associated with transitions in the two lowest sub-
bands� is composed of two types of single-particle excita-
tions and two types of collective excitations �this is discussed
in Appendix A�. This resembles the case of a double plasma
of electrons and holes in the bulk. In the latter case, two
types of single-particle excitations are also present, along
with two collective excitations consisting of the so-called
acoustic and optical plasmon vibrational modes.9,10

These four types of elementary excitations are recorded in
the Raman spectrum, which shows the four corresponding
bands. We demonstrate in this study the particularly impor-
tant fact that such spectra may have a variety of forms con-
sisting mainly of notable differences in relative intensity
among the different lines and eventual disappearance of
some lines. This is a consequence of the influence, on the
one hand, of several characteristics of the system such as the
width of the quantum well �QW�, the influence of the Cou-
lomb interaction, the concentration of carriers, and, on the
other hand, of the experimental protocol, basically, the tem-
perature, the frequency of the laser light, and the geometry
modifying the momentum transfer, which has a large influ-
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ence on the results. For these reasons, the different types of
excitations have not been clearly identified in existing ex-
perimental measurements.

II. RESONANT RAMAN SCATTERING IN SINGLE QW

It has been stated that intersubband electronic excitations
in QWs are strongly affected by many-body Coulomb inter-
actions.11 First, this is manifested in the single-particle el-
ementary spectrum, where we recall that the single-particle
energies depend on a discrete index �positive integers� l as-
sociated with the Bloch-band kinetic energy in the direction
along the nanometric QW of length LQW, and a two-dimen-
sional wave vector, k�, associated with the free motion in
the transverse section of the QW: for particles of mass m* in
an ideal QW we have the textbook expression

�l
0�k�� = l2 �2�2

2m*LQW
2 +

�2k�
2

2m* , �1�

with l=1,2 , . . . and where we have omitted the spin index.
�In Sec. IV we discuss the question of the presence and in-
fluence of fractal-like structured boundaries.� However, in
the excitation spectrum it is necessary to include the correc-
tions to the Hartree-Fock approximation used in deriving the
Bloch-band scheme �for example, Ref. 9�. For transitions
between subbands l=1 and l=2 and with wave vector change
from k� to k�+Q, we have

�2�k� + Q� − �1�k�� = E21�k�,Q� + NS�A21 − B21� , �2�

where, in the usual single-electron approximation,

E21�k�,Q� = �2
0�k� + Q� − �1

0�k��

=
3�2�2

2m*LQW
2 +

�2

2m*Q · �2k� + Q� , �3�

A21 =
1

NS
�
l�

V2D�Q��F22
l�l��Q�f2�k� + Q� − F11

l�l��Q�f1�k��� ,

�4�

B21 =
1

NS
�
l�

�����U2l�F2l�
2l��Q�f2�k� + Q�

− U1l�F1l�
1l��Q�f1�k��� , �5�

with NS being the electron sheet-density, NS=nLQW where n
is the concentration of the mobile conduction band electrons
in the n-doped sample; A and B are, respectively, the direct
and exchange contributions originated in the Coulomb inter-
action in the Hartree-Fock approximation,12,13 which have
for the electrons in the QW the expressions of Eqs. �4� and
�5�, following from a calculation in terms of the standard
wave functions and energy levels.11 The exchange contribu-
tion, we recall, involves only electrons with the same spin
and the U�s are the exchange integrals �the s-type Landau’s
interaction strengths�,13 V2D�Q�=e2 /2�0QS is the matrix el-

ement in plane-wave states of the Coulomb potential in 2D,
where S is the area of the transverse �sheet� surface and
Fnn�

mm��Q� is the quantity given in Ref. 14, namely

Fnn�
mm��Q� = �

−�

�

dz�
−�

�

dz��m�
* �z��m�z��n

*�z���n��z��e
−Q�z−z��,

�6�

where ��z� is the contribution to the single-electron wave
function corresponding to the states associated with the con-
strained z direction in the QW. Finally, f l�k�� is the popula-
tion of electrons in the state �l ,k��, i.e., Fermi-Dirac distri-
butions with temperature T and chemical potential 	. The
values of A and B can be obtained from the experimental
data, as illustrated later on. Moreover, we use parabolic
Bloch bands disregarding nonparabolicity effects which are
not relevant for the scattering by charge density fluctuations
here considered.

We proceed now to the calculation of the resonant Raman
spectrum in scattering by the lowest �1→2� intersubband
electronic excitations in an n-doped single QW �experimen-
tal data in particular conditions are reported in Refs. 3 and
4�. As described in Appendix B, the resonant Raman scatter-
ing is the one associated with the QW that is discernible
from the background arising from the whole sample. It is, we
recall, a second-order process involving double the �A .p�
contribution to the interaction of the electron with the radia-
tion fields �incident and scattered�, and with the laser photon
energy approaching, or being slightly larger than, the value
of the band gap which makes one of the energy denominators
in the virtual intermediate state very small �cf. Eq. �B5��.

The scattering cross section for the events with excitation
energy as given by Eq. �2�—i.e., transitions between sub-
bands l=1 and l=2 with crystalline momentum transfer �Q
�see Appendix B�—is given by

d2�

d
d�
� �1 − e−��
�−1 Im� F21�Q,
�

1 + V2D�Q�F21�Q,
�	 , �7�

where Im stands for an imaginary part, and

F21�Q,
� = �
k�

f1�k�� − f2�k� + Q�
�2�k� + Q� − �1�k�� − �
 − i�s

, �8�

where s is to be taken in the limit of going to +0, and �
=1/kBT.

We further introduce the expression �cf. Eq. �2��

�2�k� + Q� − �1�k�� = �
0 +
�2

2m*Q · �2k� + Q� , �9�
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where

�
0 =
3�2�2

2m*LQW
*2 , �10�

defining an “effective” QW-width given by

3�2�2

2m*LQW
*2 =

3�2�2

2m*LQW
2 + NS�A21 − B21� . �11�

This has been done in order to introduce an open param-
eter to be used for scaling the energy �frequency z=
 /
0 in
Eqs. �16�–�22��, and whose value would follow from the data
in each experiment. This is necessary to overcome the lack
of information on �1� the knowledge of many-body effects
present in A and B, i.e., the direct and exchange corrections
to the self-consistent energy-band levels, and �2� the effect of
the fractal-like structure of the QW interfaces, i.e., the details
of their roughness, which is discussed in the second part of
Sec. IV.

As noted before, the values of A and B can be derived
from the experimental data. Consider the case of Ref. 4,

TABLE I. The cases considered.

Case T �K� NS �cm−2� LQW
* �nm� Q �cm−1�

1 300 1012 50 104

2 300 1012 50 105

3 300 1011 50 104

4 300 1012 20 105

FIG. 1. The quantities G21�Q ,
�, F21� �Q ,
�,
and S21�Q ,
� versus 
 /
0 in case 1 of Table I.
The quantities G21�Q ,
� and S21�Q ,
� are di-
mensionless. In the upper figure can be observed
the first three roots; the fourth one, at 
 /
0


7.380, is outside the figure.

RESONANT RAMAN SCATTERING OF ELECTRONS IN¼ PHYSICAL REVIEW B 73, 235320 �2006�

235320-3



particularly Fig. 4�a�: The difference in frequencies of the
peak positions of the bands due to single-particle excitation-
s,with and without spin flip, results in E�SPE�−E�SDW�
=NSA12
�48−45� meV=3 meV. On the other hand, from
�
0=3�2�2 /2m*LQW

2 +NS�A12−B12� it follows approxi-
mately that 48 meV=51 meV+ �3 meV−NSB12�, and then
NSB12
6 meV.

Using these values in Eq. �11�, we find that LQW
*


18.5 nm, which is 3% larger than the QW-width of 18 nm,
which value also follows directly from Eq. �10�, once we
accept that �
0
48 meV. Using Eq. �9�, after neglecting
the contribution in Q2 we find that Eq. �8�takes the form

F21�Q,
� = �
k�

f1�k�� − f2�k� + Q�
�

, �12�

where �=��
0−
�+ ��2Q .k� /m*�− i�s. Calling F21� �Q ,
�
and F21� �Q ,
� the real and imaginary parts of F21�Q ,
�, the
scattering cross section of Eq. �7� becomes

d2�

d
d�
� �1 − e��
�−1 F21� �Q,
�

G21
2 �Q,
� + S21

2 �Q,
�
, �13�

where

G21�Q,
� = �1 + V2D�Q�F21� �Q,
��

and

S21�Q,
� = �V2D�Q�F21� �Q,
��

are dimensionless.
Considering the presence of the distribution functions f1

and f2, in F21, we separate the study into two limiting con-
ditions, namely, the nondegenerate statistical regime and the
highly degenerate regime.

A. The nondegenerate regime

This is the regime of high temperature, i.e., T�TF, where
TF is the Fermi temperature of the electron system. However
it is better characterized by the condition �see, for example,
Ref. 15� n�T

3 �1, where �T is the de Broglie thermal wave-
length �T=� / �2m*kBT�1/2. In such circumstances the Fermi-
Dirac distributions can be conveniently approximated by
Maxwell-Boltzmann distributions, that is

f l�k�� = C exp�− ��l�k��� , �14�

where

C = NS
��2

m* ���
l

exp�− �l2�
0��−1
. �15�

After some calculations we find that

F21� �Q,
� = �NSSC̃�1 − �� �Q�1 − e−��
0�
��
0

+ �Q�z − 1��e−�Q
2 �z − 1�2

Erfi��Q�z − 1��	 ,

�16�

where Erfi��Q�z−1�� is the imaginary error function, C̃
= ��l exp�−�l2�
0��−1, z=
 /
0, and

�Q = ��m*
0
2

2Q2 �1/2

. �17�

On the other hand,

F21� �Q,
� = �NSSC̃��� �Q�1 − e−��
0�
��
0

+ �Q�z − 1��e−�Q
2 �z − 1�2	 . �18�

B. The highly-degenerate regime

We consider now the limit of very low temperatures �T
�TF or n�T

3 �1�, and we approximate the calculation taking
for the Fermi-Dirac populations a Heaviside step function
equal to 1 from zero energy to the Fermi level, and zero
thereafter. In such conditions we find that

F21� �Q,
� = − � m*S

��2Q
��b�Q,
�� , �19�

for �b�Q ,
��= �m*
0 /�Q��z−1��kF,

F21� �Q,
� = − � m*S

��2Q
���b�Q,
�� − ��b�Q,
��2 − kF

2�1/2� ,

�20�

FIG. 2. The Raman spectrum �in arbitrary units� in case 1 of
Table I. The narrow band from charge-density excitations, CD−, and
two overlapping broad bands generated by single-particle excita-
tions can be noted. The fourth one due to charge-density excita-
tions, CD+, centered at 7.380 is outside the figure.

SILVA, VASCONCELLOS, AND LUZZI PHYSICAL REVIEW B 73, 235320 �2006�

235320-4



for �b�Q ,
���kF.
On the other hand,

F21� �Q,
� = � m*S

��2Q
��kF

2 − �b�Q,
��2�1/2, �21�

for �b�Q ,
���kF and

F21� �Q,
� = 0, �22�

for �b�Q ,
���kF.

III. RAMAN SPECTRA AND ELEMENTARY EXCITATIONS

To perform numerical calculations we considered the case
of a single QW formed by a thin GaAs layer of thickness
LQW sandwiched between two larger barriers AlxGa1−xAs

layers. First, we take the statistical nondegenerate situations,
characterized by Eq. �13� together with Eqs. �16� and �18�. In
the expression for the scattering cross section of Eq. �13�, we
shall see that the term G21�Q ,
�, plays a fundamental role in
determining the Raman bands, as is also the case in bulk
material. Taking T=300 K and considering an electron effec-
tive mass m*=0.068m0 we analyzed several cases character-
ized by varying values of the sheet-density, NS, the effective
QW width, LQW

* , and wave number Q. We recall that, on the
one hand, �Q is the momentum transferred in the scattering
event, and on the other, that we are dealing with resonant
Raman scattering: therefore the photon energy is of the order
or slightly larger than the band gap, then, taking EG

1.45 eV, the photon wave number is 
7.3�104 cm−1.
Consequently in forward scattering we have Q
1.5
�105 cm−1, at right angle scattering Q
105 cm−1, and at
backscattering Q
2�103 cm−1 �once we take into account

FIG. 3. The quantities G21�Q ,
�F21� �Q ,
�,
and S21�Q ,
� versus 
 /
0 in case 2 of Table I.
The quantities G21�Q ,
� and S21�Q ,
� are di-
mensionless. Quantity G21�Q ,
� is always non-
null and presenting two dips and one cusp �cf.
Fig. 1�.
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that the Raman shift is on the order of 50 meV�. We discuss
the four cases indicated in Table I.

Case 1: NS=1012 cm−2; LQW
* =50 nm; Q=104 cm−1. In

Fig. 1 are shown the quantities G21�Q ,
�, F21� �Q ,
�, and
S21�Q ,
� versus the reduced frequency z=
 /
0. We can see
in the upper figure the presence of four roots �the higher one
frequency is not included� at z
0.546; 0.992; 1.007, and
7.380. These four roots give rise in the Raman spectrum to
the four bands corresponding to the four types of excitation
of electron system in the QW.

The corresponding Raman spectrum, shown in Fig. 2, pre-
sents four bands: as previously noted �see Appendix A�, they
correspond to a lower collective charge-density excitation,
�CD−�, at 
CD

− 
0.546
0, two overlapping bands correspond-
ing to single particle excitations �SP±�, centered at 
SP

−


0.992
0 and 
SP
+ 
1.007
0, and a fourth band �not shown

in the figure� corresponding to an upper collective charge
density excitation �CD+� at 
CD

+ 
7.380
0.
Case 2: NS=1012 cm−2; LQW

* =50 nm; Q=105 cm−1. The
difference from case 1 is in the value of the wave number Q,
here an order of magnitude greater. In Fig. 3 are shown the
quantities G21�Q ,
�, F21� �Q ,
�, and S21�Q ,
� versus 
 /
0.
In the upper figure is shown that the quantity G21�Q ,
� does
not possess zeros, but has a shape similar to the one of Fig. 1,
that is, it presents two dips and one cusp. The corresponding
Raman spectrum is shown in Fig. 4: two bands centered at
approximately the position of the minima of the two ex-
pected bands due to single-particle excitations can be ob-
served, while those that would correspond to the collective
excitations are not observed �at the scale used here�. It can be
noticed that such behavior is also characteristic of the spec-
trum of light scattered from a classical, single component
plasma when Q is increased as done here when going from
case 1 to case 2.6 Also for room temperature, T=300 K, we
consider now:

Case 3: NS=1011 cm−2; LQW
* =50 nm; Q=104 cm−1. The

difference from case 1 is in the sheet-density, which is an
order of magnitude smaller. In Fig. 5 are shown the quanti-
ties G21�Q ,
�, F21� �Q ,
�, and S21�Q ,
� versus 
 /
0. We
can see in the upper figure the presence of four roots, at z

0.708; 0.984; 1.015; and 1.651. The corresponding Raman
spectrum is presented in Fig. 6, which has a similarity with
the one of Fig. 2. The band associated with the lower collec-
tive mode, CD−, and two bands due to single-particles, SP−

and SP+, can be noted, while the upper collective mode,
CD+, centered at 
 /
0
1.651, is outside the figure.

Case 4: NS=1012 cm−2; LQW
* =20 nm; Q=105 cm−1. This

is similar to case 2, but with reduction in the value of LQW
* . In

Fig. 7 are shown the quantities G21�Q ,
�, F21� �Q ,
�, and
S21�Q ,
� versus 
 /
0. We can see in the upper figure the
presence of four roots, at 
 /
0
0.676; 0.963; 1.033; and
2.106, and also two dips and one cusp. The corresponding
Raman spectrum is shown in Fig. 8, where a lower frequency
broad band corresponding to the lower collective excitation,
CD−, which overlaps with the two bands SP− and SP+ corre-
sponding to single-particle excitations can be noted. The
band due to the upper collective excitation, at 
 /
0

2.106, is outside the figure.

Let us consider now the case of very low temperatures,

i.e., the ultra-degenerate case of Sec. II B. Using the results
indicated in that section, we obtain the roots of the quantity
G21�Q ,
�= �1+V2DF21� �Q ,
��, namely

zSP
� =


SP
�


0
= 1 � � 4�2�0

�e2m*�LQW
*2 Q3, �23�

for

�e2m*/�0�2Q2��NS/2��1/2 � 1

�i.e., �b�Q ,
���kF, corresponding to �
 inside the con-
tinuum of single-electron excitations; see Fig. 9� which are
the peak positions of the bands that in the spectrum corre-
spond to scattering by single particles. It can be noted that
the separation of the two lines is

�8�2�0/�e2m*�LQW
*2 Q3.

On the other hand, the two other roots correspond to the
bands arising out of scattering by the collective modes, and
are

zCD
� =


CD
�


0

= 1 �
1

2
� 4�2�0

�e2m*�LQW
*2 Q3�1 +

NS

2�
�e2m*/�0�2Q2�2� ,

�24�

for

�2e2m*/�0�2Q2��NS/2��1/2

�1 +
NS

2�
�e2m*/�0�2Q2�2� � 1

�i.e., �b�Q ,
���kF, corresponding to �
 outside the con-
tinuum of single-electron excitations, see Fig. 9�.

In Table II we indicate, for each set of values of the sheet
density NS, the effective QW width LQW

* and the wave num-

FIG. 4. The Raman spectrum �in arbitrary units� in case 2 of
Table I. Two wide bands corresponding to single-particle excita-
tions can be observed. The two bands due to collective excitations,
CD−, and CD+ are practically unnoticeable.
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ber Q, the position of the roots of G21�Q ,
� in units of 
0,
corresponding to the single particles and the upper charge
density: in all the cases presented the one associated with the
lower charge density is forbidden, and the two associated
with the single particles are in practically near coincidence.
Therefore, the Raman spectrum presents only two bands cen-
tered at the position of such roots. In the experiment of Ref.
4 the quantities involved are NS
6.3�1011 cm−2, LQW

18 nm, 
0
47 meV, then the effective QW width we
have introduced is �10 nm, and the correction to the self-
consistent energy levels, i.e., NS�A21−B21�, is approximately
−3 meV, moreover, Q
104 cm−1, and T0
12 K. Using
these values in the highly degenerate regime �i.e., taking
T0
0 K instead of the intermediate condition at T0
12 K�,
we show in Fig. 10 the calculated Raman spectrum. As al-
ready anticipated there are only two bands, corresponding to
those observed in the experiment: one consisting of the two

overlapping bands due to single-particle excitations, and one
associated with the upper collective charge density excita-
tion. It can be noted that the separation of both lines is nearly
7.8
0, whereas the separation observed in the experiment is
nearly 1.3
0. This difference can be ascribed to the use of a
Fermi-Dirac step-function distribution, corresponding to the
ultra-degenerate limit, while in the experiment the tempera-
ture is T0=12 K corresponding to an intermediate degenerate
regime. Comparing results that we have obtained in the same
conditions but with temperatures 0 and 50 K, it can be noted
that the difference is in fact reduced.

IV. CONCLUDING REMARKS

We have presented a theoretical study of Raman resonant
scattering by mobile electrons populating the two-lowest
conduction subbands of quantum wells in heterostructures of

FIG. 5. The quantities G21�Q ,
�F21� �Q ,
�,
and S21�Q ,
� versus 
 /
0 in case 3 of Table I.
The quantities G21�Q ,
� and S21�Q ,
� are di-
mensionless. The presence of the four roots in
G21�Q ,
� can be noted.
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polar semiconductors. This kind of experiment �experimental
data are available in Refs. 3 and 4� reveals the spectrum of
elementary excitations, which is composed of single-particle
excitations and collective modes. It has been shown that the
spectrum should display four bands: two of them correspond
to transitions between states in the continuum of single-
particle excitations �one for particles with group velocity in
the direction of the momentum transfer in the scattering
event, and the other for those with opposed group velocity;
see Appendix A�. The other two excitations are of a collec-
tive character—plasmon-like charge density oscillations—
with bands centered at frequencies below and above those in
the bands associated with the single-particle excitations. As
noted in Sec. I we have here a situation similar to the one
that is present in the Raman spectrum of a double-
photoinjected plasma in bulk semiconductors.9,10

Moreover, as has been shown, the Raman spectrum is
strongly dependent on several characteristics of the sample
and on the experimental protocol. We stress that notable dif-
ferences show up in the relative positioning of the bands, and
their relative intensities; bands may be prohibited by the ef-
fect of momentum and energy conservation laws. This is a
consequence of the strong influences, in each experiment, of
the momentum transfer �Q �dependent on the laser photon
frequency and the experimental geometry�, the QW width,
the density of carriers, and the temperature. Evidently this
permits the consideration of an enormous number of situa-
tions, and in Sec. III we have presented a few examples �see
Figs. 2, 4, 6, 8, and 9�, and discussed each one.

Finally, we would like to add a brief comment, related to
the fact that the growth of quantum wells in heterostructures
produces fractal-like structured interfaces, as an inevitable
result.16 Thus, such roughness, which, in the case of very
narrow QWs �say, widths up to 
10 nm� is on the same
scale as the nanometric-scale QW width, can greatly affect
the physical �optical, transport, etc.� properties in these sys-
tems. In such cases, the roughness of the boundaries needs to
be taken into account since it can act as a strong scatterer. An

illustrative calculation corresponding to a computationally
modeled QW was reported by Runge and Zimmermann.17

They apply their results to the study of absorption and lumi-
nescence in QWs, showing that “anomalous” results are to be
expected �that is, different from the result obtained for the
ideal QW of quite smooth interfaces�. The characterization of
the “quality” of the interfaces—in the sense of deviation
from the smooth interfaces with fractal dimension two to
fractional dimensions smaller than two—by means of optical
spectroscopy is reported in Ref. 18. The fractal aspects of the
question are discussed in Ref. 19, where, for the analysis of
the data, the use of an unconventional statistical mechanics20

in the Renyi approach21 is considered.
Interface structural properties in quantum wells have been

extensively investigated, as they are extremely important in
the high performance of electronic and optoelectronic QW-
based devices.22 Direct observations of the interfacial char-
acteristics have been obtained by scanning tunneling micros-
copy, atomic force microscopy, and transmission electron
microscopy.23 Besides the optical characterization using
photoluminescence,18 another optical measurement can be
the resonant Raman scattering considered here. However, we
have not introduced a treatment that can give information on
the fractal dimension of the interfaces as done in Ref. 18
since we have considered not very narrow QWs, i.e., widths
larger than 10 nm. As shown in Ref. 18, the influence on the
results of the fractal subnanometric inhomogeneities on the
interfaces is less and less effective as the QW-width in-
creases. This is a consequence of LQW becoming order�s� of
magnitude larger than the homogeneities on the interfaces.
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APPENDIX A: THE EXCITATION DIAGRAM

Let us consider the excitation spectrum of the electrons
involving the lowest two sub-bands. The single-particle tran-
sitions are

�1, ± kx,ky� → �2, ± kx + Q,ky� , �A1�

where we have taken the x axis in the direction of the mo-
mentum transfer Q. These transitions are illustrated in Fig.
11, where we can see the differences between the cases when
the group velocity of the electron is in the direction of Q and
when it is in the opposite direction, but which corresponds to
the same kinetic energy �2k�

2 /2m*. Moreover, the quantity

F21� �Q,
� = �
k�

��k� − kF�
�
0 − �
 + ��2/m*�kxQ

, �A2�

corresponding to the pure quantum state, i.e., Eq. �12� at
T0=0 K and subband l=1 partially occupied, has poles at the

FIG. 6. The Raman spectrum in case 3 of Table I. The band
from charge-density excitations, CD−, and the two overlapping
bands associated with single-particle excitations, SP− and SP+, can
be observed. The higher-in-frequency band due to collective exci-
tations, CD+, is outside the figure.
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single-particle excitation energies in units of �
0, z=
 /
0,
in the continuum indicated by the full segment in the interval
between 1−�kFQ /m*
0 and 1+�kFQ /m*
0, and it has the
form shown in Fig. 9 �we have used Q=105 cm−1, �
0
=47 meV�. The intersection of F21� �Q� with −1/V2D�Q�
—providing the zeros of G21�Q ,
� in this case—completes
the spectrum of excitations indicating the position of the en-
ergies of the collective modes, the lower one CD− and the
upper one CD+ corresponding to charge density �plasmon-
like� oscillations. As noted in the main text, there is in fact
no intersection on the low frequency side of the figure, indi-
cating that, in this case, the low-frequency collective excita-
tion is forbidden.

APPENDIX B: THE SCATTERING CROSS SECTION

The differential cross section for scattering of a flux of
incident photons with momentum �kL and energy �
L, pro-

ducing scattered photons with momentum �kS—implying a
momentum transfer �Q=�kL−�kS—and energy �
S, and
thus the energy transfer being �
=�
L−�
S, is given by the
number of photons that enter the detector in a solid angle d�
per unit of time divided by the flux of incident particles. In a
calculation of all orders in perturbation theory it follows that
�e.g., Ref. 24�.

d2�

d�d

� �

−�

�

d�e−i
�Tr�R̃Q
† ���R̃Q����gc� , �B1�

where operator R̃���—given in the interaction represen-
tation—satisfies the integral equation

FIG. 7. The quantities G21�Q ,
�, F21� �Q ,
�,
and S21�Q ,
� versus 
 /
0 in case 4 of Table I.
The quantities G21�Q ,
� and S21�Q ,
� are di-
mensionless. The four roots are present in
G21�Q ,
�.
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R̃Q�t� = ṼQ�t��1 +
1

i�
�

−�

t

dt�R̃Q�t��� , �B2�

with Ṽ�t� being the interaction potential, that of the electrons
with the electromagnetic field in the case considered here,
and �gc being the grand-canonical statistical operator. Index
Q indicates that the matrix element between the incident
plane-wave state �kL� and the scattered plane-wave state �kS�,
of the photons has been used. It can be noted that Eq. �B2�
permits a solution by iteration, to obtain

R̃Q�t� = ṼQ�t��1 +
1

i�
�

−�

t

dt�ṼQ�t�� + � 1

i�
�2

� �
−�

t

dt�ṼQ�t���
−�

t�
dt�ṼQ�t�� + . . . 	 , �B3�

a Born series in perturbation theory involving the interaction
in all orders.

The case of the interaction potential between the electrons
and the electromagnetic field—of vector potential
A—contains two types of contributions involving the cou-
pling of electron charge density with the electromagnetic
field, associated with terms containing the scalar product
AL ·AS and terms with the presence of AL ·p and AS ·p �p is
the electron momentum operator�. The first produces scatter-
ing in first order in Eq. �B1�, while the second must go to
second order. The former contribution is lost in the back-
ground coming out of the barriers, but the second can be
detected in resonant scattering, when a photon energy �
L
nearing, or slightly exceeding the band gap energy is used.
The resulting cross section is proportional to the electron
charge density fluctuation, and after use of the usual
fluctuation-dissipation theorem in the linear regime around
equilibrium, as is the case here �we recall that for systems in
a nonlinear regime out of equilibrium a generalized FDT
appropriate to such conditions should apply; see Chap. 5 in
Ref. 20 and a direct application in Ref. 26�, it follows that
�e.g., Refs. 6 and 25�

d2� � �M�
��2�n
 + 1�Im���̂Q��̂Q
† �
�� , �B4�

where ��¼�� indicates the Fourier transform in time and
space of the corresponding Green function involving the
charge density �̂, n
= �exp��
 /kBT�−1�−1 �then n
+1= �1
−exp�−�
 /kBT��−1�, and

�M�
��2 = � MLS

�EG + E11
cv − �
S�

�2

, �B5�

at the zone center: E11
cv is the sum of the energies of the

lowest level in the conduction, with the upper one being in
the valence band in the QW and the term MLS corresponding

FIG. 8. The Raman spectrum in case 4 of Table II. The band
from charge-density excitations, CD−, the two overlapping bands
associated with single-particle excitations, SP− and SP+, can be ob-
served. The higher-in-frequency band due to collective excitations,
CD+, is outside the figure.

FIG. 9. Quantity F21� �Q ,
� of Eqs. �19� and �20�, in scaled units
versus the scaled frequency 
 /
0. The blackened segment �in the
interval 0.94–1.06� corresponds to the continuum of single-electron
excitations. Q=105 cm−1, NS=1012 cm−2, �
0=47 meV, LQW

*

=10 nm were used. The intersections of the figure with the horizon-
tal full line corresponds to the zeros of G21�Q ,
�: the two associ-
ated with single-electron excitations around 
=
0 and the upper-
collective excitation at 

2.1
0, outside the figure; the lower-
collective excitation is forbidden.

TABLE II. Roots of G21�Q ,
�.

NS �cm−2� LQW
* �nm� Q �cm−1� SP±�
0� CD+�
0�

1011 20 104 
1 
5.3

1011 10 104 
1 
2.1

1011 10 105 
1 
1.1

1011 50 104 
1 
27.9

1012 10 105 
1 
2.1

1012 20 105 
1 
5.3

1012 20 104 
1 
44.1

1012 10 104 
1 
11.8

1012 50 104 
1 
270.4
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to MLS= �1c�AL .p�1v��1v�AS .p�1c�. In Eq. �B5� a pole is
present at �
=EG+E11

cv−�
L �once 
L=
+
S�, characteriz-
ing the resonant scattering. When considering the transitions
between the levels l=1 and l=2 in the conduction band in
the scattering event, the calculation of the Green function
�dealing with Coulomb interaction in RPA� leads to the result
of Eq. �7�.

It can be noted that Eq. �B4� is the expression for the
differential cross section in Raman scattering by electrons,25

with the amplitude M and the Green function to be calcu-
lated for each particular case. The Fourier transform of the
charge density is given by

�̂Q = �
nk�

Cn
†�k� + Q�Cn�k�� , �B6�

in the case of the electrons in the QW. On the other hand the
equation for the Green function is27

�
���̂Q��̂Q
† ;
�� =

1

2�
���̂Q, �̂Q

† �� + ����̂Q,Ĥ���̂Q
† ;
�� ,

�B7�

where ��Â � B̂ ;
�� is the Fourier transform in time of the

Green function of quantities Â and B̂, Ĥ is the system Hamil-
tonian, and �¼� indicates average value over the equilibrium
grand ensemble.

The calculation follows in the same way as is usual for
the 3D case, except that interpretation of the index k in 3D is
replaced by nk�, the indexes of the electrons in the QW. The
final result is25

�1 − VQL�Q,
��G�Q,
� −
1

2�
L�Q,
� = 0, �B8�

where

L�Q,
� = �
n,n�,k�

fn�k�� − fn��k� + Q�

�n��k� + Q� − �n�k�� − �
 − i�s
,

�B9�

and G is the Green function of Eq. �B7�.
When we restrict the calculation to include only the two

lowest levels �n=1 and n�=2� the results of Eqs. �8�–�18�
follow.

FIG. 11. Schematic representation of the single-electron transi-
tions �1, ±kx ,ky� to �2, ±kx+Q ,ky�.

FIG. 10. The Raman spectrum �in arbitrary
units� in conditions similar to that of the experi-
ment of Ref. 4. It can be noticed that there are
only two bands, corresponding to those observed
in the experiment: They consist of the two over-
lapping bands due to single-particle excitations,
and the one associated with the upper collective
charge density excitation, indicated in the upper
right inset. It can be noted that the separation of
both lines is nearly 7.8
0 indicated by the arrow.
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