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Indirect exchange interactions between itinerant electrons and nanostructures with nontrivial geometrical
configurations manifest a plethora of unexpected results. These configurations can be realized either in quan-
tum dots with several potential valleys or in real complex molecules with strong correlations. Here we dem-
onstrate that the Kondo effect may be suppressed under certain conditions in triple quantum dots with mirror
symmetry at odd electron occupation. First, we show that the indirect exchange has a ferromagnetic sign in the
ground state of triple quantum dots in a two-terminal cross geometry for electron occupation N=3. Second, we
show that for electron occupation N=1 in three-terminal fork geometry the zero-bias anomaly in the tunnel
conductance is absent �despite the presence of Kondo screening� due to the special symmetry of the dot wave
function.
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I. INTRODUCTION

Many-particle effects in quantum tunneling through quan-
tum dots are extensively discussed in the current literature
�see, e.g., the recent reviews in Refs. 1 and 2�. Single-
electron tunneling under the conditions of a strong Coulomb
blockade is accompanied by cotunneling processes with spin
reversal, which involve dynamical screening effects similar
to the celebrated Kondo scattering in magnetically doped
metals. The pertinent effect was predicted and observed in
single-well quantum dots with odd electron occupation,
where the electrons confined in the well are represented by
the non compensated spin 1/2 of an electron on the highest
occupied discrete level. This generic pattern may be enriched
in many ways, in particular by studying tunneling through
complex quantum dots containing two or three valleys.

In this paper we are interested in specific physical prop-
erties of electron tunneling through complex quantum dots
containing several potential valleys with essentially different
capacitances. Originally, the idea of coupling several nano-
objects having strong and weak Coulomb interactions is for-
mulated in the context of the electron and spin structure of
complex molecules �e.g., lantanocenes, containing strongly
correlated f electrons hybridized with weakly correlated mo-
lecular orbitals occupied by p electrons�. It is noticed3 that
the energy difference between the singlet �S� ground state
and triplet �T� excited state of a molecule with even number
of electrons N=Nf +Np is anomalously small, so that triplet
excitation affects the magnetic response of the system. The
simplest artificial analog of this system is an asymmetric
double quantum dot �composed of large and small dots� with
even occupation �e.g., N=2� and charging energies Qs�Ql
for small and large dots, respectively. When this double
quantum dot is coupled with metallic leads via the large dot
�the T-shaped geometry�, then lead-dot electron tunneling
may induce an S→T crossover4 when the energy ET of the
triplet state becomes lower than the energy ES of the singlet
state. In the case of odd occupation N=1, the Kondo-Fano

regime is relevant, where the Kondo effect induced by an
electron localized in the small side dot affects the electron
tunneling through the weakly correlated large dot.5 If the
leads are connected via the small dot, the large dot plays the
role of additional reservoir for Kondo screening in the case
of odd N and the two-channel Kondo effect may be realized
under certain conditions.6,7

A more complicated model of the asymmetric triple quan-
tum dot �TQD� with a small dot sandwiched between two
large dots was considered in Ref. 8 for odd and even occu-
pations N=3,4. It was shown that the Kondo regime is ac-
cessible in both cases. Moreover, the TQD with even occu-
pation demonstrates SO�n� symmetry.

Recently, a mirror symmetric TQD �see Fig. 1� in an
“open” regime �near the Coulomb blockade peak� was stud-
ied both experimentally9 and theoretically.10 In this case the
large “mesoscopic” dot is connected with two small dots and
with metallic reservoirs. As a result, an indirect RKKY ex-
change interaction between the spins in the couple of small
dots occurs and its sign may be controlled by changing the
parameters of the large central dot by applying an external
magnetic field.

Here we focus on a mirror-symmetric TQD in the
“closed” regime—that is, the valley between Coulomb-

FIG. 1. Triple quantum dots in “cross” �a� and “fork” �b�
geometries.
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blockade peaks where the total number of electrons in the
TQD is fixed. The three valleys of the TQD are coupled both
by capacitive interaction and by tunneling channels. Our
main results are that �i� in the cross geometry �Fig. 1�a�� with
electron occupation N=3, such a dot possesses an unusual
property—the indirect exchange tunneling constant between
the large dot and the leads is ferromagnetic; the Kondo tun-
neling is therefore absent although the TQD behaves as a
local moment; �ii� in a “fork” configuration �Fig. 1�b�� with
electron occupation N=1, the TQD exhibits two different
tunneling regimes: depending on the gate voltages, the
Kondo regime may be observed as a zero-bias anomaly or as
a finite-bias anomaly in the tunnel conductance.

II. TRIPLE QUANTUM DOT IN A CROSS GEOMETRY

The TQD in the cross geometry �Fig. 1�a�� is composed of
left l, center c, and right r dots, with corresponding levels
and charging energies � j ,Qj , j= l ,c ,r. It is modeled by the
Anderson Hamiltonian

H = Hd + Hlead + Ht, �1�

containing the terms describing the dot, two leads, and dot-
lead tunneling, respectively. The first term is

Hd = �
j=l,c,r

�
�

� jdj�
† dj� + �

j

Qjnj↑nj↓

+ W �
j=l,r

�
�

�dj�
† dc� + H.c.� . �2�

The parameters Qj are chosen in such a way that for electron
occupation N=3 and in the absence of interdot tunneling
�W=0�, each dot is occupied by one electron. In the mirror-
symmetric case such configuration is realizable provided

�l = �r � �s, � = �c − �s � 0,

Ql = Qr � Qs � Qc. �3�

We do not take into consideration the interdot capacitive in-
teraction Qjc �which may arise provided both central and side
dots are in charged states�, because this interaction merely
results in certain level shifts, which are not relevant for the
effects under consideration. At finite interdot tunneling
strength W, charge transfer from the central dot to the side
dots is possible, but the double occupation of the side valleys
is still suppressed by a strong Coulomb blockade �Qs�W�.
In the charge sector N=3 and for the mirror-symmetric con-
figuration the lowest-energy states are two spin doublets
�even and odd relative to the l↔r permutation�, a spin quar-
tet state, and a doubly degenerate charge-transfer exciton
�with two electrons in the central dot�. The corresponding
energies are

EDu = 2�s + �c − 3W2/��,

EDg = 2�s + �c − W2/��,

EQ = 2�s + �c,

EEx = �s + 2�c + Qc + 2W2/��. �4�

Here ��=�+Qc and the inequality W /���1 is assumed to
be valid. The eigenfunctions of the doublet and quartet states
�which predetermine the structure of the effective exchange
Hamiltonian; see below� are

�Du�� = 	cos �u

�bcr
† dl�

† − bcl
† dr�

† �

3

+ sin �ubcc
† �dl�

† − dr�
† ���0� ,

�Dg�� = �cos �gblr
† dc�

† − sin �gbcc
† �dl�

† + dr�
† ���0� ,

�Q, +
3

2
 = dl↑

† dc↑
† dr↑

† �0, �Q,−
3

2
 = dl↓

† dc↓
† dr↓

† �0� ,

�Q, +
1

2
 =

1

3

�
�ijk�

di↑
† dj↑

† dk↓
† �0� ,

�Q,−
1

2
 =

1

3

�
�ijk�

di↓
† dj↓

† dk↑
† �0� . �5�

Here bij
† = �di↑

† dj↓
† −di↓

† dj↑
† �1−�ij�� /
2 and the rotation angles

are given by �u=arcsin�
3W /��� and �g=arcsin�W /���.
The two other terms in Eq. �1� are the band Hamiltonian

describing the electrons in the leads,

Hlead = �
a=s,d

�
k�

�akcak�
† cak�, �6�

and the tunneling Hamiltonian

Ht = �
ak�

�Vacak�
† dc� + H.c.� . �7�

Following the standard procedure, one derives an indirect
exchange interaction between lead and dot electrons by
means of the Schrieffer-Wolff �SW� transformation. For a
composite quantum dot, this is accomplished in terms of spin
eigenstates of Hd defined in Eqs. �4� and �5�.

Thus, in the SW regime the main contribution to the lead-
dot tunneling is given by the components �cos �g,u. The
quartet state has the usual structure prescribed by a standard
Young tableau for three electrons ��ijk� indicates the cyclic
permutation of three sites lcr�.

After performing the SW-like canonical transformation,
one gets the effective exchange Hamiltonian

Hex = JuSu · s , �8�

where Su is the spin-1 /2 vector operator with components
Su

+= �u↑ ��u↓ � and Su
z = ��u↑ ��u↑ �−�u↓ ��u↓ �� /2 and s is the

spin operator of lead electrons defined as s=�kcek�
† �̂cek��;

�̂ is the set of Pauli matrices, and ce� is the even combina-
tion of lead electron annihilation operators �the odd one is
excluded from the tunneling Hamiltonian by standard
rotation11�. Remarkably, the exchange constant Ju has a
ferromagnetic sign,
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Ju = −
2 cos2 �uV2

3
� 1

��c�
+

1

��c + Qc�
� �9�

���c� is the position of the central dot level relative to the
Fermi energy of the leads; source and drain contacts are as-
sumed to be equivalent, Vs=Vd=V�. The reason for an un-
conventional sign of the exchange interaction is that only one
of three electrons in the TQD is involved in an exchange
interaction with the leads, and the overlap of the two other
electrons wave function entering the state �Du�� gives the
factor −1. Thus, in this geometry we encounter a unique
situation, where the Kondo screening is ineffective for a
quantum dot with odd occupation.

Yet a crossover from a ferromagnetic to an antiferromag-
netic scenario is feasible. Indeed, the level spacing in the
spin multiplet �4� is governed by the parameter W /�. If this
spacing is small enough, the renormalization of these levels
due to lead-dot cotunneling becomes relevant in the renor-
malization group �RG� flow equations along with exchange
screening in the framework of the Haldane renormalization
procedure.12 Accordingly, the energy levels �4� are renormal-
ized as a result of integrating out the band edges and shrink-
ing the bandwidth from its bare value D0 to a smaller value
D �comparable with ��c��. The corresponding RG invariant is

E	
* = E	�D� − 
−1�	 ln�
D/�	� , �10�

with tunneling rates �D�u,g��
�0cos2 ��u,g�V
2 and �Q

�
�0V2. Due to the hierarchy �Q��Dg��Du, a level cross-
ing is feasible �see Fig. 2�. Physically, it implies a crossover
from the non-Kondo �ferromagnetic exchange� regime to the
underscreened Kondo regime with a pronounced maximum
of the conductance around the degeneracy point. The param-
eters W and �, which determine the initial conditions �4� for
the flow equations �10�, can be controlled by gate voltages.
Varying these initial conditions, one may tune the region of
crossover to the SW regime at the point

D̄ � E	�D̄� . �11�

For D D̄ the properties of the system are determined by the
SW Hamiltonian. The effective Hamiltonian �8� may be writ-

ten for D̄= D̄u �marked on the horizontal axis of Fig. 2�. If
the condition �11� is fulfilled in the vicinity of the crossing

point �D̄= D̄cr�, the exchange Hamiltonian �instead of Eq.
�8�� acquires the form

HSW = JuSu · s + JgSg · s + JQSQ · s + JRR · s , �12�

expressed in terms of operators for localized spin 1/2, Su,g,
the quartet spin-3/2 operator SQ, and the vector operator R
which induces transitions between the quartet �Q� and dou-
blet �Du�. There are no transitions between �Q� and �Dg� since
these states have different l−r parity.

At the point D̄cr the degeneracy of the spin state of the
TQD is maximal, corresponding to the symmetry SU�2�
�SU�2��SU�2�. Both to the right and to the left of this
point some of the states in the spin multiplets are quenched

at T→TK and TK depends on the energy gaps �Qg=EQ�D̄�
−EDg�D̄� and �gu=EDg�D̄�−EDu�D̄�. To find the function
TK��Qg ,�gu�, one should solve the scaling equations for the
coupling constants in the Hamiltonian HSW,

dju

d ln d
= − �ju

2 + 2jR
2�,

djg

d ln d
= − jg

2,

djQ

d ln d
= − �jQ

2 − jR
2�,

djR

d ln d
= −

jR

4
�5jQ − ju� , �13�

where ja=�0Ja �a=g ,u ,Q ,R� and �0 is the density of states
which is assumed to be constant. The procedure is self-
consistent because TK itself predetermines the characteristic
energy interval for states in the spin Hamiltonian involved in

its formation. Varying D̄ in Fig. 2, from the ferromagnetic

non-Kondo regime �D̄� D̄u� to the crossing point D̄cr, one
reaches the point TK�0 which arises due to influence of the

excited states EQ�D̄� and EDg�D̄�. Just then, TK sharply in-
creases, reaching its maximum value in the point of maxi-

mum degeneracy, D̄cr. Moving further to the left, the level
EDu freezes out. This means that the vector R in the Hamil-
tonian �12� does not contribute anymore to Kondo cotunnel-
ing and the Kondo effect is determined by the pair of states
EQ and EDg, with the dynamical symmetry of TQD being

SU�2��SU�2�. A further decrease of D̄ eventually results in
the quenching of EDg. The system then exhibits an under-
screened Kondo regime of a localized spin-3/2 moment. Fig-
ure 3 illustrates these crossover effects on TK.

The evolution of TK is reflected in the behavior of the
tunnel transparency and conductance as a function of energy.
Far enough to the left and to the right of the crossing point,
this behavior is stepwise. When the dot is in the doublet

ground state �D̄� D̄u�, the spin multiplet as a whole contrib-
utes to the transparency at high energies ���Qg+�gu. With
decreasing � the quartet EQ and the even doublet EDg ener-
gies freeze out in this order �they are not renormalized any-
more�. Eventually, Kondo tunneling is quenched at low en-
ergies, so that the zero-bias anomaly �ZBA� has the shape of
a dip. On the other hand, in the crossover regime, the ZBA
follows the conventional Kondo peak. Finally, the structure

of the peak at the regime D̄� D̄Q is even more complicated.
Within the framework of our approach we may describe the

FIG. 2. �Color online� Haldane flow diagram for the levels E	

of Eq. �10�, d̄=
D̄ /�Q. Energy is measured in meV units.
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evolution of transparency for T�TK where it is approxi-
mately described by the simple relation T���
� ln−2�T /TK����. The resulting curve is shown in Fig. 4.

This type of nonuniversal behavior of TK is known in the
theory of strongly correlated quantum dots with even occu-
pation, where the singlet-triplet level crossing usually
occurs.4,8,13 The novelty of the present scenario is that it is
manifested in quantum dots with odd occupation where the
absence of the Kondo effect occurs due to ferromagnetic
exchange coupling with the localized spin doublet. The non-
universality of TK occurs as this ferromagnetic exchange
competes with two antiferromagnetic exchange interactions
�with doublet and quartet localized moments�, so that, in
some sense, one deals with a “three-stage” Kondo effect.
Thus, we have completed our discussion pertaining to the
cross-shaped TQD of Fig. 1�a�.

III. TRIPLE QUANTUM DOT IN A FORK GEOMETRY

It is then natural to expect peculiar features of Kondo
tunneling also in a mirror-symmetric TQD in the fork geom-
etry �Fig. 1�b�� with Ql,r�Qc. The dots and leads are labeled
1,2,3, and each dot is attached to its own lead. In the case of
N=3, the exchange coupling J3 between the central dot and
its adjacent lead is ferromagnetic in accordance with Eq. �9�,
whereas those for the two other �small� dots �J1 ,J2� are an-
tiferromagnetic. Besides, there are also nondiagonal ex-
change couplings Jij =Jji. All these are coupled within a sys-
tem of RG flow equations. A question now arises: is it
possible to find a regime where the Kondo resonance arises

only in dots 1,2, whereas dot 3 remains Kondo inactive?
To answer this question, we calculate TK and G within the

same scheme as in the preceding section for a system de-
scribed by the Hamiltonian �1� with the tunneling term

Ht = �
j=1

3

�
k�

�Vjcjk�
† dj� + H.c.� �14�

instead of Eq. �7�. The effective exchange Hamiltonian of
this system is obtained in the same way as Eq. �12�. The
mirror l−r symmetry entails V1=V2�V3. If the ground state
consists of the odd-parity doublet EDu

, the corresponding SW
Hamiltonian has the form

HSW = �
i=1

3

JiS · si + J12S · �s12 + s21� + J13S · �s13 + s31�

+ J23S · �s23 + s32� . �15�

Here the exchange constant J30 is the same as Ju, Eq. �9�,
whereas J1,2�0. For cos �u�1, these constants are

J1 = J2 =
4

3

V1
2

��s�
,

J3 = −
2

3
� V3

2

��c�
+

V3
2

��c + Qc�
� ,

J12 = −
3

2

�V1W�2

��c + Qc − �s�2��s�
,

J13 = J23 = −
1

4

WV1V3

�c + Qc − �s
� 1

��s�
+

1

��c�
� . �16�

The system of RG flow equations for the Hamiltonian �15�
now reads,

dj1

d ln d
= − �j1

2 + j13
2 + j12

2 � ,

dj3

d ln d
= − �j3

2 + 2j13
2 � ,

dj12

d ln d
= − 2j1j12,

FIG. 3. Evolution of the Kondo temperature ��TK
cr is determined

by scaling equations �13��.

FIG. 4. Tunnel transparency of TQD in a dou-
blet �left panel� and quartet �right panel� ground
states. Tpeak is the maximum value of T���.
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dj13

d ln d
= − j13�j1 + j3� . �17�

A somewhat unexpected result following the analysis of
these equations: the coupling constants related to channel 3
become relevant in spite of their negative initial values �16�.
The Kondo temperature is

TK = D̄ exp�−
2

j+ + 
j−
2 + 6j13

2 � , �18�

where j+= j1+ j12+ j3 and j−= j1+ j12− j3, so that the Kondo
resonance arises in all nondiagonal channels and the TQD
looses its “exotic” properties. The Kondo transparency Tij���
may be calculated for any pair of electrodes �ij�. It is a
stepwise function in accordance with multistage Kondo
screening process, but no anomalous “freezing out” of the
Kondo effect similar to that shown in the left panel of Fig. 4
is expected in this case.

It is appealing, however, to exploit other specific proper-
ties of the TQD in the fork configuration. The remarkable
feature of the mirror-symmetric TQD is that it can be viewed
as a quantum pendulum.14,15 This means that the superposi-
tion of two degenerate states �13� and �23� can be considered
as a sort of mesoscopic resonating valence bond �RVB�. In
the two papers cited above, various manifestations of spin
entanglement at even occupation N=4,2 were investigated.
Below we will discuss how this property is manifested in the
Kondo regime in the odd-occupation charge sector N=1.

So let us assume that the parameters �gate voltages� are
tuned so that the TQD is found in a Coulomb-blockade val-
ley corresponding to the occupation sector N=1. Within the
same approximation as Eq. �4� the lowest eigenstates �	� of
the Hamiltonian Hd, Eq. �2�, for N=1 are the set of spin
doublets

�Db�� = 	sin �d3�
† + cos �

d1�
† + d2�

†


2
��0� ,

�Dn�� = 	d1�
† − d2�

†


2
��0� ,

�Da�� = 	− cos �d3�
† + sin �

d1�
† + d2�

†


2
��0� , �19�

with sin �=
2W /��1. The corresponding eigenvalues are

EDb = �s − 2W2/� ,

EDn = �s,

EDa = �c + 2W2/� . �20�

Hence, the ground state is a bonding spin doublet EDb and
the eigenstates �	� may be interpreted as two even and one
odd RVB modes of a “spin pendulum.”

In the low-energy subspace ��W2 /� the effective spin
Hamiltonian which describes the Kondo cotunneling has the
same form as Eq. �15� derived above for N=3. Here, how-
ever, all coupling constants are positive,

J1 = J2 = J12 =
V1

2cos2 �

2��s�
, J3 =

V3
2sin2 �

��c�
,

J13 = J23 =
V1V3sin � cos �

2
2
� 1

��c�
+

1

��s�
� , �21�

and the Kondo temperature is given by Eq. �18�.
One may say that in a coherent Kondo-tunneling regime

the system demonstrates perfect entanglement: an electron
entering dot 3 from lead 3 splits into two components in
accordance with the structure of the state �Db��, and this
entangled state predetermines the total current I1+ I2 through
the TQD in the fork geometry. Of course, this statement is
valid only at zero temperature and one may expect that ther-
mal fluctuations are detrimental for a coherent transport, but
this effect is suppressed as �T /TK�2 at low T.

The situation becomes even richer, due to the occurrence
of soft mode excitations �20�: the odd state �Dn�� may be
intermixed with the even state �Db�� due to the cotunneling
process. This intermixing becomes relevant provided TK
�EDn−EDa. This inequality is, of course, invalid for the bare
eigenstates �20�, but a Haldane renormalization of the spec-
trum similar to that described by Eq. �10� may result in a
softening of this mode. It might even lead to a level crossing
provided the tunneling rate �n=�1V1

2 for the nonbonding
state �Dn�� is higher than the rate �b=�1V1

2cos2 �
+�3V3

2sin2 � for the bonding state �Db��. If the densities of
states are the same in all leads, �1=�3, then the condition
�n��b means V1�V3. The RG flow trajectories for this case
are presented in Fig. 5. Like in the cross geometry, the TQD

acquires an additional degeneracy in the critical region d̄

� d̄cr. However, in this case the sources of degeneracy are
the RVB degrees of freedom. As a result, one encounters the
problem of the Kondo effect due to an interplay between spin
S and pseudospin T, where the latter describes the pendulum
degrees of freedom. This problem was discussed in the con-
text of double quantum dots,16 triple quantum dots,17,18 and
molecular trimers chemisorbed on metallic surfaces.19 In this
case the actual symmetry of the TQD is SU�4�. To show this,
we derive below the effective spin Hamiltonian following the
method offered in Ref. 18.

FIG. 5. �Color online� Haldane flow diagram for the levels E	

of the TQD in fork geometry, d̄=
D̄ /�n. Energy is measured in
meV units.
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It is useful to generalize the notion of localized spin op-
erator Si= ����̂i���� �employing Pauli matrices �̂i�i=x ,y ,z��
to S		�

i = ��	��̂i���	��, in terms of the eigenvectors
�Db�� , �Dn�� from Eqs. �19�. A similar generalization ap-
plies for the spin operators of the lead electrons: s���

i

=�kk�c�,k�
† �̂ic��,k���. Here the index � denotes conduction

electrons in lead 3 ��=3� and in leads 1,2, with �=e ,o cor-
responding to even and odd combinations of conduction
electron states in these leads,

c�e,o�k�
† =

1

2

�c1,k�
† ± c2,k�

† � . �22�

The pseudospin operators T describing the RVB mode are
introduced as follows:

T+ = �
�

�Db���Dn��, T− = �T+�†,

Tz =
1

2�
�

��Db���Db�� − �Dn���Dn��� . �23�

The five vector operators S		� and T constitute the 15 gen-
erators of the SU�4� group.

Similarly, one may construct the pseudospin operators for
the electrons in the leads �1,2�:

�+ = �
k�

cek�
† cok�, �− = ��+�†,

�z =
1

2�
k�

�cek�
† cek� − cok�

† cok�� . �24�

The exchange Hamiltonian for a TQD with spin and RVB
degrees of freedom is

HSW = �
����

J����S�� · s�� + JpT · � , �25�

with � ,�=b ,n; � ,�=e ,o, and the coupling constants J����

=J����=J���� are positive like in Eqs. �21�:

Jbbee = 2J11, Jbb33 = J33,

Jbnoe =
V1

2cos �

��s�
, Jnnoo =

V1
2

��s�
,

Jbb3e = J13, Jp = 2Jbbee. �26�

The system of scaling equations has the form

djb

d ln d
= − 	 jb

2 +
jbn
2

2
+ jbnjp + j13

2 � ,

djn

d ln d
= − 	 jn

2 +
jbn
2

2
+ jbnjp� ,

dj3

d ln d
= − � j3

2 + j13
2 � ,

dj13

d ln d
= − j13� jb + j3� ,

djbn

d ln d
= −

1

2
� jbn + jp�� jb + jn� ,

djp

d ln d
= − jp

2, �27�

where jb= jbbee, jn= jnnoo, j3= jbb33, j13= jbb3e, and jbn= jbnoe.
From these equations we derive the Kondo temperature

TK = D̄ exp�−
2

j+ + 
6j13
2 + �jbn + jp�2 + j−

2� , �28�

with j+= jb+ jn+ j3 and j−= jb− jn− j3. Like in the cross geom-

etry, one may manipulate D̄ by changing the gate voltages

and scanning the dependence TK�D̄� similarly to Fig. 3. This

curve has a maximum in the critical point D̄cr, and the orbital
degrees of freedom are frozen out in the asymptotic regimes

D̄� D̄cr and D̄� D̄cr. We deal in this case with a symmetry
crossover SU�2�→SU�4�→SU�2�. However, there is an im-
portant difference between the two asymptotic SU�2� sym-
metries.

In the limit d̄� d̄cr the ground state is Edb; all three
dots are partially occupied in accordance with the structure
of the corresponding wave function �Db��, Eqs. �19�.
The terms �Jbbee, Jbb33, and Jbb3e survive in the SW Hamil-
tonian �25�, and Eq. �28� for TK reduces to Eq. �18�. In the

limit d̄� d̄cr, the ground state of the TQD is the nonbonding
state EDn with an empty site 3 in accordance with the form
of the wave function �Dn��, Eqs. �19�. The SW Hamil-
tonian �25� contains in this case only the term �Jnnoo and

TK= D̄ exp�−1/ jn�.
The Kondo temperature as a function of D̄ has a maxi-

mum in a crossing point D̄cr, but unlike the case of cross

geometry �Fig. 3�, TK�D̄� is nonzero on both sides of this
maximum �Fig. 6�.

The change of the ground-state wave function from the
bonding combination �Db�� to the nonbonding one �Dn�� in-
fluences the behavior of tunnel conductance. Let us compare
the tunnel current between leads 2 and 1 and between leads 3
and 1, which is defined by the components G22 and G33 of
the three-terminal conductance matrix Gij =�Ii /�Vj.

When calculating these components as a function of D̄,
one immediately sees that the Kondo-type ZBA in G22 exists
in all three regimes and the peak of this conductance follows

the behavior of TK�D̄�. The behavior of G33 is more peculiar.
The ZBA in this channel exists only until the even compo-
nents �Db�� are involved in Kondo tunneling. In the limit

TK�EDb−EDn at d̄� d̄cr this anomaly disappears, so we en-
counter a unique situation where the Kondo resonance is
absent in the conductance in spite of the presence of Kondo
screening.

However, the resonance Kondo regime in G33 arises as a
finite-bias anomaly �FBA�. To describe this tunneling one
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has to retain the terms �Jbnoe and Jp in the Hamiltonian �25�.
These terms describe inelastic tunneling, which acquires a
form of Kondo resonance at finite bias in accordance with
the mechanism offered in Ref. 20. In that case the tunneling
through the double quantum dot with even occupation in a
singlet ground state was considered and the Kondo regime
becomes relevant at finite bias when the difference in the
chemical potentials of source and drain leads compensates
the exchange gap between the ground-state singlet and
excited-spin triplet states. In our case the FBA arises at odd
occupation when the bias compensates the energy gap, �
=EDb−EDn.

In order to calculate the tunnel conductance in the weak-
coupling regime, we use the modified golden rule formula,21

which reads for channel 3–1 as G33�eV3 ,T� /G0

��J˜13�eV3 ,T��2, where G0=e2 /
� and J˜13 is the solution of
the RG flow equations �27� for D=max�eV3 ,T�. In the case
of Kondo-type resonance at finite bias eV3, the equation for
conductance in the vicinity of the FBA reads20

G/G0 � ln−2�max�eV3 − �,T�/TK� . �29�

A similar equation �with V2→0� describes the ZBA in tunnel
conductance in channel 2–1.

The results of the calculation of G22 and G33 are presented
in Fig. 7. One may see from this figure how the ZBA in G22

goes through the maximum at the crossing point D̄cr whereas

the ZBA in G33 transforms into the FBA for small enough D̄
when � exceeds TK. Rough estimates of the boundaries of
robustness of this effect in parameter space can be suggested
as follows: let the small dots be not completely identical—
i.e., �1��2, but ��1−�2 � ��c−�s. Then for ��1−�2 �  � W2

�c−�s
�,

Eqs. �19� and �20� are valid, whereas for ��1−�2 � � � W2

�c−�s
� all

three eigenfunctions contain d3�
† �0� which means that the

ZBA in G33 exists when the mirror symmetry is strongly
violated.

A discussion of damping effects, which, to a certain de-
gree, tend to smear the FBA,20,22 is beyond the scope of this
work. It should be mentioned, however, that it was shown in
Ref. 20 that there exists a wide enough window of param-
eters where this damping is not fatal for the existence of a
well-shaped FBA. It is worth noting also that the tunnel con-
ductance between leads 1 and 2 exists in spite of the absence
of direct tunneling channel. The tunneling mechanism is con-
nected in this case with the “pendulum” structure of the elec-
tron wave function �19� in the TQD. In the case of the
ground state EDb this is the bonding combination �d1�

†

+d2�
† � �0�; in the case of the ground state EDn this is the

resonating valence bond �d1�
† −d2�

† � �0�. In the latter case dot
3 is excluded from cotunneling. It is therefore involved only
in the determination of the Kondo temperature.

IV. CONCLUDING REMARKS

We have shown in this paper that triple quantum dots in
some special geometries demonstrate unusual behavior in the
Kondo tunneling regime. This behavior stems from the in-
equivalence of constituents �side valleys and central valley�.
The asymmetric double quantum dot considered in Ref. 4
was the first example of a complex quantum dot with inner
and outer “shells.” The trimers with inequivalent side and
central valleys studied in Refs. 8–10 and in the present paper
are more complicated examples of artificial molecules with
shell structure. In this case the two side dots form an “inner
shell” whereas the large central dot plays the role of an
“outer shell.” If the outer shell is open,9,10 it contributes to
the indirect exchange between the electrons in the inner
shell.

In our theoretical model with closed geometry only the
few-electron case was considered with electron occupation N
up to 3. Of course, practical realizations of “nearly empty”

FIG. 6. Evolution of the Kondo temperature ��TK
cr is determined

by Eq. �28��.

FIG. 7. Left panel: tunnel conductance in

channel 2–1 for D̄= D̄cr �a�, D̄� D̄cr �b�, and D̄

 D̄cr �c�. Right panel: tunnel conductance in

channel 3–1 for D̄� D̄cr �a� and D̄ D̄cr �b�.
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complex quantum dots is a difficult task. However, the stan-
dard condition for realization of the Kondo effect—namely,
the smallness of tunnel parameters in comparison with the
level spacing �� in the dots and strong Coulomb blockade,
W ,V���Qi—is enough for realization of the physical ef-
fects described in this work. For example, the charge sector
described here as the N=1 case corresponds to two side val-
leys occupied by an even number of electrons and the central
sites occupied by an odd number of electrons. The case N
=3 corresponds to odd occupation in all three valleys. If the
above inequalities are valid, the spin excitations in these
charge sectors are given by Eqs. �20� and �4�, respectively.
The experimental possibility of the observation of one excess
electron at a time in triple quantum dots was demonstrated
explicitly in studies of the ratchet effect.23 Recently, the pos-
sibility of controlling quantum dots with a very small num-
ber of electrons �N=1−20� was experimentally realized.27

It should be stressed that the inequalities ��0 and
Qs�Qc are necessary preconditions for the “shell structure”
of the electronic distribution in TQD’s, mentioned in the
beginning of this section. If the energy differences � and
Qs−Qc in the TQD are comparable with the interdot tunnel-
ing parameter W, the shell structure will be smeared and all
specific features of the TQD related to the l−r symmetry will
be smeared as well. Since all these parameters are controlled
both by the dot radii and by the gate voltages, it is rather
difficult to give quantitative estimates in a general form, but
such estimates may be made numerically for a specific form
of the dot, based, e.g., on self-consistent calculations of the
charge distribution presented in Ref. 24 for a fork �ratchet�
and triangular geometry of TQD’s.

One should be aware that it is hardly possible to realize
experimentally the ideal mirror symmetry in such a compli-
cated object as a triple quantum dot. In the best case two side
dots may be considered as nearly identical, so that the mirror
reflection is only an approximately symmetry operation.
Slightly violated mirror symmetry should result in a weak
admixture of a state �Du� to �Dg� and vice versa in the case
N=3. The same is valid for the intermixture of the states EDb
and EDn in the case N=1. Both crossover effects described
by the flow diagrams of Figs. 2 and 5 are relatively robust
against this symmetry violation. In perfectly symmetric cases
the Kondo effect is completely forbidden for the ground state
EDu in former state and the ground state EDn in the latter

case. If the mirror symmetry is weakly violated, then the ban
is not strict, so the evolution of TK shown in Figs. 3 and 6 is
not that sharp, but the crossovers in tunnel conductance
shown in Figs. 4 and 7 are still observable. Of course, if the
symmetry violation is strong and the matrix elements
�Du �W �Dg� and �Dn �W �Db� are comparable with the distance
between the corresponding levels far from the crossing
points in the Haldane flow diagrams, the crossovers will be
completely smeared. These matrix elements, which are con-
trolled by the rotation angle �, may be easily found by means
of Eqs. �5� and �19�, respectively �see also the discussion
below Eq. �29��.

We have found in this study that the TQD with mirror
symmetry at odd electron occupation N=1,3 possesses prop-
erties which were observed earlier only in dots with even
occupation N=2. In particular, the Kondo tunneling may be
absent in the ground spin-doublet state of the TQD due to
special symmetry properties of the wave function �odd l−r
symmetry in case of N=3 and empty outer shell in case of
N=1�. The involvement of the low-lying Kondo-active spin
doublet results in a two-stage Kondo screening reminiscent
of that found in quantum dots with occupation N=2 where
the spin excitation spectrum is formed by the singlet-triplet
pair.13 Other interesting possibilities now open due to the
resonance valence bond structure of the electron wave func-
tion �19� in the case of a partially occupied inner shell in fork
geometry with N=1. In particular the “pendulum effect”14,15

perceived in TQD’s with even occupation N=2,4 may be
exploited in this type of TQD as well.

The transformation of the ZBA into the FBA under chang-
ing gate voltage is a special manifestation of a general phe-
nomenon, known as the “critical phase transition,” where the
symmetry of the ground state changes as a function of con-
trol parameter. A similar effect should be observed in planar
and double quantum dots20 with even occupation where the
singlet-triplet crossover may occur with changing gate volt-
age or in transition-metal molecular complexes.25 In the lat-
ter case local phonons are essentially involved in this
transition.26
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