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In this paper we examine and cross-check the information that can be extracted from different photocon-
ductivity experiments. First, taking account of localized states in the band gap of a semiconductor, we give an
analytical expression for the coefficient � that relates the dc photoconductivity � to the generation rate G by
�=� ln��� /� ln�G�. We demonstrate that in the very simple case when all the gap states have the same capture
cross section, it is possible to perform a density of states spectroscopy from the variation of � with temperature
and/or generation rate. We also propose a simplified expression for � in the case when different species of
states are present within the gap of the semiconductor. Second, we put into evidence the links existing between
three techniques apparently very different: the dc photoconductivity, the steady-state photocarrier grating, and
the modulated photocurrent techniques. The links between the results of these three techniques are explained
and illustrated by means of numerical simulations. Finally, we show that the density of states distribution, the
capture cross sections of the states, and to a smaller extent, the extended-states mobility of photoconductive
semiconductors can be obtained from the comparison of the results of these techniques.
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I. INTRODUCTION

Except for very pure single crystalline semiconductors, a
significant density of defect states is known to exist within
the forbidden gap of these materials. These localized states
have a major influence on the optoelectronic properties of the
semiconductor, providing efficient recombination centers
which determine the electrical transport properties and the
photoconductivity. It is thus not surprising that several meth-
ods have been proposed to probe the density of states �DOS�
as a function of energy. In this work we will concentrate on
three of these methods, namely the modulated photoconduc-
tivity �MPC�, the steady-state photocarrier grating �SSPG�,
and the steady-state photoconductivity �SSPC�.

The MPC technique, proposed by Oheda,1 has proved to
be a powerful and convenient method to study the DOS dis-
tribution of amorphous and crystalline intrinsic semiconduc-
tors. In this experiment the sample is illuminated by a steady
flux of light slightly modulated at a pulsation �. The modu-
lus of the resulting ac current, as well as the phase shift of
this current referred to the excitation, are recorded and used
to extract information on the DOS. In previous publications
we have shown that two regimes have to be considered: the
“high-frequency” �MPC-HF� regime2,3 and the “low-
frequency” �MPC-LF� regime.4,5

The SSPG technique was introduced in 1986 by Ritter et
al.6 to measure the ambipolar diffusion length �Lamb� of low-
mobility semiconductors. Balberg and co-workers applied
the SSPG method in conjunction with steady-state photocon-
ductivity to estimate the DOS of amorphous7,8 and microc-
rystalline silicon9 by means of computer simulations based
on a presuggested DOS. More recently, we have proposed a
procedure to obtain the DOS directly from the application of
an explicit reconstruction formula to SSPG measurements.10

We have analytically solved the generalized equations de-

scribing charge transport and recombination under grating
conditions, and we have applied suitable simplifying as-
sumptions to achieve a DOS spectroscopy.11

The SSPC is one of the most widely studied properties of
semiconductors. A good deal of theoretical work has been
devoted to explain the dependence of the photoconductivity
upon temperature or light flux, with the aim to derive defect
parameters of the material. Experimentally, for different
semiconductors such as CdS, Sb2S3, or hydrogenated amor-
phous silicon �a-Si:H�, a power-law dependence of the pho-
toconductivity � on the light flux F has been observed, �
�F�. For a-Si:H in particular, two prominent features that
characterize its photoconductivity are the thermal quenching,
i.e., the decrease of � with temperature over a limited tem-
perature range, and the superlinearity of � values, i.e., �
�1 over the same temperature range where the thermal
quenching takes place. These phenomena, also observed in
some crystalline semiconductors, have been explained by
Rose12 as due to a change in the recombination channel be-
tween two defect states with different capture coefficients—a
process known as sensitization. The Rose model also pro-
vided explicit dependence of � with the temperature and the
DOS, showing that in an exponentially varying DOS—for
instance, the conduction band tail of a-Si:H—the exponent
would be given by �=Tc / �T+Tc�, where T is the temperature
and Tc the characteristic temperature that describes the expo-
nentially decreasing conduction band tail. Following this
pioneering work, several authors explored the connection be-
tween the � exponent and the DOS. Liu and Wagner13 pro-
vided a simple analytical expression for the � coefficient in
the case of a known DOS, and Mendoza and Pickin14 were
able to deduce an explicit formula to get the DOS at the
electron quasi-Fermi level from � measurements. These au-
thors, however, neglected in their treatment the holes contri-
bution and restricted their analysis to a single species of
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monovalent gap states. More comprehensive model-
simulation studies have been developed by Tran15 as well as
Shen and Wagner,16 who successfully reproduced the experi-
mentally observed thermal quenching of the photoconductiv-
ity and superlinearity of �. However, these complete models
could only be treated through numerical calculations, and no
analytical expression for � as a function of the DOS param-
eters has been provided by these authors.

In this work we give an analytical expression for � valid
for an arbitrary DOS distribution, and under certain approxi-
mations we propose a very simple formula relating the DOS
at the electron quasi-Fermi level to experimental quantities.
In Sec. II we present the calculation from which we deduce
the analytical expression for �. It is shown in Sec. III how
this expression can lead, under some conditions, to the de-
termination of the DOS of the semiconductor. This calcula-
tion is compared in Sec. IV to previous calculations made to
determine the DOS from either MPC or SSPG techniques. In
Sec. V we illustrate these calculations and experimental re-
sults by means of simulations that show how some of the
parameters of the DOS can be deduced from SSPC measure-
ments associated with other techniques, and finally we con-
clude in Sec. VI.

II. CALCULATION OF �

Let us consider an intrinsic semiconductor containing m
species of monovalent states within the gap. The species—or
classes—of states were defined by Simmons and Taylor17

according to their respective capture coefficients for elec-
trons �Cn

i � and holes �Cp
i �, with 1� i�m. For this semicon-

ductor, enlightened by a uniformly absorbed dc light flux
creating free carriers by band-to-band generation, the conti-
nuity and charge neutrality equations can be written

�n

�t
= G − �

1

m �
Ev

Ec

�n̄i�1 − f i� − en
i f i�NidE +

1

q
div�Jn� , �1�

�p

�t
= G − �

1

m �
Ev

Ec

�p̄if i − ep
i �1 − f i��NidE −

1

q
div�Jp� , �2�

div�	� =
q



�p − p0 − �n − n0� − �

1

m �
Ev

Ec

Ni�f i − f0�dE� .

�3�

In these equations, n �p� is the density of electrons �holes� in
the extended states �n0 and p0 being the values under dark
equilibrium conditions�, n̄i=nCn

i �p̄i= pCp
i � is the capture

rates of electrons �holes� from the ith species of trap, en
i �ep

i �
is the energy-dependent emission rates of electrons �holes�
from the ith species of trap, Jn �Jp� is the current density of
electrons �holes�, G is the band-to-band generation rate, 
 is
the dielectric constant, q is the absolute value of the electron
charge, 	 is the applied electric field between both electrodes,
Ni is the density of states of species i , f i is the occupation
function of the ith species of trap under illumination, and f0
is the occupation functions under dark equilibrium �the same

for all the traps�. In our analysis we consider only band-to-
band generation, neglecting optical transitions involving lo-
calized states due to their much lower probability.

In these equations some quantities are energy dependent
and some are not. The densities of states Ni, the occupation
functions f i, and the emission rates of electrons and holes en

i

and ep
i are all energy-dependent quantities, but to lighten the

equations we have omitted the �E� for all of them. We have
assumed that the capture coefficients Cn

i and Cp
i do not de-

pend on energy. The relation between the emission rates and
the capture coefficients is given by a detailed balance study
of the exchange of carriers under thermal equilibrium condi-
tions, between the extended states and a trapping level at
energy E, leading to

en
i = Cn

i Nc exp	−
Ec − E

kBT

,ep

i = Cp
i Nv exp	−

E − Ev

kBT

 ,

kB being the Boltzmann constant, T the absolute temperature,
and Nc �Nv� the equivalent densities of states at the bottom
�top� of the conduction �valence� band. Under nonequilib-
rium, we make the usual assumption that the capture and
emission rates remain unaltered with respect to equilibrium
conditions.

As a matter of simplification, considering uniform and
steady-state illumination and ohmic contacts, we can assume
that �n /�t=0, �p /�t=0, div�J�=0, and div�	�=0. The ex-
pression for f i is

f i�E� = �n̄i + ep
i �E���i�E�,

with

�i�E� =
1

n̄i + p̄i + en
i �E� + ep

i �E�
. �4�

From the continuity Eq. �1�, the electron �hole� lifetime
�n ��p� can be defined. Indeed, a very simple calculation
leads to

G = �
1

m �
Ev

Ec

�n̄ip̄i − en
i ep

i ��iNidE , �5�

where the product en
i ep

i can be neglected.18 Thus, writing G
=n /�n or G= p /�p, one ends with

1

�n
= �

1

m

Cn
i p̄i�

Ev

Ec

�iNidE

and

1

�p
= �

1

m

Cp
i n̄i�

Ev

Ec

�iNidE . �6�

Before calculating an expression of � we present in Fig. 1
an example of the states occupancy under dark equilibrium
and under steady-state illumination. In Fig. 1�a� we present a
DOS that could be representative of hydrogenated amor-
phous silicon, with two band tails and Gaussian-shaped deep
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defect densities. Note that the energy scaling is referenced to
Ec. For simplicity all the states have been given the same
capture coefficients for holes and electrons, so that we will
have to deal with a single occupation function under illumi-
nation �i=1�. We present the occupation functions under dark
and under two different fluxes of 1013 and 1015 cm−2 s−1

�curves from right to left, respectively� in Fig. 1�b�, and the
resulting states occupancy �i.e., the product N�E�� f�E�� un-
der dark �dashed lines� and for the highest flux �full lines� in
Fig. 1�c�. These figures are the results of numerical simula-
tions described and used in more details in Sec. V. The oc-
cupation function under dark is calculated from the determi-

nation of the electrical neutrality �Eq. �3� with div�	�=0�,
assuming that the valence band tail states are of donor type
�neutral when filled� and the conduction band tail states are
of acceptor type �neutral when empty�. We deduce from this
calculation the dark Fermi level energy position Ef �vertical
dashed line in Fig. 1�c�� and the extended-states density of
electrons and holes, n0 and p0, respectively. Under dark equi-
librium the occupation function is a one-step function,
roughly speaking equal to 0 for EEf and to 1 for E�Ef.
Under illumination, the density of carriers in the extended
states and the occupation function �given by Eq. �4�� are
calculated from the numerical resolution of the electrical
neutrality �Eq. �3� with div�	�=0� and one of the two conti-
nuity �Eqs. �1� and �2�� equations. A typical shape of f�E� is
a two-step function �Fig. 1�b��, where the energy extent of
the middle step around Ef depends on the light flux. It can be
seen in Fig. 1�c� that the acceptor states located above Ef are
partially filled when the flux increases from
0 to 1015 cm−2 s−1. Note also that the conduction band tail
states are always almost empty. A significant filling, though
probably partial, of these states would need a very high flux,
at least in the present example. This illustration is in com-
plete agreement with the detailed study presented years ago
by Simmons and Taylor,17 which is why we will not enter
into further details.

To calculate � we will assume that the applied flux is
made of a main component plus a small perturbation. To the
first order, most of the quantities Q appearing in Eqs. �1�–�3�
can be written as Q0+�Q. From a logarithmic derivative, one
can deduce the expression of �f i

�f i = f i	 �n̄i

n̄i + ep
i −

�n̄i + �p̄i

n̄i + p̄i + en
i + ep

i 
 . �7�

Introduction of Eq. �7� into Eqs. �1�–�3� gives, for the conti-
nuity equations,

0 = �G − �n�
1

m � Cn
i �1 − f i��p̄i + ep

i ��iNidE

− �p�
1

m � Cp
i f i�n̄i + en

i ��iNidE , �8�

and for the charge neutrality equation

�n�1 + �
1

m

Cn
i � Ni�1 − f i��idE�

= �p	1 + �
1

m

Cp
i � Nifi�idE
 , �9�

where the integrals are taken from Ev to Ec. Replacement of
Eq. �9� into Eq. �8� gives

�G =
�p

�p�
=

�n

�n�
, �10�

where

FIG. 1. �Color online� �a� Density of states typical of hydrogen-
ated amorphous silicon. �b� Plots of different occupation functions
vs energy under dark equilibrium and for different light fluxes �1013

and 1015 cm−2 s−1�, from right to left of the figure. The occupation
functions depart from 0 at a lower energy with increasing flux. �c�
The states occupancy �N�E�� f�E�� under dark �dashed lines� and
under a 1015 cm−2 s−1 flux �full lines�. The energy position of the
dark Fermi level is shown by the vertical dashed line.
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1

�n�
= �

1

m

Cn
i � �1 − f i��p̄i + ep

i ��iNidE + �
1

m

Cp
i � f i�n̄i + en

i ��iNidE

�1 + �
1

m

Cn
i � �1 − f i��iNidE�

	1 + �
1

m

Cp
i � f i�iNidE
 , �11�

and

1

�p�
= �

1

m

Cp
i � f i�n̄i + en

i ��iNidE + �
1

m

Cn
i � �1 − f i��p̄i + ep

i ��iNidE

	1 + �
1

m

Cp
i � f i�iNidE


�1 + �
1

m

Cn
i � �1 − f i��iNidE� . �12�

These two quantities, �n� and �p�, can be considered as the
lifetime of the excess carriers created by the excess genera-
tion rate �G, and they are different from the electron and
hole lifetimes defined in Eq. �6�.

Introducing the photoconductivity � and the electron
�hole� extended-states mobility �n ��p�, we define the factor
� by �=� ln��� /� ln�G� and we can write

�
�G

G
=

��

�
=

q�n�n + q�p�p

q��n�n + �p�p�G
=

�n�n� + �p�p�

�n�n + �p�p

�G

G
, �13�

which, from the above equations, gives a general expression
for �,

� =

1

��n�n + �p�p���n	1 + �
1

m

Cp
i � f i�iNidE
 + �p	1 + �

1

m

Cn
i � �1 − f i��iNidE
�

�
1

m

Cn
i � �1 − f i��p̄i + ep

i ��iNidE	1 + �
1

m

Cp
i � f i�iNidE
 + �

1

m

Cp
i � f i�n̄i + en

i ��iNidE	1 + �
1

m

Cn
i � �1 − f i��iNidE
 .

�14�

We shall try to simplify Eq. �14� to obtain more information, especially on the DOS. If we neglect the 1 in the parenthesis
�1+�1

mCp
i � f i�iNidE� and �1+�1

mCn
i ��1− f i��iNidE�, which is equivalent to assuming that charge neutrality is mainly controlled

by trapped carriers rather than by free carriers �as usual in defective semiconductors�, and if we multiply by np the numerator
and denominator of Eq. �14�, we obtain

� =

G

��n�n + �p�p���n�n�
1

m

p̄i� f i�iNidE + �p�p�
1

m

n̄i� �1 − f i��iNidE�
�

1

m

n̄i� �1 − f i��p̄i + ep
i ��iNidE�

1

m

p̄i� f i�iNidE + �
1

m

p̄i� f i�n̄i + en
i ��iNidE�

1

m

n̄i� �1 − f i��iNidE

. �15�

To simplify the expression �15� we define the coefficients An, Ap, Bn, and Bp by
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�
1

m

p̄i� f i�iNidE

= �
1

m � p̄in̄i�i2NidE�1 +

�
1

m � p̄iep
i �i2NidE

�
1

m � p̄in̄i�i2NidE
= �

1

m � p̄in̄i�i2NidE�1 + Ap� , �16�

�
1

m

n̄i� �1 − f i��iNidE

= �
1

m � p̄in̄i�i2NidE�1 +

�
1

m � n̄ien
i �i2NidE

�
1

m � p̄in̄i�i2NidE
= �

1

m � p̄in̄i�i2NidE�1 + An� , �17�

�
1

m

n̄i� �1 − f i��p̄i + ep
i ��iNidE

= �
1

m

n̄ip̄i� �iNidE − �
1

m

n̄i2p̄i� �i2NidE

= G − �
1

m

n̄i2p̄i� �i2NidE = G�1 − Bn� , �18�

and,

�
1

m

p̄i� f i�n̄i + en
i ��iNidE

= �
1

m

n̄ip̄i� �iNidE − �
1

m

n̄ip̄i2� �i2NidE

= G − �
1

m

n̄ip̄i2� �i2NidE = G�1 − Bp� . �19�

Using these simplified notations—An, Ap, Bn, and Bp—one
finally ends with

1

�
− 1 =

�1 + Ap��1 − Bn −
�n�n

�n�n + �p�p
� + �1 + An��1 − Bp −

�p�p

�n�n + �p�p
�

�n�n

�n�n + �p�p
�1 + Ap� +

�p�p

�n�n + �p�p
�1 + An�

. �20�

Note that, apart from the assumption that the electrical neu-
trality is mostly controlled by trapped carriers, up to here
there is no approximation.

To go further, i.e., to extract some information on the
DOS, we have simplified An, Ap, Bn, and Bp with approxi-
mations already used in other calculations.5,11 For instance,
the integral appearing in Eq. �17� can be simplified as

Cn
i�

Ev

Ec

�1 − f i��iNidE

� Cp
i Cn

i p�
Etp

i

Etn
i

��i�2NidE

+ Cn
i�

Ev

Ec

en
i ��i�2NidE

� �t
i	Cn

i Cp
i p�t

i�
Etp

i

Etn
i

NidE + Cn
i Nn

i


� �t
i	 1

�n
i + Cn

i Nn
i 
 , �21�

where �n
i is the electron “lifetime” for this species of states

�see Eq. �6��, such that 1 /�n=�1
m1/�n

i , �t
i is given by

�t
i =

1

Cn
i n + Cp

i p
=

1

G�Cn
i �n + Cp

i �p�
, �22�

and Nn
i =kBTN�Etn

i �, N�Etn
i � being the density of states at the

quasi-Fermi level �Etn
i� for electrons trapped in the ith spe-

cies of states. We will also call �p
i the hole “lifetime” for this

species of states �Eq. �6�� and Np
i =kBTN�Etp

i �, N�Etp
i � being

the density of states at the quasi-Fermi level �Etp
i � for trapped

holes. With these approximation we can write

An =

�
1

m

n̄i�t
iNn

i

�
1

m

p̄in̄i�t
i2�

Etp
i

Etn
i

NidE

, Ap =

�
1

m

p̄i�t
iNp

i

�
1

m

p̄in̄i�t
i2�

Etp
i

Etn
i

NidE

,
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Bn =

�
1

m

p̄in̄i2��t
i�2�

Etp
i

Etn
i

NidE

G
, Bp =

�
1

m

p̄i2n̄i��t
i�2�

Etp
i

Etn
i

NidE

G
,

�23�

where the integrals are now taken from Etp
i to Etn

i . Note that
these approximate expressions have to be used with caution.
Indeed, by using Eqs. �23� one would obtain 1−Bn−Bp=0,
whereas the correct expression is

1 − Bn − Bp =
1

G
�

1

m �
Ev

Ec

n̄ip̄i�en
i + ep

i �Ni��t
i�2dE . �24�

As we will see below, this quantity may have some influence
on the final calculation.

III. DETERMINATION OF THE DENSITY OF STATES

A. One species of states

Before dealing with the case of one species of states, let
us modify slightly expression �20�, which can be written

1

�
− 1 =

Ap�1 − Bn −
�n�n

�n�n + �p�p
� + An�1 − Bp −

�p�p

�n�n + �p�p
� + 1 − Bn − Bp

�n�n

�n�n + �p�p
�1 + Ap� +

�p�p

�n�n + �p�p
�1 + An�

. �25�

If we consider only one species of states, using expressions
�23� and �24�, the first order approximations for the coeffi-
cients are

An = Cn�nNn; Ap = Cp�pNp; Bn = Cnn�t; Bp = Cpp�t;

and 1 − Bn − Bp � Anp̄�t + Apn̄�t.

For a semiconductor where electrons are the majority carri-
ers, such that �n�n��p�p, then we easily obtain

1

�
− 1 =

An

1 + Ap
. �26�

Assuming that the denominator is almost equal to 1 �a rea-
sonable assumption if the holes contribution is negligible�,
Eq. �26� transforms into

N�Etn�Cn

�n
=

G

kBT�nn
	 1

�
− 1
 =

qG

kBT�
	 1

�
− 1
 . �27�

Since the electrons are the majority carriers, Etn�Efn, Efn
being the quasi-Fermi level for free electrons under illumi-
nation. The energy position can be readily calculated from
the photocurrent value as

Ec − Efn = kBT ln	Sq	�nNc

Iph

 , �28�

where S is the conduction cross-sectional area in which the
photocurrent Iph is flowing and Nc the equivalent density of
states at the bottom of the conduction band.

Equations �27� and �28� are the basic ones that allow us to
use the evolution of � with flux and/or with temperature to
perform a spectroscopic evaluation of the DOS interacting
with free electrons. If we considered the case where holes
were the majority carriers ��p�p��n�n�, we would obtain
expressions similar to Eqs. �27� and �28�, replacing all the
n’s by p’s, Ec−Efn by Efp−Ev, and Nc by Nv �the equivalent
density of states at the top of the valence band�. The spec-
troscopy would be that of the DOS interacting with free
holes.

B. Different species of states

If one considers a material for which �n�n��p�p, Eq.
�24� leads to

1

�
− 1 =

− ApBn + An�1 − Bp� + �1 − Bn − Bp�
�1 + Ap�

=
Num

Den
.

Replacing Eqs. �16�–�19� into this expression leads to
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Num =

− �
1

m � p̄iep
i �i2NidE�

1

m � n̄i2p̄i�i2NidE + �
1

m � n̄ien
i �i2NidE�

1

m � p̄i�n̄i + ep
i ��n̄i + en

i ��i2NidE

G�
1

m � p̄in̄i�i2NidE

+
1

G
�

1

m �
Ev

Ec

n̄ip̄i�en
i + ep

i ��i2NidE . �29�

The terms containing products of the emission rates can be neglected in front of those terms containing integrals of the DOS
between Etp

i and Etn
i . With these approximations Eq. �29� transforms into

Num =

�
1

m � n̄i2p̄i�i2NidE��
1

m � n̄ien
i �i2NidE − �

1

m � p̄iep
i �i2NidE�

G�
1

m � p̄in̄i�i2NidE

+
1

G
�

1

m �
Ev

Ec

n̄ip̄i�en
i + ep

i ��i2NidE . �30�

If we write

Gi =
n̄ip̄i

n̄i + p̄i�
Etp

i

Etn
i

NidE = n̄ip̄i�t
i�

Etp
i

Etn
i

NidE =
n

�n
i , �31�

then, with the usual approximate expressions, we get

Num =

�
i=1

m �n̄iNn
i �t

i � �
j=1

m

Gj�t
j�p̄i + n̄j�� + �

i=1

m � p̄iNp
i �t

i � �
j=1

m

Gj�t
j�n̄i − n̄j��

G�
i=1

m

Gi�t
i

. �32�

To further simplify this expression, one has to make more
assumptions. A great simplification arises if one assumes that
the holes contribution can be fully neglected. In this case one
ends with

1

�
− 1 =

�
i=1

m

Nn
i

�
i=1

m

Gi�t
i

=

�n�
i=1

m

Nn
i

�n�
i=1

m
1

Cn
i �n

i

, �33�

from which the density of states cannot be directly deduced
but, as we will see later, some interesting information can be
extracted. The denominator of the right-hand side of Eq. �33�
can be considered as the reciprocal of an average value of the
capture coefficient of the recombining states. In some cases,
as we will see later, this denominator can be equal to the
reciprocal of the capture coefficient of the dominant recom-
bining state, and the term on the right-hand side of Eq. �33�
can be compared to the coefficient An defined in the case of
a single species of states.

Of course, the drastic approximation of fully neglecting
the holes contribution may not always be valid, and even for
the same material it may depend on the experimental condi-

tions. Note that the holes term that we have neglected in Eq.
�32� to obtain Eq. �33� can be negative. If this term turns out
to be predominant, it means that � will be larger than 1. This
“superlinear” behavior of �, usually explained in terms of a
sensitization effect, is often met in a-Si:H, especially at low
temperatures.

To illustrate and clarify the calculations developed above
we have used numerical simulations, examples of which will
be presented in Sec. V. Prior to that, we would like to show
that links between the above calculations and previous de-
velopments concerning other experimental methods can be
drawn.

IV. COMPARISON WITH OTHER EXPERIMENTS

In this section we will show that the above calculation can
be linked to previous calculations developed for the SSPG
and MPC techniques. However, for this purpose we will only
consider a single type of state because our previous calcula-
tions on SSPG and MPC were done under this assumption.

A. The steady-state photocarrier grating technique

The SSPG experiment was proposed in 1986 to determine
the ambipolar diffusion length of the minority carriers.6
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Many laboratories have adopted this technique, particularly
well suited for material presenting a small diffusion length,
and several works concerning this technique and its validity
have been published. The basis of the experiment consists of
illuminating the part of the sample located between two co-
planar electrodes with two laser beams having an angle �
between them, an intense one of intensity I1 and another one
attenuated to a smaller intensity I2. If the two beams are
coherent and have the same polarization, a light grating de-
velops between the two electrodes with an intensity

I�x� = I1 + I2 + �02�I1I2 cos	2�x

�

 ,

where x is the space coordinate perpendicular to the elec-
trodes, �0 is a factor taking account of the quality of the
interferences �0�0�1�, and � is the grating period �de-
pendent on ��. When the two beams have perpendicular po-
larizations and do not interfere, the light intensity impinging
on the sample is simply I0= I1+ I2, giving rise to a generation
rate G0=G1+G2, and the current density flowing through the
sample under the applied electric field is j0. In practice the
less intense beam is chopped at a low frequency and one
measures the resulting current by means of a lock-in ampli-
fier. When the two beams do not interfere, the signal detected
by the lock-in amplifier is proportional to jwoi= j0− j1, j1 be-
ing the current created by the illumination of the intense
beam �I1� alone. When a light grating is developed on the
sample, the signal detected by the lock-in amplifier is jwi
= j0− j1+�j. In the standard SSPG experiment the ambipolar
diffusion length is deduced from the evolution of �
= jwi / jwoi as a function of �.

Though the SSPG is usually used, for instance in a-Si:H,
to derive information on the minority carriers, in recent pub-
lications we have shown that it is possible to deduce some
part of the DOS distribution interacting with the majority
carriers, from the value of � taken at large grating
periods.10,11 We show in the following that a link can be
drawn between this previous result and the present calcula-
tions.

According to our previous publications,10,11 the expres-
sion of the excess current density �j when a light grating is
developed onto the sample is

�j = −
q2

2


�G2

�d

	

DEN

���nCp� f�NdE + �pCn� �1 − f��NdE� , �34�

where �d is the dielectric relaxation time and �G
=2�0

�G1G2. To give the expression of DEN, we assume that
the applied electric field is low, so that the terms involving
the field contribution can be neglected �for low electric field
regime, see Ref. 11 and references therein�. We will also
write

D� =� Cn�1 − f��p̄ + ep��NdE	1 + Cp� f�NdE

+� Cpf�n̄ + en��NdE	1 + Cn� �1 − f��NdE
 ,

�35�

with D� being simply the denominator of � in the case of a
single species of states �see Eq. �14��. We then have

DEN =
D�

2

�d
2 �1 + k2Ln

2�d

�n

� Cpf�n̄ + en��NdE

D

+ k2Lp
2 �d

�p

� Cn�1 − f��p̄ + ep��NdE

D

+ ��aK	 �p�

�p
+

�n�

�n

 + k4Ln

2Lp
2�d

D�n�p


2

, �36�

where ��a= ��n�n��p�p� / ��n�n+�p�p� and K=k2kBT /q
with k=2� /�. In the limit of large grating periods ��→��,
DEN is simply equal to D�

2 /�d
2 and the expression of �j

becomes

�jlim = −
1

2

�G2

G0
2 �2j0. �37�

The expression of � under these conditions is

�lim = 1 −
1

2
	�G

G0

2

�2 j0

j0 − j1
. �38�

As far as the currents are concerned, one may write

j0 − j1

j0
=

��

�0
= �

G2

G0
, �39�

where �0 is the photoconductivity resulting from G0, an
equation that gives

�lim = 1 −
2��0

2G1

G0
. �40�

In Ref. 11 we have shown that N�Efn� can be deduced from
�lim according to

N�Efn� =
q�nG0

CnkBT�0
� �0

�1 + G2/G1�
�2�1 + �G2/G1�

��1 − �lim�
− 1� .

�41�

Injecting Eq. �40� into Eq. �41� and taking into account that
G2 is usually much lower than G1 �at least G2=G1 /10�, we
obtain

N�Efn�Cn

�n
=

qG0

kBT�0
	 1

�
− 1
 , �42�

which is precisely Eq. �27� of the present paper.
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In conclusion, the SSPG experiment performed with large
gratings should bring the same information on the material as
SSPC. We will see that it is actually the case by performing
both simulations on the same “sample.”

B. The modulated photocurrent experiment

We have shown in previous works that the modulated
photocurrent �MPC� experiment contributed to gain insight
into the DOS of different semiconductors.2,3,19 In this experi-
ment the sample is illuminated by a steady flux of light
slightly modulated at a pulsation �. The modulus of the ac
current Iac resulting from the ac generation rate Gac, as well
as the phase shift � between Iac and Gac, are recorded and
used to extract information on the DOS. We have shown that
two regimes have to be considered, the “high-frequency”
�MPC-HF� regime that gives a spectroscopy of the quantity
NC /�, and the “low-frequency” �MPC-LF� regime from
which a DOS spectroscopy can be achieved.4,5 Of course,
these experiments do not reveal the complete DOS but only
the part with which the majority carriers are interacting. Each
regime brings complementary information on the electronic
parameters. The aim of this section is to put into evidence
that the data measured by the MPC technique performed in
the “low frequency” regime are related to the � measure-
ments. As mentioned above, we will restrict the present cal-
culation to a single species of states.

For the derivation of the ac photocurrent we start from the
expressions �11�, �12�, and �26�–�29� of a preceding paper.19

Using the same notations, we have

Iac

Sq	Gac
=

1

D
��n	 j� +

1

�p,p
−

1

�n,p

 + �p	 j� +

1

�n,n
−

1

�p,n

� ,

�43�

with

1

�n,n
=

1

�p,n
+ j�Cn�

EV

EC

N�E�
�1 − f�

1/� + j�
dE,

1

�p,p
=

1

�n,p
+ j�Cp�

EV

EC

N�E�
f

1/� + j�
dE , �44�

where � is given by Eq. �4�, taking i=1, and

D = 	 j� +
1

�n,n

	 j� +

1

�p,p

 −

1

�n,p�p,n
. �45�

Thus, for �→0 we obtain

1

�n,n

1

�p,p
−

1

�p,n

1

�n,p

� j�CnCp��
EV

EC

N�E���p̄ + ep��1

− f�dE�
EV

EC

N�E��fdE

+ �
EV

EC

N�E���n̄ + en�fdE�
EV

EC

N�E���1

− f�dE� , �46�

and

D � j�Cn�
EV

EC

N�E���p̄ + ep��1 − f�dE

+ j�Cp�
EV

EC

N�E���n̄ + en�fdE

+ j�CnCp��
EV

EC

N�E���p̄ + ep��1 − f�dE�
EV

EC

N�E��fdE

+ �
EV

EC

N�E���n̄ + en�fdE�
EV

EC

N�E���1 − f�dE� . �47�

Replacing Eqs. �44�–�47� into Eq. �43�, one gets

Iac

Sq	Gac
=

��nCp�
Ev

Ec

Nf�dE + �pCn�
Ev

Ec

N�1 − f��dE�
�

Ev

Ec

Cn�1 − f��p̄ + ep��NdE	1 + Cp�
Ev

Ec

Nf�dE
 + �
Ev

Ec

Cpf�n̄ + en��NdE	1 + Cn�
Ev

Ec

N�1 − f��dE
 . �48�

If one neglects the 1 in the large brackets of the denominator, which is equivalent to assume that trapped carriers are much
more numerous than free carriers, and multiplies by np the numerator and denominator of the previous expression, one can
write
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Iac

Sq	Gac
=

G

�n�n + �p�p
��n�np̄�

Ev

Ec

Nf�dE + �p�pn̄�
Ev

Ec

N�1 − f��dE�
n̄�

Ev

Ec

�1 − f��p̄ + ep��NdE	p̄�
Ev

Ec

Nf�dE
 + �
Ev

Ec

p̄f�n̄ + en��NdE	n̄�
Ev

Ec

N�1 − f��dE

�nn + �pp

G
, �49�

which can also be transformed, according to Eq. �15�, into

Iac

I
= �

Gac

G
, �50�

where I is the dc current due to the steady flux of light
illuminating the sample.

The above expression closely resembles the usual expres-
sion defining � �see Eq. �13�� where �G and �I have been
replaced by Gac and Iac, respectively. This means that, rather
than working under dc conditions and varying the dc flux to
measure �, one can also work with a small ac signal super-
posed to the dc one, make the frequency very low, and use
the ratio of the ac to dc components to calculate �, and
eventually to achieve a DOS spectroscopy.

As a conclusion of this section, it is clear that all the
mentioned techniques are intimately linked, though each of
them, taken separately, brings some precise information on
the DOS parameters. In this paper, the results of these tech-
niques �SSPC, MPC-HF, MPC-LF, SSPG� will be compared
via numerical simulations to underline the information that
can be extracted from a comparison of the various data.

C. Summary

Before presenting simulation details and results, let us
first summarize what is known directly from the different
techniques presented above.

The MPC-LF technique brings the value of N�Efn� from
the generation rate, the temperature, and the slope of the
tangent of the phase shift � measured at low frequencies,
following the equation5

N�Efn� =
2G

kBT

tan���
�

. �51�

The energy scaling uses the same equation as for the � spec-
troscopy �Eq. �28�� and thus requires the knowledge of �nNc.

The MPC-HF technique gives the quantity NC /� from
experimentally known parameters as, for instance, the ac
generation rate Gac and the modulus of the resulting ac pho-
tocurrent Iac, according to the equation19

N�E��Cn

�n
=

2

�kBT
Sq	Gac

sin �

�Iac�
. �52�

The Cn involved in the MPC-HF-NC /� is that of the probed
states, but a proper energy scaling requires the knowledge of
the quantity CnNc, also called the attempt-to-escape fre-
quency, since E� follows from

Ec − E� = kBT ln	CnNc

�

 . �53�

From the � measurements by SSPC we obtain the �
-NC /� values directly from experimental quantities like the
generation rate, the photoconductivity and � �see Eq. �27��.
However, the proper energy scaling requires the knowledge
of the quantity �nNc. In these �-NC /� values, the C in-
volved is that of the centers providing the main recombina-
tion path, or an average value of the capture coefficients of
the states involved in the recombination path �see Eq. �33��.
The results of the SSPC measurements made under dc illu-
mination can be cross checked with those of photoconduc-
tivity measurements performed in ac or with data extracted
from the SSPG technique.

V. SIMULATIONS

We have developed computer codes to check the calcula-
tions and the links between the different photoconductivity
techniques exposed above. Actually, two simulations codes
were developed independently, both in Argentina and in
France, using different software. We have thus the possibility
to cross-check the results of each of them.20 In these simu-
lations, various DOS distributions can be introduced in the
gap of a semiconductor. All the parameters of the considered
semiconductor—such as, for instance, gap width, extended-
states mobilities of the carriers, equivalent densities of states
at the band edges, capture coefficients of the defects for elec-
trons and holes—can be defined by the user, as well as the
“experimental” parameters such as light flux, temperature
range, and temperature steps. Since the continuity and charge
neutrality equations are solved, the occupancy of the states is
fully determined. At a given temperature the simulation cal-
culates the photoconductivity values �1 and �2, for a given
flux F1 and for F2=F1�1.1 respectively, by solving numeri-
cally the continuity and charge neutrality equations. The �
value is deduced from the photoconductivities at these two
fluxes as

� =
F1

�F

��

�1
,

with �F=F2−F1 and ��=�2−�1. Then, by using Eq. �27�
the �-NC /� distribution is obtained depending only on ex-
perimental parameters such as G, �, T, and �. The simulation
calculates also the ac current resulting from a modulated ex-
citation at different frequencies and hence what would be the
MPC-LF or MPC-HF results. Finally, the simulation can cal-
culate the � values obtained when two beams of fluxes F1

LONGEAUD, SCHMIDT, AND KLEIDER PHYSICAL REVIEW B 73, 235316 �2006�

235316-10



and F1 /10 are interfering with a grating period ranging from
0.15 to 108 �m. Then it calculates the �-NC /� distribution
from Eq. �41� applied to simulated SSPG results obtained
with a grating period of 108 �m. For some simulations we
will compare the �-NC /� and �-NC /� distributions to vali-
date the calculations presented in Sec. IV A.

We want to underline that the simulations were not devel-
oped to fit any experimental results but rather to understand
the processes involved in the experiments. The “materials”
we have studied were either crystalline materials with rather
narrow distributions of defects or amorphous materials ex-
hibiting broad distributions of defects. For each material, we
have studied both the rather unrealistic case of a single spe-
cies of defect and a case including at least two species of
states. For a-Si:H the case of amphoteric states has also been
studied.

A. Crystalline semiconductors

We have defined an imaginary crystalline semiconductor
whose DOS is presented in Fig. 2. Four defect distributions
have been introduced in the 1.8 eV wide band gap of the
material. All these distributions are Gaussian shaped except
the one in the middle of the gap �Type II states�, which was
chosen unsymmetrical for reasons explained below. States of
type I are centered at Ec-EmaxI=1.25 eV and are donor states;
states of type II have a maximum positioned at Ec-EmaxII
=0.85 eV and are acceptor states; states of type III are cen-
tered at Ec-EmaxIII=0.45 eV and are also acceptor states; and
states of type IV are made of a narrow distribution of donors

states close to the conduction band edge. This small quantity
of donor states has been added so that the electrical neutrality
under dark equilibrium leads to a dark Fermi level pinned
close to the middle of the gap �double vertical line, Ec-Ef0
=0.85 eV�. We want to stress that these donor states are too
close to the conduction band to have any influence on the
behavior of the material under illumination, except at ex-
tremely high fluxes out of the range that we used in our
simulations. Under these conditions the material is very
slightly n type. The predominance of electrons in the trans-
port has been reinforced choosing an extended-states mobil-
ity of 10 cm2 V−1 s−1 for the electrons and of 1 cm2 V−1 s−1

for the holes. According to the developments presented in the
previous sections, we expect then to obtain a major contri-
bution of the electrons to the photocurrent. However, note
that the defect distribution around the Fermi level has been
chosen unsymmetrical, so that it will be easier to estimate if
the simulated photoconductivity techniques are probing the
states above or below the dark Fermi level, which is the
electrons or holes DOS, respectively. Other characteristics of
the defect states �maximum density, capture coefficients� are
summarized in Table I.

Various simulations were performed to test the reliability
of the calculations exposed in the previous sections. The
SSPC technique was simulated for temperatures in the range
130–350 K, varied in 10 K steps, with a flux F1
=108 cm−2 s−1 �G1=1.3�1012 cm−3 s−1�. The SSPG tech-
nique was simulated in the same range of temperatures and
with the same flux. The MPC-HF experiment was simulated
with the same flux in a temperature range 200–380 K in
20 K steps, with frequencies of the modulation in the range
1 Hz–5 kHz.

1. One species of states

We have first studied a “crystal” containing a single spe-
cies of states. All the capture coefficients were taken identi-
cal for all the states: Cn=2�10−8 cm3 s−1 for the electrons
and Cp=10−8 cm3 s−1 for the holes. We present in Fig. 3 the
NC /� spectroscopies obtained from the simulations of the
SSPC ��-NC /�, open squares�, of the SSPG ��-NC /�, open
stars� and of the MPC-HF �dashed lines�. The NC /� distri-
butions obtained from these different techniques are com-
pared to the NC /� that we have introduced in the simulation
�full lines�.

It can be seen in Fig. 3 that the agreement between the
various NC /� distributions calculated from SSPC, SSPG,

FIG. 2. �Color online� Typical density of states introduced in the
simulations to represent a crystallinelike semiconductor.

TABLE I. Summary of the parameters of the DOS used in the various simulations illustrating the crys-
talline semiconductor case. W is the standard deviation of the Gaussian defect distributions. The hole capture
coefficient was the same for all the states, Cp=10−8 cm3 s−1.

Ec-Emax

�eV�
Nmax

�cm−3 eV−1�
W

�meV�
Same Cn

�cm3 s−1�
Different Cn

�cm3 s−1�

States I 1.25 3�1017 50 2�10−8 2�10−9

States II 0.85 3�1016 50 2�10−8 2�10−8

0.7 8�1015 10 2�10−8 2�10−8

States III 0.45 1�1016 20 2�10−8 2�10−8
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and MPC-HF is excellent. The various defect peaks intro-
duced in the simulation are also rather well revealed. The
material parameters have been chosen such that the transport
is dominated by electrons, so it is the DOS between the dark
Fermi level and the conduction band edge that is probed by
the different techniques. However, one can see that the ex-
perimental NC /� distributions are slightly wider and present
maxima slightly lower than the introduced ones. This behav-
ior is probably due to the narrowness of the probed peaks.
Indeed, for all the techniques simulated here, the final equa-
tions giving the possibility to achieve a DOS spectroscopy
are the results of approximations. For instance, if one con-
siders the SSPC method, the quantity N�Etn� has been ex-
tracted from an integral in which the normalizing term
�en�2�E�, see Eq. �21�� is a peaked function exponentially
decreasing with slopes ±1/kBT at both sides of the maximum
value, located at Etn�Efn. At high temperatures this peaked
function is rather wide and, in the present case, wider than
the probed peaks. The result is that, compared to the “real”
peaks, the obtained peaks are smoothed by the approxima-
tion shown in Eq. �21�. The same type of approximation
holds for the SSPG and MPC-HF methods, leading to the
same type of smoothing. It can also be seen that the energy
range of the �-NC /� and �-NC /� distributions is limited to
Ec−E�0.85 eV. At this limiting value, which corresponds
to the position of the dark Fermi level, both distributions
drop. Indeed, at high temperatures, where the deepest states
are probed, the splitting of the quasi-Fermi levels is small
and, consequently, one has Efn�Ef0.

Considering the type III states at 0.45 eV from Ec, the
agreement between the �-NC /� and the MPC-HF-NC /�
distributions is such that they present their maximum at the
same energy. Of course, the energy scaling for both distribu-
tions was done knowing the values of �nNc ��-NC /�� and
CnNc �MPC-HF-NC /��. Under true experimental conditions,
where these parameters are often unknown, the adjustment of
the maxima obtained with each technique for a given peak of
defects could lead to the determination of the ratio Cn /�n,
giving information both on the defect parameters �Cn� and on
the material parameters ��n�.

2. Different species of states

The above case where all the capture coefficients are
identical is highly unrealistic. That is why we have per-

formed simulations for which the electron capture coefficient
of state I was chosen to be ten times lower than that of the
other states �see Table I�. We present in Fig. 4 the NC /�
distributions obtained from SSPC, SSPG, and MPC-HF, and
we compare them to the introduced NC /�. The various ex-
perimental parameters �e.g., flux, temperature range� were
taken the same as in the above case with a single species of
states.

It can be clearly seen in Fig. 3 that the MPC-HF-NC /�
distribution is the same as in the case of a single species of
states. As mentioned early in Sec. IV C, the reason for this
behavior is that the MPC-HF technique is only sensitive to
the capture coefficients of the probed states. On the contrary,
though we observe an excellent agreement between the �
-NC /� and �-NC /� distributions, they are far from repro-
ducing the actual NC /�. At high energies �i.e., at high tem-
peratures�, the two distributions are almost identical to what
we have obtained with a single type of states; but with de-
creasing temperature there is a range of energies where the
DOS cannot be reproduced simply because we have ��1,
leading to unrealistic negative NC /� values when one uses
Eq. �27�. When the temperature is further decreased, the
shape of type III states is rather well reproduced, but with
values a factor of 10 below what we have obtained from
MPC-HF.

The fact that � is found larger than 1 in a given tempera-
ture range can be explained in the framework of the model
proposed by Rose to explain the sensitization observed in
some semiconductors.12 According to the Rose model, the
sensitization results from the presence in the gap of the semi-
conductor of two species of states: one around the middle of
the gap with a high electronic capture cross section and a low
density of states, and another one close to the valence band
with a lower electronic capture coefficient and a high density
of states. In the case presented above the defect characteris-
tics have been chosen according to this model: the electron
capture coefficient of states II and III is ten times higher than
the electron capture coefficient of states I, whereas the den-
sity of states I is ten times higher than that of states II.

We present in Fig. 5 the evolution with the light flux F of
the ratio � /F �which is proportional to the lifetime�, where �

FIG. 3. �Color online� NC /� distributions obtained from SSPC
�open squares�, SSPG �open stars�, and MPC-HF �dashed lines�
compared to the NC /� distributions introduced in the simulation
�full lines�.

FIG. 4. �Color online� Comparison of the NC /� distributions
obtained from SSPC �open squares�, SSPG �open stars�, and
MPC-HF �dashed lines� with the introduced NC /� �full lines� for
the case where the type I states have an electron capture coefficient
ten times lower than the other states. The energy range for which
we obtain ��1 is indicated on the figure.
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is the photoconductivity of the sample. One can see that
there is a sudden rise of � /F for F in the range
1011–1013 cm−2 s−1, which also corresponds to a peak in the
� value �calculated as �= �F /����� /�F�. For comparison we
have also calculated �F /����� /�F�, where �F is the differ-
ence between two successive fluxes in the 1-2-5 series that
we have used in the simulation �F=108 , 2�108 , 5
�108 , . . . , cm−2 s−1�. As can be seen, though the evolutions
of � and �F /����� /�F� are similar, the calculated values of
this last quantity are certainly highly dependent on the �F
used, especially when � is varying rapidly with F. Thus,
experimentally, � should be determined as it was in the simu-
lation, that is, calculating �F /����� /�F� using small values
of �F—such as, for instance, 10–20% of the total flux. We
can add that, according to Eq. �15�, � may depend on G.
Thus, the coefficient � defined as usual from ��G�, and
calculated by plotting the variations of � with a generation
rate varying sometimes over decades, has very little connec-
tion with the local � coefficient that we use in this paper.

One interesting point is that there exists a range of fluxes
where the ratio � /F �i.e., the electron lifetime� suddenly
rises, corresponding to values of � much larger than one. It
means that, by introducing a DOS that gives the material all
the characteristics of a “sensitisable” one, as defined by
Rose, we actually reproduce the behavior of the majority
carrier’s lifetime predicted by the Rose model. At low fluxes
only the central peak of defects II plays a major role in the
recombination of carriers. The coefficient � is smaller than 1
and decreases slightly with increasing flux. For higher values
of the flux the splitting of the quasi-Fermi levels is such that
states I start to participate in the recombination. The simula-
tion also clearly shows that, as predicted by the model, the
larger capture coefficient for electrons of states II causes an
electron transfer from state I to states II until these latter are
almost completely filled. Thus, progressively the recombina-
tion path shifts from states II, with a high capture coefficient,
to states I, with a lower capture cross section, resulting in an
increase of the electron lifetime and hence of the photocon-
ductivity with increasing flux. For the highest flux, only
states I plays a role in the recombination, and the photocon-
ductivity and � resume their “regular” behavior with increas-
ing flux �e.g., �1�.

The material we have defined is thus sensitisable, and the
behavior observed in Fig. 5 with increasing flux at a fixed
temperature can also be observed with a decreasing tempera-
ture at a given flux. That is why at high temperatures the �
-NC /� and �-NC /� behaviors shown in Fig. 4 are the same
as if there were a single species of state, since recombination
is controlled by states II. As temperature is decreased, the
recombination path shifts progressively from states II to
states I and this sensitization process results in � values
larger than 1. With further decrease of temperature, the re-
combination is fully controlled by states I and one finds
again � values lower than 1.

The fact that at low temperatures the �-NC /� and �
-NC /� distributions are a factor of 10 below the MPC-HF-
NC /� distribution can be explained in the following way. If
we neglect the holes contribution, from Eq. �33� we have
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where Nn
I and Nn

II have been omitted since in the probed
region, close to the quasi-Fermi level for electrons, these two
values are negligible. In the considered temperature range, �
is lower than 1 because the recombination is almost com-
pletely controlled by the states of class I, as it is the case in
the high flux range shown in Fig. 5. Thus, the dominant term
in the denominator of Eq. �54� is the first one, the electron
lifetime being almost equal to �n

I ��n��n
I �. We can finally

write
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Thus, when one plots �-NC /�, one ends with values ten
times lower than they should be, as shown in Fig. 4.

We want to stress here that the agreement we have in Fig.
4 is essentially due to the fact that we have assumed the
existence of a dominant recombination center. For a real
crystal this may not be the case, and thus one would deter-
mine an “average” density of states �see Eq. �33�� that could
be different from the “true” density of states. This is one of
the reasons why the results of this analysis should be taken
cautiously if the technique is experimentally used alone, with
no comparison with some other methods.

We have also studied the influence of the position in the
gap of states I. Using the same parameters as above we have
performed simulations for which the position of states I was
pushed upwards towards the valence band edge. The energy
position of the maximum of these states was increased from
Ec-EMaxI=1.25 eV to 1.35 eV, 1.45 eV, and 1.6 eV. We
present in Fig. 6 the evolution of the different �-NC /� dis-
tributions obtained with the various Ec-EMaxI. It can be seen
that the energy �i.e., the temperature� corresponding to the
onset of ��1 decreases when Ec-EMaxI increases. This be-
havior can be explained by the fact that the sensitization
process starts when the quasi-Fermi levels splitting is such
that states I begins to play a role in the recombination. With
increasing Ec-EMaxI the splitting of the quasi-Fermi levels
must be increased, that is, the temperature lowered, for states

FIG. 5. �Color online� Evolution of the ratio � /F of the sample
with the “applied” flux �full line�. Evolutions of � as well as
�F /����� /�F� are also shown. The horizontal line indicates when
these two quantities are equal to 1.
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I to start playing a role in the recombination process. It can
be even seen that with Ec-EMaxI=1.6 eV the recombination is
always controlled by states II, so that the �-NC /� distribu-
tion obtained is the same as if there were a single species of
state in the gap. In this case, states I are too close to the
valence band edge to be reached by the holes’ quasi-Fermi
level in the range of temperatures we have used. These simu-
lations show that, to obtain an efficient sensitization, in ad-
dition to the introduction of states with different capture co-
efficients and different densities, the relative position of the
states in the gap is also of some importance.

To conclude with this part we may add that, as in the case
of a single species of state, provided that for a true material
� is not always larger than 1 in the temperature range of the
experiment, it is possible to extract some parameters of the
defects and of the material combining the SSPC and the
MPC-HF experiments. The adjustment of the peak energy
position measured by both techniques can lead to the deter-
mination of the ratio Cn /�n between the capture coefficients
of the states and the extended-states mobility. In addition, the
ratio between two peaks maxima, each one being measured
by a different technique, may give an order of magnitude of
the ratio between the capture coefficients of the states and the
capture coefficient of the recombining states. We will see
below that in the case of a-Si:H, for which no well-defined
peak exists, three techniques are needed to extract the same
information.

B. The case of a-Si:H

First, we will consider an “ideal” material with only one
species of states. Then we will consider the case of materials

presenting different species of states, and we will finish by
taking into account the presence of amphoteric states.

1. One species of states

We present in Fig. 7 a rather typical density of states for
a-Si:H. The mobility gap was fixed at 1.8 eV, and the char-
acteristic temperatures of the band tails were taken equal to
Tc=275 K and Tv=600 K for the conduction and valence
band tails, respectively. These values were chosen according
to the values of the characteristic temperatures or of the Ur-
bach energy found in the literature for device grade
films.21,22 The equivalent density of states at the band edges
were taken equal to the values for crystalline silicon: Nc
=Nv=2.5�1019 cm−3 at T=300 K and varied as T3/2. These
values give densities of states at the band edges equal to
1021 cm−3 eV−1.23 The deep states were taken as two Gauss-
ian distributions, one of acceptor states located at Ec−E
=0.35 eV, with a standard deviation of 0.15 eV and a maxi-
mum value of 3�1016 cm−3 eV−1, and another one of donor
states located at Ec-E=1.1 eV, with a standard deviation of
0.2 eV and the same maximum value. These two distribu-
tions pin the dark Fermi level at Ec−Ef0=0.67 eV and are
such that the total concentration of deep states is of the order
of 2.5�1016 cm−3, in agreement with deep defect densities
quoted in the literature.22 The following capture coefficients
have been assumed for all the states: Cp=10−8 cm3 s−1 and
Cn=2�10−8 cm3 s−1 �Table II, third row�. This last value
was proposed to be the capture coefficient of the conduction
band tail states from simulations of the time-of-flight
experiment.24 The electron and hole mobilities were chosen

FIG. 6. �Color online� Evolution of the �-NC /� distribution
with the position in the gap of the type I states. The arrows indicate
the onset of ��1.

FIG. 7. �Color online� Typical density of states for an a-Si:H-
like material that we have used in our simulations. The dark Fermi
level is indicated by a dashed vertical line.

TABLE II. Summary of the different capture coefficients used in the various simulations for a-Si:H.

CBT VBT Donor Acceptor

Cn
II

�cm3 s−1�
Cp

II

�cm3 s−1�
Cn

I

�cm3 s−1�
Cp

I

�cm3 s−1�
Cn

d

�cm3 s−1�
Cp

d

�cm3 s−1�
Cn

a

�cm3 s−1�
Cp

a

�cm3 s−1�

Same C 2�10−8 10−8 2�10−8 10−8 2�10−8 10−8 2�10−8 10−8

Cn
I =Cn

II /10 2�10−8 10−8 2�10−9 10−8 2�10−8 10−8 2�10−8 10−8

R=2 2�10−8 10−8 2�10−9 10−8 10−8 10−8 2�10−8 5�10−9

R=10 2�10−8 10−8 2�10−9 10−8 2�10−9 10−8 2�10−8 10−9

R=50 2�10−8 10−8 2�10−9 10−8 4�10−10 10−8 2�10−8 2�10−10
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equal to �n=10 cm2 V−1 s−1 and �p=1 cm2 V−1 s−1, respec-
tively, according to time-of-flight results,21 though higher
values of the order of 30 cm2 V−1 s−1 have also been pro-
posed for the electron extended-states mobility.24

We present in Fig. 8 the �-NC /� distribution recon-
structed by means of Eq. �27� �open symbols� in which we
have introduced the calculated � values. This �-NC /� curve
can be compared to the introduced NC /� distribution �lines�.
Note that the energy scaling is referred to as Ec since, being
the electrons the majority carriers in a-Si:H, it is the quantity
Ec-Efn, determined from photoconductivity, that gives the en-
ergy scaling �Eq. �28��. The calculation was made for tem-
peratures varying from 90 K to 450 K in 10 K steps, and
with two generation rates of 6.5�1019 cm−3 s−1 �stars� and
6.5�1017 cm−3 s−1 �open squares ����. It is clear that the
NC /� reconstruction is particularly accurate. It can also be
seen that the �-NC /� deviates from the true NC /� in the
vicinity of the energy position of the dark Fermi level Ef0, a
behavior that we were expecting since the lower limit of
Ec−Efn is precisely Ec−Ef0. In Fig. 8 we also plot the NC /�
distribution that could be deduced from MPC-LF measure-
ments �full squares ����, using for the ratio C /� the electron
capture coefficient of the CBT, Cn

CBT, and the electron
extended-states mobility, �n. As expected, taking into ac-
count the calculation results presented in Sec. IV B, the
agreement between the MPC-LF-NC /�, the �-NC /�, and
the NC /� introduced in the simulation is excellent. We have
not presented either the results of the �-NC /� or those of the
MPC-HF-NC /� to lighten the figure but, of course, the
agreements with the other techniques and the actual NC /�
are also excellent.

Note that in this peculiar case of a single species of state
we do not observe any quenching of the photoconductivity,
contrarily to what is often observed in a-Si:H. Figure 9
shows an Arrhenius plot of the photoconductivity for the two
generation rates. It can be seen that the photoconductivity
steadily increases with temperature, though there is clearly a
temperature range where the increase of � with temperature
slows down compared to the two other regions, at high and
low temperatures, where � increases rapidly. In this tempera-
ture range, the � values approach 1, although they remain
lower than 1. From the experimental point of view, this situ-
ation might cause some troubles, since a small error in the

determination of � can lead to a large error in the DOS �see
Eq. �27��. Thus, in this case, extra care should be taken for a
correct experimental determination of �.

2. Different species of states

We have performed another simulation introducing into
the calculation the same DOS as the one presented in Fig. 7.
However, we have modified the electron capture coefficient
of the valence band tail, which has been reduced by a factor
of 10. Thus, we are dealing with two species of states: class
I, the valence band tail states, for which Cn

I =2
�10−9 cm3 s−1 and Cp

I=10−8 cm3 s−1, and class II, all the
other states, for which Cn

II=2�10−8 cm3 s−1 and Cp
II

=10−8 cm3 s−1 �Table II, fourth row�. The other parameters
were kept identical to the ones used in Sec. V B 1, except
that we made all the calculations with a generation rate of
6.5�1018 cm−3 s−1, in between those used in Sec. V B 1.

Figure 10 presents the Arrhenius plot of the calculated
photoconductivity �. A clear quenching of � can be seen,
approximately in the same temperature range where it is
found experimentally.15 From this curve we expect to have �
values larger than 1, leading to unreasonable negative DOS
values when using the reconstruction based on Eq. �27�. Of
course, this situation sets a limitation to the SSPC technique,
which cannot be applied to reconstruct the DOS in this tem-
perature range.

We have also calculated the evolution of the photocon-
ductivity and � for different values of the VBT characteristic

FIG. 8. �Color online� Reconstruction of �-NC /� by means of
Eq. �27� �open symbols�. The NC /� distribution measured by MPC
in the low frequency domain is also shown �full squares�. They can
be compared to the NC /� introduced in the simulation �lines�.

FIG. 9. Arrhenius plot of the calculated photoconductivities for
two generation rates, where no quenching can be seen.

FIG. 10. Arrhenius plot of the calculated photoconductivity. A
quenching of � appears in the temperature range 240 K�T
�320 K.
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temperature to explore a range such as 200 K�Tv�600 K.
The reconstruction of �-NC /� using Eq. �27� is shown in
Fig. 11. In the high-energy range, the fit with the introduced
NC /� depends on the characteristic temperature Tv of the
valence band tail: the lower Tv, the better the fit. With de-
creasing energy a gap appears, due to the quenching of the
photoconductivity leading to negative �-NC /� values ��
�1�. At low energies, the �-NC /� reproduces well the
shape of the conduction band tail �CBT�, but with values
approximately ten times lower than the true NC /� of the
introduced band tail for Tv�400 K. A departure from the
previous �-NC /� curves occurs for Tv=300 K, and finally
for Tv=200 K the reconstructed �-NC /� matches the intro-
duced NC /� values of the CBT.

In the cases of high Tv values �Tv�400 K�, the behavior
at shallow energies �low temperatures� can be explained as in
Sec. V A 2. If we neglect the holes’ contribution, from Eq.
�33� we have
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where Nn
1 has been omitted, since it is linked to the exponen-

tially decreasing VBT density taken at the quasi-Fermi level
for electrons. Taking the peculiar shape of the DOS into ac-
count, i.e., a large VBT and a narrow CBT, the integral of the
states between the quasi-Fermi levels for state I �VBT� is
much higher than the same integral for state II. It means that
1 /�n

I is much larger than 1/�n
II, so that the lifetime is �n

��n
I and we can finally write

1

�
− 1 =

Cn
II�n

I Nn
II

10
=

Cn
II�nNn

II

10
= Cn

I �nNn
II. �57�

Thus, the �-NC /� values take account of a capture coeffi-
cient Cn

I =Cn
II /10 instead of Cn

II, and one ends with a distri-

bution ten times lower than the actual one. This is exactly
what is shown in Fig. 11, where the �-NC /� distribution at
shallow energies �low T� parallels the CBT-NC /� roughly a
factor of 10 below it.

At high temperatures Eq. �33� is still valid. Nevertheless,
the quasi-Fermi levels are much closer to midgap and, taking
the peculiar shape of the DOS into account, the integral of
the states between the quasi-Fermi levels for state I is much
lower—the valence band tail is exponentially decreasing—
than the same integral for state II. It means that 1 /�n

I is much
smaller than 1/�n

II, so that the lifetime is �n��n
II and we can

finally write

1

�
− 1 = Cn

II�nNn
II. �58�

Thus, the capture coefficient implicitly involved in the �
-NC /� values is Cn

II, and one ends with a �-NC /� not far
from the real NC /�. This is exactly what is observed in Fig.
11, where the symbols at high energies �high T� match the
actual NC /�.

Between these two temperature ranges there is an inter-
mediate range for which Np

I and/or Np
II are much higher than

Nn
II, simply because the CBT decreases much faster than the

VBT. At low temperatures, both quasi-Fermi levels are lo-
cated within the tail regions. An increasing temperature re-
duces the energy difference between the quasi-Fermi levels,
and Etn rapidly reaches the deep states whereas Etp

I is still in
the valence band tail. Thus, the large ratio between the Np
and Nn may compensate the small ratio between p̄ and n̄, and
it is the negative term of Eq. �32�, the second addend in the
numerator, that takes the place over the positive term leading
to � values larger than 1.

Note also that the temperature—or energy—range in
which � is larger than 1 depends on the characteristic tem-
perature of the valence band tail. This is due to the fact that
a narrow valence band tail �e.g., Tv=400 K� is reached by
the quasi-Fermi level for trapped holes at a lower tempera-
ture than a wider band tail �Tv=600 K�. The evolution of the
threshold temperature is therefore identical to the one seen in
Sec. V A 2, when we moved states of class I closer to the
valence band. Actually, the valence band tail is playing the
role of states of class I whereas the conduction band tail is
playing the role of states of class II. This process explains
why, with Tv=600 K, the �-NC /� does not reproduce the
introduced NC /�, even at high energies, simply because the
threshold temperature is high and the corresponding energies
close to the Fermi level: � tends to be larger than 1 at rather
high temperatures.

In this context—shift of the threshold temperature to-
wards low values with the decrease of Tv—it may seem
strange that for Tv=300 K and 200 K we never obtain �
�1, and even, with Tv=200 K the �-NC /� distribution is
almost perfectly following the CBT-NC /� one. Actually, this
behavior can also be explained within the Rose model, in
which the deeper states with the lower Cn �Class I� are also
supposed to be much more numerous than the class II states.
This assumption is of fundamental importance, since it is
needed that the states of class II are completely filled by

FIG. 11. �Color online� �-NC /� reconstructed by means of Eq.
�27� from the results of our simulations �symbols� compared to the
introduced NC /� �full lines�. The dashed line represents the sum of
the conduction band tail and the deep states. The dash-dotted line
shows the NC /� of the CBT divided by a factor of 10. The �
-NC /� have been calculated for different characteristic tempera-
tures of the valence band tail indicated in the figure. �-NC /� dis-
tributions �full symbols� calculated for two Tv values are also dis-
played to be compared with the �-NC /� ones.
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electrons coming from states of class I, so that the recombi-
nation path shifts from one species of states to the other with
the consequent increase of the electron lifetime. If the char-
acteristic temperature of the VBT is not very different from
that of the CBT, then there are not enough electrons coming
from the VBT states to fill the CBT ones. Thus, there is no
shift of the recombination path and experimentally every-
thing appears as if there were a single species of states, the
CBT states, which are consequently well reproduced by the
reconstructed �-NC /� distribution. This means that, contrar-
ily to what was said by Tran,15 the mechanism that results in
� values larger than 1 is the same described in the Rose
model, which seems to perfectly apply to a-Si:H.

In order to check the validity of the calculation of Sec.
IV A we have also simulated SSPG experiments for the two
cases Tv=600 K and Tv=400 K. The �-NC /� distributions
deduced from the simulation are shown in Fig. 11 with full
symbols. The agreement with the �-NC /� distributions cal-
culated from photoconductivity simulations is excellent ex-
cept in a very small energy range close to the dark Fermi
level.

Finally, thus far, the parameters used in the simulations
were rather limited, and one can wonder about the possibility
of extracting DOS parameters from a real experiment when
the deep states are made of amphoteric states. In this case,
different capture coefficients for the neutral and charged
states need to be taken into account.

That is why, before showing simulations on amphoteric
states, we would like to show some results obtained when
different capture coefficients are assumed for the deep states.
In addition to the lower electron capture coefficient of the
VBT states compared to the CBT states of the previous case,
in these simulations we also assume that the electron capture
coefficient of the donor states, Cn

d, is lower than the electron
capture coefficient of the acceptor states, Cn

a, and that the
hole capture coefficient of the acceptor states, Cp

a, is lower
than the hole capture coefficient of the donor states, Cp

d, by
the same ratio R as for the electrons. Thus we have Cn

d

=Cn
a /R and Cp

a =Cp
d /R, where we have given R the values

R=2, 10, and 50. The various capture coefficients used in the
simulations for a-Si:H are summarized in Table II.

The reconstructed �-NC /� distributions, calculated with
a generation rate of 6.5�1018 cm−3 s−1, are shown in Fig.
12�a� and compared to the introduced NC /�. It can be seen
that at low temperatures �shallow states� the �-NC /� distri-
butions parallel the CBT with a value approximately ten
times lower, exactly as in the previous case and for the same
reasons, whereas for the deep states, close to the dark Fermi
level �Ec−E�0.6 eV�, the ratio of the introduced NC /� to
the reconstructed �-NC /� roughly equals the ratio R be-
tween the capture coefficients. This behavior is again due to
the fact that the C involved in the �-NC /� distribution is not
that of the probed states, as it is the case for the MPC-HF
measurements, but that of the dominant recombination states.
Though the density ratio between the acceptor and donor
states is not high, the donor states are more numerous than
the acceptor states because of a larger standard deviation of
its Gaussian distribution �see Fig. 7�. This difference is
enough for the recombination path to be predominantly via
the donor states that present a lower electron capture cross

section than the acceptor states. Hence, the C involved in the
�-NC /� is that of the donor states and not that of the probed
acceptor states.

In between these two energy ranges one has to consider
that the valence band tail starts to play a role in the recom-
bination and that this intervention probably leads to the gap
that appears in the �-NC /� curve calculated with R=2. In
this energy range one can hardly deduce any interesting in-
formation on the DOS parameters.

As a matter of illustration we also present in Fig. 12�a�
results of a SSPG simulation performed in the case R=2
�crossed stars�. It can be seen that, as in Fig. 11, the �
-NC /� and the �-NC /� distributions are identical except
close to the dark Fermi level.

In Fig. 12�a� we have also plotted the results of the recon-
struction from the MPC-LF technique �full symbols�. We re-
call that this technique only provides the N�Efn� values, so
we have used the ratio Cn

CBT /�n to plot this MPC-LF-NC /�.
It can be seen that, as far as the CBT is concerned, the
agreement between the CBT-NC /� and the MPC-LF-NC /�
is rather good, here within a factor of 1.5. This is also the
case for the deep states close to the Fermi level, where a
rather good agreement is also found whatever the value of R.
The slight differences in energy position of the MPC-LF- and
�-NC /� are due to the fact that the energy position of the

FIG. 12. �Color online� �a� Comparison of the various �
-NC /� calculated with different R �open symbols� with the NC /�
introduced in the simulation. The MPC-LF-NC /� distributions cal-
culated for the different ratios are also shown as full symbols. A
�-NC /� distribution �crossed stars� calculated for R=2 is also dis-
played, to be compared with the �-NC /� one. The dashed line
represents the sum of the conduction band tail and the deep states.
The dash-dotted line shows the NC /� of the CBT in which C is the
Cn of the valence band tail. �b� The calculated MPC-HF-NC /�
distribution fits rather well the NC /� introduced in the simulation.
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�-NC /� points comes from the true position of Efn whereas
that of the MPC-LF points is deduced from the photoconduc-
tivity, thus including the very small holes contribution �see,
for instance, the right-hand side of the two curves with stars�.
Note that the DOS deduced from the slope of tan��� in the
MPC-LF technique can be negative �here in the case R=50�.
This behavior results in the gap that appears around Ec−E
=0.3 eV in the MPC-LF-NC /� curve. Though we have no
theoretical interpretation at present, this behavior is a clear
signature of the presence of various species of states, whose
influence on the charge transport intermixes at a given tem-
perature range. In Fig. 12�b� we show the results of the cal-
culation of the MPC-HF-NC /�, and it can be seen that the
agreement with the NC /� introduced in the simulation is
also nice both for the CBT and the deep states.

3. The case of amphoteric states

The nature and origin of the deep defect density in a-Si:H
has been a matter of debate for years. A consensus was found
on the fact that dangling bonds �DB� were at the origin of the
deep states. However, the fact that these states are amphot-
eric, being positive if no electron is present �D+�, neutral if
one electron occupies the state �D0� and negative if two elec-
trons are trapped �D−�, raised the question of the statistics to
be used—of course, different from the well-known Fermi-
Dirac that we have used above—and also of the sign of the
correlation energy U, which is the energy difference between
the singly and doubly occupied states.25,26 It is now almost
generally agreed that in chalcogenides U is negative27 and
that in a-Si:H U is positive with a value between 0.2 and
0.4 eV.28,29 Further, a model of formation of these dangling
bonds based on thermodynamical considerations was
proposed.30,31 This defect-pool model was then formalized
by Deane and Powell.32,33

In our simulation software, it is possible to introduce the
parameters of a defect-pool distribution of defects. The
proper statistics for correlated states is used to solve the con-
tinuity and charge neutrality equations, so that the occupa-
tion functions of the different states and species of states are
completely calculated. In a previous paper we had shown
that the states occupancy could be rather complicated,3 but
whatever the occupancy we can calculate the photoconduc-
tivity for different temperatures and/or fluxes, deduce a �
-NC /� distribution by means of Eq. �27�, and compare it to
the introduced NC /� as we did in the previous examples.

We present in Fig. 13 the density of states that we have
used. The band tails and their capture coefficients were taken
identical to that of the last two cases studied: Cn

I =Cn
II /10.

The pool parameters were the following: the hydrogen con-
centration was taken equal to �H�=5�1021 cm−3, the pool
position was located at Ec−Epool=0.5 eV, the standard devia-
tion was �pool=0.2 eV, the correlation energy U=0.3 eV, the
equilibration temperature Teq=450 K, and the number of
bonds created by the weak-bond/DB conversion process was
taken equal to 2. With these parameters, the dark Fermi level
was pinned at Ec−Ef0=0.8 eV and the D0 integrated density
was equal to 2.7�1016 cm−3. The capture coefficients for the
charged DB were fixed at Cn

+=Cp
−=3�10−8 cm3 s−1, and the

capture coefficients of the neutral DB �Cn
0=Cp

0� were taken R

times lower, with R=2, 10, or 50. The �-NC /� calculated
for the different ratios R and with a generation rate of 6.5
�1018 cm−3 s−1 are presented in Fig. 14, where they are
compared to the NC /� defined in the simulation.

The similarity of the �-NC /� curves shown in Fig. 14
with those presented in Fig. 12 is striking. Again, as for all
the simulations in which we have chosen to take Cn

I

=Cn
II /10, we observe that at low energies the �-NC /� curve

parallels the CBT-NC /� distribution with values ten times
lower. The “universality” of this property is not surprising if
we consider that these points are obtained at low tempera-
tures and/or high fluxes. Under these conditions the nature of
the deep defects �monovalent or DB� and their capture coef-
ficients have no influence at all on the recombination path.
Taking into account the exponential variation with energy of
the conduction and valence band tails, under high fluxes or
low temperatures only these states are involved in the recom-
bination process. Consequently, only two species of states
need to be considered and the Rose model applies perfectly
well.

Note also the excellent agreement between the MPC-LF-
NC /� and the CBT-NC /� for all the simulations if one uses,

FIG. 13. �Color online� Density of states including a defect-pool
distribution of deep defects. The D+ distribution is shown in dotted
line, the D0 is shown in dashed line, the D− by the dash-dotted line.
The envelope is represented by the full line. The energy position of
the dark Fermi level is shown by a vertical dashed line.

FIG. 14. �Color online� �-NC /� distributions �open symbols�
and MPC-LF-NC /� �full symbols� obtained for different ratios of
the charged to neutral DB capture coefficients, compared to the
NC /� introduced in the simulation �full lines�. The dash-dotted
lines represent the MPC-HF-NC /� distribution. A �-NC /� distri-
bution �crossed squares� calculated for R=10 is also displayed to be
compared with the �-NC /� one. The dashed line shows the NC /�
of the CBT in which C is the Cn of the valence band tail.
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as we did, the capture coefficient of the CBT states to recon-
struct the MPC-LF-NC /�. The reason for this behavior is the
same as above. At high fluxes or low temperatures, only two
types of states have to be considered, the CBT and the VBT
states. We have shown in a previous paper2 that, if electrons
are the majority carriers as is usually the case in a-Si:H, the
MPC-LF technique is probing the DOS interacting with
them, which is the CBT in our case.

As far as the deep states are concerned one can see that,
considering the states close to the dark Fermi level and
within a factor of 1.5, the ratio of the actual NC /� to the
�-NC /� is equal to the ratio R=Cn

+ /Cn
0, in a similar way to

what we had found for the deep monovalent states of the
preceding case. Of course, this behavior is linked to the same
reasons as those exposed above. Actually, it is worth noting
that the ratio R can also be estimated from the ratio between
the MPC-LF-NC /� distribution and the �-NC /� one.

Finally, we have simulated a SSPG experiment and de-
duced a �-NC /� distribution for R=10 that fits quite well
with the �-NC /� distribution calculated from the photocon-
ductivity simulation. As a conclusion, we can see that even
in the case of amphoteric states the behavior of the different
techniques can be predicted as in the case of monovalent
states.

4. Experimental determination of some parameters of the
material

As for the case of a crystalline material, for all the simu-
lations performed above the energy scaling of the curves was
achieved according to the introduced values of the capture
coefficient of the CBT and of the electron extended-states
mobility. Experimentally these quantities are unknown.
However, we can propose a method to determine a good
order of magnitude of these quantities. Indeed, at low tem-
peratures we have shown that only the CBT states are probed
by the MPC-LF and MPC-HF techniques whatever the na-
ture of the deep states. In this low-temperature range, re-
member that the MPC-HF technique gives the values of
NC /� with an energy scaling linked to Cn

CBT, whereas the
MPC-LF gives the N values with an energy scaling depend-
ing on �n. Hence, the adjustment of the MPC-LF-NC /� to
the MPC-HF-NC /� by tuning the Cn

CBT and �n values should
lead to some rather precise knowledge of these two param-
eters. In addition, having this �n value, one obtains the en-

ergy scaling for the �-NC /� distribution. Consequently, one
can deduce the values of the capture coefficients of the re-
combining states, such as the valence band tail states at low
temperatures and the deep states at high temperatures, by the
ratio between the �-NC /� and the MPC-LF-NC /� distribu-
tions. We will show this procedure applied both to crystalline
and amorphous samples in the article that follows this one.

VI. CONCLUSION

In conclusion, we have theoretically examined the depen-
dence of the steady-state photoconductivity on the light in-
tensity, providing an analytical expression for the coefficient
� that describes this dependence. When a single species of
defect states is present in the gap of the semiconductor, we
have shown that a very simple formula relating the DOS at
the electron quasi-Fermi level to the � coefficient can be
obtained. When different species of traps are present, we
have shown that the � coefficient can be larger than 1, a
phenomenon called superlinearity, observed for different ma-
terials at low temperatures. Applying further simplifications
we have examined what information on the DOS can be
extracted from measurements of the � coefficient as a func-
tion of temperature and light flux.

We have theoretically demonstrated a close connection
between the �-DOS and two other methods used for DOS
estimation: the modulated photocurrent performed in both
regimes �high and low frequencies� and the steady-state pho-
tocarrier grating technique. We have shown that the associa-
tion of MPC-HF, MPC-LF, and � measurements can lead to
the evaluation of several DOS parameters that could not be
obtained with the methods taken individually. Both in the
case of a crystalline “material” and of an a-Si:H “film” we
have proposed a method to determine experimentally some
unknown parameters, such as, for instance, the capture cross
section of the conduction band tail and the extended-states
mobility. In the case of a-Si:H, one can even obtain the cap-
ture coefficient of the deep states or of the valence band tail
states by a close comparison between the results of various
photoconductivity experiments.
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