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Transport in a two-dimensional �2D� electron gas subject to an external magnetic field is analyzed in the
presence of a longitudinal barrier. We show that quantum interference of the edge states bound by the
longitudinal barrier results in a drastic change of the electron motion: the degenerate discrete Landau levels are
transformed into an alternating sequence of energy bands and energy gaps. These features of the electron
spectrum should result in a high sensitivity of thermodynamic and transport properties of the 2D electron gas
to external fields. In particular, we predict giant oscillations of the ballistic conductance and discuss nonlinear
current-voltage characteristics, coherent Bloch oscillations, and effects of impurities.
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I. INTRODUCTION

Great attention has been attracted during the last decades
to study of transport properties of various mesoscopic sys-
tems, e.g., tunnel junctions, quantum dots, etc.1,2 Such sys-
tems display fascinating quantum-mechanical behavior on a
macroscopic scale, which results in quantization of the
conductance,1,3 Coulomb blockade,2 weak localization,1,2

mesoscopic conductance fluctuations,4 macroscopic quantum
tunneling,5 etc. All quantum-mechanical effects are enhanced
in low-dimensional systems, such as a two-dimensional elec-
tron gas �2DEG�, quasi-one-dimensional quantum wires, sys-
tems of coupled small tunnel junctions. Moreover, since the
application of an external magnetic field allows one to trans-
form the continuous spectrum of electrons to discrete Landau
levels �in a two-dimensional electron gas�, various quantum-
mechanical effects, such as Shubnikov–de Haas oscillations,1

integer and fractional quantum Hall effects,1,2 etc. have been
observed in magnetotransport measurements in these sys-
tems.

It is clear that if a potential barrier is placed across the
direction of the electron motion, the current would flow only
due to tunneling through the barrier. Such tunneling under
Hall effect conditions was studied theoretically6 and experi-
mentally in papers7,8 where the energy gaps were discovered
in the spectrum of the edge states. However, what can hap-
pen if the barrier is created along the direction of the current?
Of course, the problem is not very interesting in the absence
of a magnetic field but the situation drastically changes if a
magnetic field is applied perpendicularly to the plane of the
2DEG.

In this paper, we show that the quantum interference of
the edge states qualitatively changes the dynamics of elec-
trons moving along the barrier resulting in extreme sensitiv-
ity of the electron “longitudinal” kinetics to weak external
fields. We predict giant oscillations of the conductance in the
direction parallel to the barrier with a change of the Fermi
level under a weak gate voltage, strong nonlinear current-
voltage characteristics, coherent Bloch oscillations under
weak electric fields, and specific quantum traps for electrons
in the presence of a weak smooth scattering potential.

To be specific, we consider 2DEG subject to an external
magnetic field H. We assume that a potential barrier of a

narrow width separates the systems into two parts �left and
right�. What is important? The barrier should be penetrable
such that electrons can tunnel from one part of the system to
the other. The tunneling through the barrier can generally be
characterized by a reflection amplitude r that can vary from
zero to one. A schematic setup is shown in Fig. 1�a�. Here,
we would like to emphasize that such a setup is realistic and
similar systems have been produced by using a split-gate
technique or cleaved edge fabrication method.9

We start our discussion with a qualitative analysis of the
energy spectrum of the electrons. Effects of the external
magnetic field are considered in the Landau gauge, i.e., the
vector-potential A= �−Hy ,0 ,0�, where the axis y is perpen-
dicular to the barrier. In this gauge, the component px of the
momentum conserves even in the presence of the longitudi-
nal barrier along the x axis.

In the limit of a completely transparent barrier, r=0, all
states are just Landau levels �the size of the system in the y
direction is assumed to be large�, and the electron spectrum
is �n�px�=��c�n+1/2�, where �c=eH /mc is the cyclotron
frequency and m is the electron mass. Such a spectrum is
shown by dashed lines in Fig. 1�b�. In this limit, the energy
spectrum is independent of px.

In the opposite limit of the zero barrier transparency, r
=1, the electron motion near the barrier considerably
changes and can be described in terms of independent edge
states in the left and right parts of the system �see Fig. 1�a��.
In this case, the degeneracy of the Landau levels is lifted and
the spectrum of the edge states near the barrier depends on
px. The corresponding spectrum is represented in Fig. 1�b� by
solid lines. A peculiar property of such a spectrum is the
presence of “crossing points,” the number of which grows
with an increase of the quasiclassical parameter �
=�F / ���c�, where �F is the Fermi energy of electrons in the
absence of magnetic field. Indeed, “the distance” between the
neighboring crossing points is �px�� /Rc with Rc
=cpF / �eH� being the cyclotron radius of electron orbits. As
the momentum px is restricted by the Fermi momentum pF,
the number of the crossing points is determined by pF /�px
=��1.

The case of a finite barrier transparency �0	r	1� is of
the most interest. In this case, the quantum interference be-
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tween the edge states lifts the degeneracy in the crossing
points, and narrow “energy bands” and “energy gaps” appear
in the electron spectrum �n�px�. For r�1, the widths of the
energy bands 
� and the energy gaps 
g are of the order
��c��F. Note that the electron states in the bands are delo-
calized, and thus, electrons move along the barrier with the
velocity v=d�n�px� /dpx�
� /�px�vF �n is the band num-
ber�.

II. DYNAMICS OF ELECTRONS BOUND TO A
LONGITUDINAL JUNCTION: QUASI-CLASSICAL

DESCRIPTION

In this section, we analyze quantitatively wave functions
and the spectrum of the system. For this purpose, we solve
the Schrödinger equation for a two-dimensional electron gas
�in the plane �x ,y�� in the presence of a magnetic field H and
of the barrier described by a potential V�y�

� 1

2m
�px +

eHy

c
	2

−
�2

2m

�2

�y2 + V�y� − �
��x,y� = 0. �1�

While writing Eq. �1�, we used the Landau gauge �A
= �−Hy ,0 ,0�� in which the component px of the electron mo-
mentum conserves in the presence of both the magnetic field
and the potential V�y�, and the electron wave function is
given by

��x,y� = eipxx�y� . �2�

For simplicity sake, we assume that the characteristic width
of the barrier lb is much smaller than the cyclotron radius,
lb�Rc.

In the absence of the magnetic field, the scattering of
electrons by the potential barrier is described by a 2�2 scat-
tering matrix

�̂ = iei���r�e−i� t

− t* �r�ei� 	 ; �r�2 + �t�2 = 1, �3�

where r and t are the probability amplitudes for an incident
electron to be reflected back and to be transmitted through
the barrier; � and � are the scattering phases. Solving Eq. �1�
in the quasi-classical approximation at distances �y�� lb,
where the potential barrier is negligibly small, and matching
the wave functions of the electron on the left �y	0� and the
right �y�0� sides of the barrier with the help of the scatter-
ing matrix, Eq. �3�, we come to the following dispersion
equation �see all details of this analysis in Appendix A�.10

D � cos��+��� + �� − �r�cos��−��,px� + �� = 0, �4�

where the phases �± are expressed as �±=
�HS±

2�0
, S±=S1±S2,

and S1,2 are two areas bounded by the electron orbits �see
Fig. 1�a��; �0=hc /2e is the flux quantum. Although Eq. �4�
is valid for an arbitrary dispersion relation of electrons, it
becomes an extremely transparent for the parabolic spectrum
of electrons: the complete orbit is a circle with the radius
Rc=c2m� / �eH� and the centrum shifted on the distance
cpx /eH along the y axis �see Fig. 1�a��.

The spectrum �n�px� obtained from Eq. �4� depends on
both the electron momentum px and a discrete quantum num-
ber n �the band number�. It displays gaps and bands with an
almost periodic dependence in a wide region of px �see Fig.
2�a��. In this sense, it resembles the energy spectrum of elec-
trons in semiconducting superlattices. However, in our case
the spectrum can be tuned by an external magnetic field
and/or the reflection coefficient r controlled by the gate volt-
age. Moreover, the energy levels �n for a fixed value of px
are distributed in a pseudorandom way. The typical distribu-
tion of energy levels is presented in Fig. 2�b�.

Using Eq. �4�, we calculate the electron density of states
�DOS� ���� and the ballistic conductance G��F�. We consider
only the contribution of the states bound to the longitudinal
barrier. If the energy � is located between the Landau levels
in the bulk, another well-known contribution comes from the
edge states on the boundaries of the sample. However, this
contribution is a smooth function of the energy and is not
interesting for us.

FIG. 1. �Color online� �a� Schematic of a two-dimensional elec-
tron gas in an external magnetic field H applied perpendicular to the
electron gas confinement plane. The longitudinal barrier together
with two edge states are shown. S1 and S2 are the areas of left and
right edge states. �b� A part of the spectrum in the case of a zero
barrier transmission, r=1. Dashed lines are degenerate Landau lev-
els, i.e., the spectrum of the system at r=0. We use the quasi-
classical parameter �=25.
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In order to explicitly calculate the density of states, we
use the approach developed by Slutskin for analogous spec-
tra of electrons under the magnetic break-down.11

Using the identity

�
n

��� − �n� = ��D/�����D� , �5�

the electron DOS

���� =
1

2Rc
� dpx

2��
�

n

��� − �n�px��

can be rewritten in the form

���� =
1

2Rc
� dpx

2��
� �D

��
���D� . �6�

Substituting �4� into �6� and expanding the integrand of it
into the Fourier series in �−, one finds DOS to be

���� =
1

2Rc
�

l=−�

+� � dpx

2��
Cl��,px�eil�−��,px�, �7�

where the Fourier coefficients are

Cl = �
−�

� d�

2�
��+� sin��+ + �� − �r��−� sin ��

� ��cos��+ + �� − �r�cos ��e−il�. �8�

Here,

�+� �
d

d�
�+���; �−� �

�

��
�−��,px� .

Since at ���F, one has �−�� , px����1, the exponents
in �7� are fast oscillating functions of px �on the scale of
� /Rc� pF�. At the same time, the Fourier coefficients
Cl�� , px� are smooth functions of px �see Eq. �8��, and hence,
the term with l=0 in �7� gives the main contribution to the
density of states, i.e.,

���� =
1

2Rc
� dpx

2��
C0��,px� . �9�

Carrying out integration in �8� at l=0 and using �9�, we ob-
tain

���� =
1

8�2�R

���r�2 − cos2 �̃+�

�r�2 − cos2 �̃+

� dpx

2��

��
n=1

2

�T+ sin �̃+ + �− 1�nT−
�r�2 − cos2 �̃+� , �10�

where �̃+=�++� and T±=2����± /��; ��x� is the step

function. Because of the inequality cos2 �̃+� �r�2, the second
term in �10� drops out from the sum, and finally, the density
of states for electrons bound to the longitudinal junction is
expressed in the form �here and below, we drop the tilde
sign�:

���� =
m

����2

�sin �+����
�r�2 − cos2 �+���

���r�2 − cos2 �+���,� ,

�11�

where �+���=2�� / ���c�+�. Therefore, there are “gaps” in
the DOS which can be found from the condition
cos2�2�� /��c+��� �r�2.

Such a dramatic transformation of the electron spectrum
has to lead to various effects in transport properties of
2DEG. As an example, we analyze next the ballistic transport
along the x direction.

We use the standard Landauer-Büttiker approach, based
on the relationship between the conductance and the trans-
mission probability in propagating channels,2 which permits
one to write the linear conductance as follows:

G = 2e2 1

kT
�

n
� dpx

2��
�v��n,px��cosh−2 �n�px� − �F

2kT
.

�12�

We rewrite it in the form

FIG. 2. �Color online� �a� A part of the spectrum in the case of
an intermediate barrier transmission, r=0.7. The phases � and � are
obtained for the model of the �-function barrier, V�y�=V��y�. �b�
The dependence of the energy level difference ��=�n+1−�n on the
energy �n �energy-level distribution�. We use the quasi-classical pa-
rameter �=25, and a particular value of px / pF=0.3. The points are
connected by a thin line just for clarity.
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G = 2e2 1

kT
� d� cosh−2 � − �F

2kT

�� dpx

2��
�v��,px���

n

��� − �n�px�� . �13�

Here, it is convenient to write the velocity of electrons along
the junction as

v��n,px� =
��n

�px
=� −

�D/�px

�D/��
�

�=�n

. �14�

Substituting it into �13� and using �4�, one obtains

G = 2e2 �r�
kT
� d� cosh−2 � − �F

2kT
� dpx

2��
� ��−

�px
�

� �sin �−���cos��+� − �r� cos��−�� �15�

Similarly to the calculation of the density of states, expand-
ing the integrand in Eq. �15� into the Fourier series in �− and
neglecting the fast oscillating terms in the integral with re-
spect to px, we obtain

G = 2e2 r

kT
� d� cosh−2 � − �F

2kT
� dpx

2��
� ��−

�px
�F0��,px� ,

�16�

where

F0 = �
−�

� d�

2�
� sin ����cos �+ − �r� cos �� �17�

Calculating the integrals in �16� and �17�, the dependence of
the linear conductance on the Fermi energy �F is expressed
in the form

G =
16e2

h

�F

��c
�

n
�tanh

�n
�t� − �F

2kT
− tanh

�n
�b� − �F

2kT
	 , �18�

where �n
�t�= �n�+�−arccos r���c /2 and �n

�b�= �n�
+arccos r���c /2 are the top and the bottom of the nth energy
band, respectively.

The conductance G �see, Eq. �18�� becomes very sensitive
to the Fermi energy �F. Experimentally, this energy can be
tuned by applying a gate voltage. The typical dependence of
G on the gate voltage displaying giant oscillations of the
conductance is shown in Fig. 3. These oscillations of the
conductance reflect the presence of the bands and gaps in the
spectrum of the edge states, thus proving the quantum inter-
ference of the edge states. The oscillations are smeared by
temperature �compare the curves in Fig. 3�.

The oscillations found here resemble those predicted12

and observed13 in the conductance of a junction between a
superconductor and a two-dimensional electron gas. How-
ever, in that case the quantum interference between hole and
electron edge states occurred due to Andreev reflection on
the boundary.

As the main features of the electron motion under consid-
eration are due to the quantum interference, thermodynamics
and transport properties of the system are extremely sensitive

to the influence of weak external fields.11 Thus, in the ballis-
tic regime, an increase of the transport voltage should lead to
“giant steps” in the current-voltage characteristics �CVC�.
The width of the voltage steps is determined by the width of
the gaps in the electron spectrum, i.e., 
V�
g /e.

III. DIFFUSIVE TRANSPORT ALONG LONGITUDINAL
JUNCTION

In order to analyze the transport properties of electrons in
the presence of impurities, we start with the equation for the
density matrix �̂ in the � approximation

i

�
��̂,Ĥ� −

i

�
��̂,eEx� +

�̂ − f0�Ĥ�
�

= 0. �19�

Here, Ĥ is the Hamiltonian corresponding to the Schrödinger
equation �1�, f0 is the Fermi distribution function, E is the
electric field along the junction, and � is the electron scatter-

ing time. Writing the density matrix in the form �̂= f0�Ĥ�
+ �̂�1�, we obtain

i

�
��̂�1�,Ĥ� −

i

�
��̂�1�,eEx� +

�̂�1�

�
= − eEv̂

df0

d�
, �20�

where v̂ is the quantum-mechanical operator of the electron
velocity. In the quasi-classical limit and assuming that the
characteristic width of the energy bands is much larger than
the energy broadening caused by the impurities, i.e., r
�1/ ��c��, the density matrix �̂�1� reduces to the distribution
function �n�px� satisfying the kinetic equation

d�n

dpx
+

�n

eE�
= − vn� �f0

��
�

�=�n

. �21�

Here vn=��n /�px is the quantum-mechanical averaged elec-
tron velocity. The total current along the junction �which is
carried by the electrons bound to the junction� is written as
follows:

FIG. 3. �Color online� The giant oscillations of the conductance
as a function of the Fermi energy �the gate voltage�. The influence
of temperature is shown: kBT1=0.03���c�, kBT2=0.2���c�, and
kBT3=0.5���c�. We use the quasi-classical parameter �=25 and the
reflection amplitude r=0.7.
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I = 2e�
n
� dpx

2��
�nvn. �22�

Using Eqs. �21� and �22�, we show that due to the quantum
interference of the edge states, the nonlinear current-voltage
characteristics for electron bound to a longitudinal junction
under a magnetic field arises in relatively weak electric fields
E���c /e�, where � is the electron mean free path.

A. Nonlinear response: Bloch oscillation regime

A crucial property of the obtained electron spectrum is
oscillations of the electron energy �n�px� as a function of the
momentum along the junction px. Using an analogy with the
electron transport in metals under magnetic breakdown,14 a
twinned plate,15 and semiconducting superlattices,16 one can
expect coherent Bloch oscillations, and hence, an N-shaped
nonlinear CVC under relatively weak electric fields.

We consider the Bloch oscillations under the condition
that the electron mean free path � satisfies an inequality Rc
	�	L �L is the length of the sample along the barrier�. In
the presence of an electric field E parallel to the barrier, the
electron momentum changes in time px�t�= px

�0�+eEt �px
�0� is

the initial momentum�, and hence, nearly periodic depen-
dence of �n�px� results in localization of electrons along the x
direction. The localization length can be estimated as Lloc
=vF�loc�vF�px / �eE���vF / �eERc�. The localization takes
place if Lloc	�, which occurs in electric fields E
���c / �e��.

The conductivity G is obtained as �=nee
2u, where ne is

the density of the charge carriers and the mobility u is deter-
mined by the Einstein relation u=D /�F �D is the diffusion
constant�. In the case under consideration, the localized elec-
trons diffusively move along the barrier over the distance Lloc
during the electron scattering time � due to collisions with
impurities, and hence D�Lloc

2 /�. Therefore, the current car-
ried by the localized electrons is

I = BRc�0� �

�eERc
	2

E = BR
�0

E � �

e�Rc
	2

�23�

where B is a constant of order unity and �0 is the Drude
conductivity at H=0. Since a nearly periodic dependence of
�n�px� takes place for px	 pF, the CVC with the negative
differential resistance �Eq. �23�� realizes in a wide region of
electric field ��c /�	E	�F /e�.

Next we quantitatively analyze the nonlinear CVC of a
junction in the whole range of electric fields following the
procedure elaborated in.17,18 This analysis includes both the
linear and the Bloch oscillations regimes. First, the electron
velocity �see Eq. �14�� is expressed as

vn = �r�
��−

�px
� sin �−

�+� sin �+ − �r��−� sin �−
�

�=�n

�24�

under the condition cos �+− �r�cos �−=0. Here, �+�−�� are
slowly varying functions of px and �.

Substituting �24� into �22� and using �5�, one gets

I = 2e�r� � dpx

2��
� d�

df0

d�

��−

�px
sin �−��,px�

� ���� ��,px�,px�
��D/���
�D/��

��D��� ��,px��� , �25�

where �� = ��+ ,�−�. Next, we express the distribution func-
tion as

�n�px� = ���� ��,px�,px�
df0

d�
,

where � is a 2�-periodic function of �� and a slow varying
function of the last argument with the characteristic interval
�px� pF. Such a dependence of the distribution function on
px is justified by the fact that it follows the px dependence of
the electron velocity vn in Eq. �24�, which forms the right-
hand side of the kinetic equation Eq. �21�. For systems dis-
playing oscillating dependence ��px�, it is convenient to re-
write the expression for the current in the following form �for
the details of such a procedure, see Appendix B�:

I = −
e�r�2

2�
� dpx

2��
� d�

�f0

��

��−

�px

� � sin �−

1 − r2 cos2 �−

�̃��−�� , �26�

where �̃��−�=���+
�2� ,�−�−���+

�1� ,�−� and the brackets
mean the averaging

�. . .� =
1

2�
�

0

2�

. . . d�−.

Here, indexes 1�2� correspond to electrons moving with posi-
tive �negative� velocities along the junction �see Eq. �B4��.

Next, we rewrite the kinetic equation �21� as

��−

�px

d����

d�−
+

����

eE�
= − v���, �27�

where superscript �=1,2 marks two solutions �+
�1,2���−� of

the dispersion relationship cos �+−r cos �−=0. Here, we
have neglected the partial derivative �� /�px that is small in
the quasi-classical limit.

Using Eq. �24�, we write the equation for the distribution
function �̃��−� in the following form:

d�̃

d�−
+

�̃

eE�
= − w , �28�

where ��px�=���− /�px��Rc /� and

w =
v�2� − v�1�

��−/�px
.

The expression for w is written as

w = 2�r�sin �−� S+�1 − �r�2 cos 2�−

�t�2S+�
2 + 2�r�2S1�S2� sin 2�−

	 . �29�
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Expanding the distribution function in the Fourier series
in �− and using Eq. �28� one finds it to be

���−� = − �
l=−�

+�
eE�

1 + �eE�l�2 �w���e−il��eil�− �30�

Inserting Eq. �30� into Eq. �26�, we obtain the final expres-
sion for the current

I =
2e�r�2

�
� dpx

2��

�S−

�px
S+��

l=1

�
eE��px�

1 + �leE��px��2

�� sin �−
1 − �r�2 cos �−e−il�−

�t�2S+�
2 + 2�r�2S1�S2� sin2 �−

�� sin �−eil�−

1 − �r�2 cos �−
� ,

�31�

where all the quantities are taken at the Fermi energy.
An estimation of Eq. �31� shows that the total current I

along the junction is of the order of

I � Rc�0

E
1 + �eE�/��c�2 , �32�

where �0=ne2� /m is the conventional conductivity of the
2DEG in the absence of the magnetic field.

IV. DISCUSSION AND CONCLUSIONS

The most interesting consequence of the Eq. �31� is the
nonlinear current-voltage characteristics �CVC� for the diffu-
sive electron transport along the barrier. Indeed, the CVC
displays a linear dependence at weak electric fields eE�
���c, and this behavior changes to 1/E in electric fields
eE����c. This limit corresponds to the Bloch oscillation
regime. The current maximum reaches at electric fields eE�
���c. Note here that the crucial assumption for the appear-
ance of the Bloch oscillation regime, and therefore the CVC
with the negative differential resistance, is a small probabil-
ity of Landau-Zener transitions between bands. Actually, we
can neglect Landau-Zener transitions in rather wide range of
electric fields, i.e., eE	
 /Rc, where 
 is the characteristic
value of the gap between bands in the spectrum of electrons.

Finally, we note that in the conventional situation �in the
absence of the longitudinal barrier�, a smooth �on the scale of
the Fermi wave length �F�� / pF� random scattering poten-
tial U�x ,y� does not change quasi-classical transport proper-
ties of 2DEG and is not usually seen in experiments. In con-
trast, in the presence of the longitudinal barrier, the same
smooth potential can qualitatively change the electron mo-
tion along the barrier. Arguments analogous to those pre-
sented for the Bloch oscillations lead to the conclusion that
the electrons are trapped by this potential �or by an inhomo-
geneity of the magnetic field18�, the size of the trap �that is
the localization length� being Ltrap��
� /U0�Lrand �U0 and
Lrand are the characteristic value and the correlation radius of
the random potential U, accordingly� as soon as 
��U0.
Estimations show that the giant oscillations �Fig. 3� can be
observed if U0	
����c. Actually, this is the condition for
the observation of Schubnikov–de Haas oscillations and the
integer quantum Hall effect.

In conclusion, we demonstrated that dynamics and kinet-
ics of electrons moving along a longitudinal barrier in the
presence of a magnetic field are extremely sensitive to exter-
nal fields that results in a number unusual effects in a 2D
electron gas. A crucial property of such a system is the quan-
tum interference of electron edge states propagating along
the barrier that gives rise to narrow energy bands and gaps in
the electron spectrum. The spectrum is characterized by a
nearly periodic dependence of �n�px� �with the period
�� /Rc� pF� in a wide region of px. The widths of the bands
and the gaps can be tuned by the magnetic field and the gate
voltage. Many interesting effects in the electron transport,
such as giant oscillations of the ballistic conductance of
2DEG as a function of the gate voltage, nonlinear CVC, etc.,
are possible in such a system.
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APPENDIX A: DISPERSION EQUATION

As the Fermi energy �F is larger than ��c, we can use the
quasi-classical approximation in order to calculate the wave
functions and the spectrum of electrons. The quasi-classical
wave functions of an electron at distances �y�� lb are written
as �the indexes 1, 2 correspond to the left and right parts of
the system, accordingly�:

1�y� =
C1

p�y��exp� i

�
�

y−

y

p�y��dy� −
i�

4 	
+ exp�−

i

�
�

y−

y

p�y��dy� +
i�

4 	� �A1�

for y	0, and

2�y� =
C2

p�y��exp� i

�
�

y

y+

p�y��dy� −
i�

4 	
+ exp�−

i

�
�

y

y+

p�y��dy� +
i�

4 	� �A2�

for y�0. Here, we introduce the turning points y±

= c
eH �−px±2m��, and the classical momentum p�y� is

p�y� =2m� − �px +
eH

c
y	2

. �A3�

The constants C1,2 are determined by the matching of the
wave functions at the barrier and the normalization condi-
tion. Expanding the integrals in �A1� and �A2�, one finds that
in the barrier vicinity these wave functions are of the form of
plane waves

1�y� =
1

p�0�
�A1eip�0�y + B1e−ip�0�y� �A4�
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2�y� =
1

p�0�
�A2e−ip�0�y + B2e−ip�0�y� , �A5�

where the amplitudes of the incident A1�2� and reflected B1�2�
plane waves

A1�2� = C1�2�e
i��1�2�−�/4�,

B1�2� = C1�2�e
−i��1�2�−�/4�. �A6�

Here, p�0�=2m�− px
2 and

�1�2� = ±
1

�
�

0

y±

p�y��dy� = ±
c

eH�
�

px

±p� 2m� − px�
2dpx�

�A7�

are the quasi-classical phases, which the electron obtains
moving between the turning points and the barrier in the
magnetic field. The amplitudes A1�2� and B1�2� are found by
using the scattering matrix �3� as

�B1

B2
	 = �̂�A1

A2
	 . �A8�

Using �3� and �A8�, one finds the following set of match-
ing equations:

B1 − i�r�ei��−��A1 − itei�A2 = 0

B2 + it*ei�A1 − i�r�ei��+��A2 = 0. �A9�

Equations �A7� and �A9� are a set of linear homogeneous
algebraic equations. Equating the determinant D�� , px� of it
to zero we obtain the dispersion equation that determines the
spectrum of the electrons bound to the longitudinal junction
in the presence of magnetic field, i.e., Eq. �4�.

APPENDIX B: NONLINEAR CVC

Since the integrand in Eq. �25� is a 2�-periodic function
of �+ and �−, we expand it in a double Fourier series

sin �−���� �
��D/���
�D/��

��D��� �� = �
m=−�

�

Al,m exp�il�+���

+ im�−��,px�� . �B1�

Here, the Fourier coefficients Al,m�� , px� are smooth func-
tions of � and px �with the characteristic intervals of varia-
tions 
���F and 
p� pF, respectively� while the exponents
exp�il�+���� and exp�im�−�� , px�� are fast oscillating func-
tions of these variables with the characteristic intervals ��
���c and �p�� /Rc. Therefore, the zero harmonics give the
main contribution to the integrals with respect to � and px in
Eq. �25�, and in the limit of kT���c, we obtain the expres-
sion for the current as

j = 2e�r� � dpx

2��
� d�

df0

d�

��−

�px
A0,0��,px� , �B2�

where

A0,0 = �
0

2� �
0

2� d�+d�−

�2��2 sin �−���� �
��D/���
�D/��

��D��� ��

�B3�

Performing integration in �B3� with respect to �+ and

taking into account that the equation D��� �=cos �+

− �r� cos �−=0 has two solutions,

�+
�1,2���−� = ± arccos��r� cos �−� + 2�l , �B4�

one may write Eq. �B3� as follows:

A0,0 = �
0

2� d�−

�2��2sin �−����+
�1�,�−� − ���+

�2�,�−�� .

�B5�

Substituting �B5� into �B2�, we obtain Eq. �26�.
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