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The thermodynamics properties of the wurtzite and zinc-blende InxGa1−xN alloys are calculated using
first-principles density-functional calculations. Special quasirandom structures are used to describe the disor-
dered alloys, for x=1/4, 1/2, and 3/4. The effect of lattice vibrations on the phase diagram, commonly omitted
from semiconductor alloy phase diagram calculations, are included through first-principles calculations of
phonon spectra. Inclusion of lattice vibrations leads to a large reduction in the order-disorder critical tempera-
ture ��29% and �26% for the wurtzite and zinc-blende structures, respectively� and changes the shape of the
solubility and spinodal curve through changes in the entropies of the competing phases. Neglect of such effect
produces significant errors in the phase diagrams of complex ordered semiconductor compounds. The critical
temperature for phase separation is 1654 K �1771 K� for the wurtzite �zinc-blende� structures. The predicted
phase diagrams are in agreement with experimental measurements on metal-organic chemical-vapor deposition
InxGa1−xN films.
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I. INTRODUCTION

The group-III nitrides GaN and InN and their alloys have
been receiving considerable attention for high-power, high-
frequency, and high-temperature optoelectronic applications,
such as light-emitting and laser diodes. By changing compo-
sition one can, in principle, continuously tune the band gap
from 0.8 eV �InN�1 to 3.5 eV �GaN�—a range that spans
much of the visible spectrum. However, because of the large
lattice mismatch between GaN and InN ��11% for the a and
c directions in the wurtzite �WZ� structure�, the solid solu-
tion has a tendency to undergo phase separation.2–4 GaN,
InN, and their alloys �InxGa1−xN�, grown under ambient con-
ditions, typically assume the hexagonal WZ crystal
structure.3–6 It is possible, however, to grow thin epitaxial
films of InxGa1−xN with the cubic zinc-blende �ZB�
structure.7–14 The phase stability of InxGa1−xN alloys has
been the subject of several experimental3,4 and theoretical
studies.15–24 For example, there have been more than ten cal-
culations of the InxGa1−xN pseudobinary phase diagram.
These have included valence-force field �VFF�,15–17 tight-
binding, and density-functional calculations,18 sometimes
combined with atomic-scale Monte Carlo simulations.19 Sur-
prisingly, there is considerable discrepancy in the predicted
miscibility gap. The tendency for phase separation is largely
driven by the relatively large misfit strains.22 The predicted
critical temperature �Tc� varies over a 2000 K range, with
most calculations predicting 1500 K�Tc�2000 K. The
source of this discrepancy may be associated with the accu-
racy of the description of the atomic interactions, the need
for a statistically meaningful description of the distribution
of Ga and In on the solid solution cation sites, and the con-

tribution to the free energy associated with configurational
entropy.20 Additionally, the vibrational contribution to the
free energy has never been included. In the present paper, we
report the results of the most rigorous calculation of this
phase diagram performed to date. The results clearly demon-
strate the importance of the vibrational contribution in deter-
mining phase diagrams in semiconductor alloys, such as
InxGa1−xN.

In this work, we employ accurate density-functional
theory �DFT� to examine the thermodynamic properties of
both WZ and ZB InxGa1−xN. We directly compare the forma-
tion enthalpy and free energy differences determined using
exactly the same pseudopotentials and energy cutoff for both
structures. Using these results, we predict the binodal and
spinodal on the binary phase diagram; delineating the misci-
bility gap and the region where the solid solution is unstable.
The simulation method uses the special quasirandom struc-
ture �SQS� formalism25,26 to faithfully �and efficiently� rep-
resent the structure of the random alloy. The effect of lattice
vibrations, often neglected in semiconductor alloy thermody-
namic calculations, is included in a harmonic approximation
where the dynamical matrix is determined using DFT meth-
ods. Even though lattice vibration effects have been shown to
be significant for the thermodynamic properties of some
intermetallics,27 the effects of vibration have been commonly
neglected for semiconductor alloys. Such effects were not
previously included, in part, because an accurate treatment of
lattice vibrations requires substantial computing resources,
above that needed for modeling the effects of alloying on the
heat of formation. Advances in first-principles computational
methods and hardware make routine inclusion of vibrational
effects in alloy phase diagram calculations possible. As we
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demonstrate below, lattice vibrations can drastically alter cal-
culated thermodynamic properties and phase diagrams of
InxGa1−xN. This work provides the first direct evaluation of
the significance of lattice vibration effects on the phase dia-
gram of compound semiconductor alloys—a large and tech-
nologically important class of complex alloys. Earlier work
on solid solution semiconductor alloys Si-Ge28 and
Ga1−xInxP

29 suggested that lattice vibration effects are negli-
gible. On the other hand, inclusion of these effects on metal-
lic compounds �intermetallics� have been shown to be impor-
tant in determining phase stability in the Cd-Mg,30 Al-Sc,31

Cu-Au,32 and Al-Cu33 systems. However, vibration effects
have been shown to be relatively unimportant in other me-
tallic systems that exhibit compound formation, e.g., Ni-Al
�Ref. 34� and Pd-V.35 The previous work on the phase sta-
bility of metals suggests that vibrational effects may or may
not be important in those systems. Furthermore, there is no
evidence to support the idea that one can extrapolate from
metals to compound semiconductor alloys.

The solid-state InxGa1−xN phase diagrams, determined
herein, represent the most rigorous determinations reported
to date. The resultant phase diagram shows that the WZ
crystal structure is more stable than the ZB structure over
the entire InxGa1−xN composition and temperature ranges
examined.

II. PREVIOUS THEORETICAL CALCULATIONS

Because of its low computation cost and relative accuracy,
VFF models36 have been used extensively to study15–17,19 the
InxGa1−xN alloy system. One of the first InxGa1−xN phase
diagram calculations was performed by Ho and
Stringfellow,15 who employed a VFF model to investigate
the solid phase miscibility gap in ZB InxGa1−xN. They found
a critical temperature of 1523 K and that at the growth tem-
perature of 800 °C, the InN solubility in GaN is �6%. Using
interaction constants deduced from first-principles calcula-
tions, Saito and Arakawa16 simulated the WZ InxGa1−xN al-
loy system using the VFF model and obtained a critical tem-
perature of 1690 K. Takayama et al.,17 using a modified VFF
for InxGa1−xN, found a critical temperature of 1668 K for the
ZB structure and 1967 K for the WZ structure.

Several first-principles calculations have also been per-
formed. Van Schilfgaarde et al.18 relaxed a 32-atom structure
using a tight-binding method and determined the heat of for-
mation using DFT. Combining this result with an ideal mix-
ing estimate of the configurational entropy led to critical
temperatures of 3980 and 2290 K for the WZ and ZB struc-
tures, respectively. These values are considerably higher than
those obtained from the VFF models. Teles et al.22 investi-
gated strained and relaxed InxGa1−xN alloys using a pseudo-
potential plane-wave approach with a generalized qua-
sichemical approximation for mixing.37 They obtained a
critical temperature of 1295 K for the ZB InxGa1−xN, which
is lower than the VFF results.15,17 Another first-principles
calculation23 also reported a similar value for the critical
temperature �i.e., 1400 K� for ZB InxGa1−xN.

Grosse and Neugebauer38 assessed the limits and accuracy
of the VFF models for InxGa1−xN alloys by studying various

ordered structures using first-principles calculations. They
found that although VFF works reasonably well for some ZB
III/V semiconductors, significant errors occur for group-III
nitrides �GaN, InN�. In particular, the formation energies for
alloys are significantly underestimated �by 14 meV/cation�.
These findings suggest that the critical temperature of
InxGa1−xN obtained from first-principles calculations should
be higher than those from VFF calculations. However, this
conclusion is inconsistent with the predictions of VFF �Refs.
15–17� and first-principles results22,23 �i.e., the Tc values
from VFF studies exceed those from first-principles calcula-
tions�. Our results, presented in this paper, shed light on this
discrepancy.

III. SPECIAL QUASIRANDOM STRUCTURES

The effects of disorder on the stability and structure of
alloys have received considerable attention over the past few
decades. The coherent-potential approximation39 for describ-
ing such effects is a single-site theory that treats the random
AxB1−x alloys by considering the average occupations of lat-
tice sites by atoms A and B. Hence, the effects of local en-
vironment, such as charge transfer, local chemical environ-
ment, and local structural relaxation, are ignored. However,
local environment effects have been shown to be important
in determining the thermodynamics and electronic properties
of alloys.25,26 One approach to incorporate the local environ-
ment effect is through first-principles DFT. One can, in prin-
ciple, model a disordered AxB1−x system using a plane-wave
density-functional method with a large supercell in which A
and B are distributed at random on lattice sites. Unfortu-
nately, since computational costs in such methods usually
scale with the number of atoms in the supercell, N as N3, one
is usually forced to use a small supercell. Small supercells
invariably lead to poor statistics and spurious correlations
�i.e., this approach leads to a chemical environment about
each site that is different from that in a large, truly random
system�. Zunger et al.25,26 recognized that most physical
properties are governed by atomic interactions between near
neighbors and developed a method to generate atomic ar-
rangements in small supercells that correctly reproduce the
short and intermediate range correlations that exist in ran-
dom alloys. These structures are called special quasirandom
structures �SQS�.

A useful approach to defining correlation functions in
crystals with different site occupancies is to assign each site
i a variable according to the type of occupying atom, say si
= +1 for an A atom and si=−1 for an B atom. Next, we make
a list of pairs of atoms in our structure that are separated by
k or less nearest-neighbor distances and evaluate the product
�=sisj for that particular pair of atoms on sites i and j.
Averaging this value over all such pairs in the structure
yields the correlation function �2,k, where the 2 indicates we
are considering pairs. We can use a similar procedure for
triplets, quadruplets, m-lets of atoms to produce a series of
correlation functions �m,k. If the alloy were of infinite extent
and the site occupancies were truly random, all �m,k would

be �m,k�x�=�̄m�x�= ��+1�x+ �−1��1−x��m= �2x−1�m, where
x is the concentration of A atoms in the system.

GAN, FENG, AND SROLOVITZ PHYSICAL REVIEW B 73, 235214 �2006�

235214-2



We have implemented the SQS algorithm for different
unit cell sizes and shapes, generating all possible site occu-
pancies for the chosen x, calculating �m,k and keeping the

configuration for which the set of �m,k�x� is closest to �̄m�x�.
In practice, we use only m=2 and k�10. We repeat this
procedure for different unit cell shapes, as described by the
supercell lattice vectors a1, a2, and a3, and retain the one that
leads to the best correlation with random occupancy �using
our implementation of the procedure described in Refs. 40
and 41�.

In this work, we have focused on WZ and ZB crystal
structures with 16 cations and 16 anions per unit cell. The
occupancies, in our case correspond to Ga or In on the cation
sites. The descriptions of the hexagonal-close-packed �hcp�
and face-centered-cubic �fcc� sublattices are shown in Tables
I and II, respectively. For x=1/4 �or x=3/4�, the WZ struc-
ture delivers exact matches up to �2,5 and up to �2,7 for x
=1/2. For the ZB structure, we find structures that yield
correlation functions that exactly match the random case up
to �2,3 for x=1/4 �or x=3/4� and to �2,7 for x=1/2. Unlike
in previous studies of InxGa1−xN alloys,23 the present analy-
sis provides a quantitative measure of the degree to which
the simulation cell resembles a random alloy. Based on the
quoted pair statistics, we conclude that the unit cells and
occupancies employed herein provide good representations
of the set of WZ and ZB random alloys.

IV. FORMATION ENTHALPY CALCULATIONS

We first optimize the ZB �WZ� GaN and InN struct-
ures with respect to the atomic coordinates and the unit
cell parameter�s� a �and c� using the first-principles
density-functional42,43 method within the local density ap-

proximation. This was done using the plane-wave pseudopo-
tential Vienna ab initio simulation package44 non-norm-
conserving pseudopotentials.45 The important38,46 3d states
for Ga and 4d states for In are included as valence electrons
in the pseudopotentials. A relatively high cutoff energy of
31.96 Ry is used throughout this work. A Monkhost-Pack
mesh of 7�7�7 is used for the four-atom unit cell WZ InN
and GaN systems. A 5�5�5 mesh is used for the eight-
atom ZB InN and GaN unit cells �finer meshes resulted in
total-energy changes of �0.1 meV/atom�. Table III shows
that the relaxed lattice parameters for GaN and InN in both
the WZ and ZB structures are in good agreement with other
theoretical and experimental work. The WZ GaN �InN�
structures have lower total energies than ZB GaN �InN� by
13 meV/cation �18 meV/cation�. This is in good agreement
with the calculations of Groose and Neugebauer,38 where the
WZ GaN �InN� is lower in total energy than the ZB
GaN �InN� by 11 meV/cation �19 meV/cation�.

We determine the equilibrium structure by minimizing the
total energy of the system with respect to the lattice param-
eters and the positions of each of the 32 ions within the SQS
cell. The formation enthalpy of the alloy is

�HY = EY�InxGa1−xN� − xEWZ�InN� − �1 − x�EWZ�GaN� ,

�1�

where x=0, 1 /4, 1 /2, 3 /4, or 1, and where Y represents
either WZ or ZB. The WZ crystals are used as references
for both the WZ and ZB cases, such that the two can
be easily compared. The formation enthalpy results
are shown in Fig. 1. We fit this data to the form16 �H= ��
+	x�x�1−x� �i.e., beyond regular solution theory�.
For the WZ structure, we obtain �=0.4050 eV/cation and
	=−0.1117 eV/cation. For the ZB structure, we find �
=0.4223 eV/cation and 	=−0.1088 eV/cation.

TABLE I. The SQS wurtzite �hcp� structure with 16 cations and
16 anions for AxB1−xN alloys where A and B represent In and Ga
cations, respectively, with x=1/4 �or x=3/4� and x=1/2. The lat-
tice vectors a1, a2, and a3 of the structures are linear combinations
of the lattice vectors �i.e., a, b, and c� of a hexagonal primitive cell.
In Cartesian coordinates a= �a0 ,0 ,0�, b= �−a0 /2 ,a0

�3/2 ,0� and c
= �0,0 ,c0�. The positions of the A cations are represented in the
table as A�� ,	 ,
� corresponding to an A cation at the position
��a1+	a2+
a3� /48.

x=1/4 x=1/2

a1=2a−2b−2c a1=2a+2b−2c

a2=a+2b a2=2a+b−c

a3=a+b+c a3=2a−2b−2c

A�39,44,6�, A�18,40,36� A�12,16,28�, A�30,8 ,26�
A�24,16,0�, A�27,44,30� A�24,16,16�, A�42,8 ,14�
B�0,16,0�, B�3,44,30� A�42,8 ,38�, A�30,8 ,2�
B�6,40,12�,B�9,20,42� A�36,16,28�, A�0,16,16�
B�42,40,36�, B�45,20,18� B�0,16,40�, B�18,8 ,38�
B�12,16,24�, B�15,44,6� B�36,16,4�, B�6,8 ,2�
B�36,16,24�, B�21,20,18� B�24,16,40�, B�12,16,4�
B�30,40,12�, B�33,20,42� B�6,8 ,26�, B�18,8 ,14�

TABLE II. The 16 cation SQS zinc-blende �fcc� structure for
AxB1−xN alloys. The lattice vectors a1, a2, and a3 are reported in
terms of the lattice vectors of the primitive rhombohedral cell: a
=a0�0,1 /2 ,1 /2�, b=a0�1/2 ,0 ,1 /2�, and c=a0�1/2 ,1 /2 ,0�. The
positions of the A cations are represented in the table as A��, 	, 
�
corresponding to an A cation at the position ��a1+	a2+
a3� /16.

x=1/4 x=1/2

a1=2a+b−2c a1=2a−2c

a2=a+b+2c a2=2a+2b

a3=2a−b+2c a3=2a−2b

A�11,12,7�, A�4,0 ,4� A�8,4 ,4�, A�0,8 ,8�
A�15,12,11�, A�9,4 ,13� A�8,0 ,8�, A�0,4 ,12�
B�0,0 ,0�, B�3,12,15� A�8,0 ,0�, A�0,4 ,4�
B�13,4 ,1�,B�6,8 ,14� A�8,12,4�, A�0,0 ,8�
B�10,8 ,2�, B�14,8 ,6� B�0,0 ,0�, B�8,12,12�
B�1,4 ,5�, B�8,0 ,8� B�0,12,4�, B�8,8 ,0�
B�2,8 ,10�, B�5,4 ,9� B�0,12,12�, B�8,8 ,8�
B�12,0 ,12�, B�7,12,3� B�0,8 ,0�, B�8,4 ,12�
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Consistent with the results of Saito and Arakawa16 �see
Fig. 1�, we find that all of the curves are skewed slightly to
the left. Focusing on the WZ results, we see that the VFF
predictions for the heat of formation16 are significantly

smaller than those obtained here �by as much as
15.4 meV/cation at x=1/2�. That the heat of formation ob-
tained from the VFF is smaller than the first-principles pre-
dictions was first noted by Grosse and Neugebauer38 �by
14.2 meV/cation in their case�.

V. PHONON CALCULATIONS

The phonon contribution to the free energy was deter-
mined within the harmonic approximation using the super-
cell force-constant method47–50 to calculate the phonon den-
sity of states. In this approach, each atom is displaced and
the forces acting on each of the other �static� atoms are cal-
culated and used to determine the matrix of force constants.
We then calculate the dynamical matrix for several reciprocal
lattice vectors q and diagonalized these to find the phonon
eigenfrequencies � and vectors. Integrating the phonon
eigenfrequencies over the Brillouin zone yields the phonon
density of states g���. At atmospheric pressure, the differ-
ence between the Gibbs and Helmholtz free energies is neg-
ligible for the condensed phase. Therefore, we calculate the
phonon free energy Gv for an N-atom supercell as a function
of temperature T as

Gv�T� = NkBT�
0

�

d�g���log�2 sinh	 �

2kBT

� , �2�

where g��� is normalized according to �0
�d� g���=3.

The displacements of the atoms used to calculate the force
constants must be small enough such that the system behaves
harmonically yet large enough that the forces are sufficiently
large as to be reliable. In our implementation of the vibra-
tional thermodynamics code, we employ a displacement of
0.03 Å.51 Because of the low symmetry inherent to the ran-
dom solid solution, each atom in the SQS unit cell is dis-
placed individually. For the WZ structure, we use a supercell
of 64 atoms �twice as large as the 16 cation SQS� to reduce
the effect of periodic images for the determination of force
constants. For GaN and InN in the WZ structure, we use a
supercell consists of 3�3�3 four-atom WZ primitive cell.
For the ZB structure, we use 64-atom supercells for all x.
The LO/TO splitting, associated with long-range dipole-
dipole interactions affects a small region near the center of
the Brillouin zone, was not considered here �for computa-
tional efficiency�. This should introduce only very small er-
rors in the free energy of formation of the alloy.52 It is pos-
sible to account for the LO/TO splitting using density
functional perturbation theory.53,54

The calculated phonon densities of states of both WZ and
ZB InxGa1−xN are shown in Fig. 2 for several alloy compo-
sitions. The density of states shifts to lower frequencies as
the indium concentration is increased, as expected since �i�
In atoms have a larger mass than Ga atoms and �2� InN has
a lower46 bulk modulus �1.39 Mbar� than GaN �2.02 Mbar�.
These two effects are of the same magnitude and together
explain most of the shift in the vibrational frequencies in
going from GaN to InN. Alloying InN with Ga �or vice
versa� decreases the magnitudes of the peaks in the while it
broadens the frequency range. The broadening of the phonon

TABLE III. Lattice parameters of the wurtzite �WZ� and zinc-
blende �ZB� structures for GaN and InN from the present study and
other studies. u describes the displacement of the N �0001� planes
from the Ga �0001� planes in units of c as described, in detail, in
e.g., Ref. 58.

a�Å� c�Å� u

GaN �WZ� Present calc. 3.145 5.121 0.377

Calc.a 3.196 5.206 0.376

Calc.b 3.20 5.22 0.376

Calc.c 3.133 5.108 0.377

Calc.d 3.162 5.142 0.377

Expt.e 3.190 5.189 0.377

InN �WZ� Present calc. 3.518 5.690 0.379

Calc.a 3.545 5.761 0.376

Calc.b 3.48 5.64 0.378

Calc.f 3.501 5.669 0.3784

Expt.g 3.544 5.718

GaN �ZB� Present calc. 4.443

Calc.h 4.447

InN �ZB� Present calc. 4.964

Calc.f 4.932

aReference 38.
bReference 59.
cReference 51.
dReference 60.
eReference 61.
fReference 46.
gReference 2.
hReference 62.

FIG. 1. �Color online� The formation enthalpy of wurtzite �WZ�
and zinc-blende �ZB� InxGa1−xN as a function of composition x.
The solid curve is a fit to the calculated values �open circles� with
��+	x�x�1−x�. The valence force field results of Saito and
Arakawa16 are also included for comparison.
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spectra on alloying is associated with disorder reducing the
coherence of the phonon modes.

We calculate the vibrational free energy difference �Gv,Y
�Y is ZB or WZ� as

�Gv,Y = Gv,Y�InxGa1−xN� − xGv,WZ�InN�

− �1 − x�Gv,WZ�GaN� , �3�

where the same WZ reference frame is used. Figure 3 shows
that �Gv,Y is a nearly linear function of temperature for all
compositions. For �nearly� all compositions, �Gv,Y�x� for the
WZ structure lies below those for the ZB. The vibrational
contribution to the entropy of formation ��Sv=−��Gv /�T� is
larger for the alloys �0�x�1� than for x=0 or 1 �the nega-
tive �Sv,ZB at some compositions is an artifact of using WZ
the reference structure�. We note that �Gv for WZ
In1/4Ga3/4N is lower than that for In1/2Ga1/2N. However, the
�Gv for ZB In1/4Ga3/4N is higher than that for ZB
In1/2Ga1/2N. We can fit �Gv,Y�x� to the same type of interpo-
lation function as used for the enthalpy of formation, where
the parameters � and 	 in the fit are functions of tempera-
ture.

According to Eq. �3�, �Gv�x� is the difference in the vi-
brational contribution to the free energy between the solid
solution alloy and the terminal compounds. This difference
can be traced to the difference in phonon density of states
�Fig. 2 and Eq. �2�� between the alloy gInxGa�1−x�N

��� and the

composition weighted average of the density of states of

GaN and InN; i.e., gav���=xgInN���+ �1−x�gGaN���. Com-
paring gInxGa�1−x�N

��� and gav��� in Fig. 2, we see that gav���
is on balance shifted to larger � at each x �except x=0 or 1,
of course�. The density of states at large frequencies � makes
a larger �more positive� contribution to the vibrational free
energy than do those at small frequencies. This explains why
lattice vibrations lead to negative values of �Gv. We return
to this point below.

VI. PSEUDOBINARY PHASE DIAGRAM

The free energy of formation �G of the InxGa1−xN is
given by

�G = �H − T�S + �Gv. �4�

As described above, �H and �Gv in this equation are known
from fitting the DFT and phonon calculations to particular
functional forms. �S corresponds to the entropy of mixing
and, in the present analysis, is described in the Bragg-
Williams approximation as �S=−kB�x log x+ �1−x�log�1
−x�� �per cation�. As is well known, the Bragg-Williams ap-
proximation can be severe. However, the resulting errors are
important, predominantly in frustrated systems and systems
where the phase diagram has a complex topology.55 Neither
of these situations applies to the InxGa1−xN system. The
Bragg-Williams approximation was also applied in many
of the earlier calculations of the InxGa1−xN phase diagram
discussed above.15–18

We employ the same WZ reference state for the unmixed
GaN and InN in order to make a meaningful comparison of
the free energies of InxGa1−xN. Figure 4 shows �G for both
the WZ and ZB structures. The WZ structure has a lower free
energy than the ZB structure at T=1000 K by
�0.15 eV/cation. Further numerical investigation reveals
that WZ structure has a smaller free energy than the ZB
structure at all temperatures and composition x investigated.
This suggests that the WZ structure is always more stable
than the ZB structure in this alloy system, in agreement with
experimental observations.

FIG. 2. �Color online� Phonon density of states �DOS� of �a�
wurtzite and �b� zinc-blende InxGa1−xN correspond to x=0, 1 /4,
1 /2, 3 /4, and 1, which have been normalized according to
�0

�g���d�=3, where �=� /2�. An arbitrary shift is added to the
curves for clarity. The black and gray curves refer to the solid
solution system gInxGa�1−x�N

��� and an average of the InN and GaN

phases gav���, respectively.

FIG. 3. �Color online� Vibrational free energy difference �Gv as
a function of temperature, for the wurtzite �solid lines� and zinc-
blende �dashed lines� structures.
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The equilibrium solubility limits �the binodal curve� as a
function of temperature are calculated using a common tan-
gent approach,56 as shown in Fig. 4 for 1000 K. Figure 5
shows that the critical temperature below which phase sepa-
ration will occur at some composition, Tc, is 2132 K for the
WZ structure in the absence of vibrational contributions to
the free energy. ZB InxGa1−xN shows Tc=2231 K when vi-
brational effects are excluded. These values of Tc �for both
the WZ and ZB structures� are higher than other VFF
results15–17 that neglect vibrations. These differences are at-
tributable to the fact that the formation enthalpy determined

from our DFT calculations are larger than those obtained
within the VFF �e.g., see Fig. 1�. Our predicted Tc=2231 K
�for ZB structure without vibrations� is considerably higher
than those obtained by Teles et al.22 �Tc=1295 K�. This is
probably attributable to the relatively small �eight-atom� su-
percells that they employed. We note that another DFT
calculation,23 with larger clusters �64 atoms/cell�, predicts a
slightly higher Tc=1400 K. The discrepancy that still re-
mains is likely the result of the better description of the ran-
dom solid solution alloy used in our analysis.

Inclusion of the lattice vibrational effect reduces �see Fig.
5� Tc for the WZ InxGa1−xN from 2132 to 1654 K, a decrease
of 29%. For the ZB structure, Tc is reduced from 2231 to
1771 K. The change in the critical temperature upon inclu-
sion of the vibrational contributions suggests that omission
of this term may be one of the most significant errors com-
monly made in the calculation of phase diagrams of com-
pound semiconductor alloys. Since this contribution is
largely entropic and is larger in the disordered phase, it will
generally lead to a decrease in the stability of the ordered
phase relative to the disordered phase and, therefore, to a
lower Tc. The origin of this effect can be traced to the broad-
ening of the vibrational density of state with increasing dis-
order, as shown in Fig. 2. Inclusion of the vibrational contri-
bution to the free energy also makes the WZ InxGa1−xN
phase diagram more symmetric with a peak at x=0.47 with
vibrations, as compared to x=0.39 without. The maximum in
the binodal in the ZB diagram also shifts closer to x=0.5
with inclusion of vibrational effects �although in this case the
effect is weaker than in the WZ case�. We also note that
inclusion of vibrations does not significantly increase the
solubilities of In in GaN or Ga in InN, except above
�1200 K.

Another effect of vibrations is to decrease the width of the
two-phase field in the phase diagram at all temperatures
�relative to the phase diagram that does not include the vi-
bration effect�. A common goal in the growth of InxGa1−xN
alloys for microelectronic applications is to increase the
range of compositions that are achievable without phase
separation �i.e., increase the solubility limits�. Examination
of the phase diagram in Fig. 5 shows that this could be ac-
complished simply by increasing the growth temperature.
This is not always possible. An alternative approach is to
increase the entropy of the disordered alloy relative to that of
the phase-separated material. This could be accomplished
through alloying �quaternary additions�. Addition of a new
component increases the configurational entropy of the alloy.
The present results suggests that alloying could also be used
to increase the vibrational contribution to the stability of the
disordered phase. This would be most effective with the ad-
dition of heavier elements, which shift the vibrational fre-
quencies to lower values and therefore increase the width of
the vibrational density of state �see Fig. 2�. Of course, the
new alloy component should not increase the enthalpy of
formation of the disordered phase.

Figure 6 shows a comparison of the WZ and ZB
InxGa1−xN phase diagrams �including the effects of lattice
vibrations�. The WZ structure has a lower Tc and is more
symmetric �with respect to composition� than is the ZB
structure. These differences can be important in cases where

FIG. 4. �Color online� The common tangent intersects the wurtz-
ite �G curve at x1=0.024 and x2=0.95, which gives the binodal
curve in Fig. 5. Lattice vibrational effect has been taken into ac-
count. A representative case of T=1000 K is used.

FIG. 5. �Color online� The pseudobinary diagram �in
temperature-cation concentration space� for �a� wurtzite and �b�
zinc-blende InxGa1−xN with and without the inclusion of lattice vi-
bration effects. The solid lines correspond to the equilibrium bin-
odal curves, and the dashed lines represent the spinodal curves.
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the ZB structure is stabilized through heteroepitaxy12,14 or
other means.

A direct comparison of the predicted phase diagram to an
experimental phase diagram cannot be made since the latter
has never been determined. However, an experimental study4

of In0.09Ga0.91N showed that this alloy does not phase sepa-
rate at the growth temperature of 923 K. According to the
phase diagram in Fig. 6, this composition and temperature
lies between the binodal and spinodal. This suggests that the
solid solution is metastable, with respect to phase separation.
Additional experimental measurements4 show that phase
separation occurs in samples grown at both In0.37Ga0.63N and
In0.35Ga0.65N and 998 K. This is also consistent with the pre-
dicted phase diagram—these growth conditions are within
the spinodal region, where the disordered alloy is unstable.
Since these materials were produced by metal-organic
chemical-vapor deposition �MOCVD�, there is some uncer-
tainty as to whether the phases observed correspond to the
bulk equilibrium phases at this temperature. In such cases,
the phases that are observed may be influenced and/or inher-
ited from the surface structure and by hetero-epitaxial
strains. However, a solid solution cannot be stable within the
spinodal region of the phase diagram, independent of how
the material was produced �slow diffusional kinetics may
limit the rate at which such an instability grows�.

The phase diagrams presented here are constructed based
on several assumptions. These include a harmonic descrip-
tion of the phonons in a relatively small unit cell, a Bragg-
Williams approximation for the entropy of mixing and that
the solid solution has no short-range order. All approxima-
tions employed in this work can be improved by using larger

unit cells, a quasiharmonic model for the vibrational contri-
butions to the free energy, more accurate treatment of the
entropy of mixing �e.g., using a cluster variational
approach57� and a self-consistent determination of the short-
range order. Despite the nature of the approximations made,
the predicted results represent the most rigorous determina-
tion of the InxGa1−xN phase diagram to date.

VII. SUMMARY

We have employed accurate density-functional calcula-
tions to study the thermodynamic properties of both the ZB
and WZ structures of InxGa1−xN. The disordered alloy was
modeled using the special quasirandom structure �SQS� ap-
proach to ensure that the order parameter accurately de-
scribes a random solid solution �the detailed SQS informa-
tion is provided for the 16-cation unit cells for both the ZB
and WZ structures�. The vibrational contribution to the free
energy has been calculated using first-principles calculations
of the phonon spectra within the harmonic approximation.
Inclusion of these effects leads to a 29% �26%� reduction in
the critical temperature for phase separation in the WZ �ZB�
structure. We found that the WZ structure is thermodynami-
cally more stable than ZB structure at all temperatures and
alloy compositions. The predicted miscibility gap and spin-
odal curve are consistent with experimental observations on
MOCVD InxGa1−xN. Nonetheless, care must be exercised in
interpreting the phases observed following such growth pro-
cesses in terms of an equilibrium phase diagram.

The present results suggest that inclusion of the vibra-
tional contribution to the free energy of formation of com-
pound semiconductor alloys can have a profound effect on
the critical temperature for the order-disorder transition on
the cation sublattice. This issue is particularly important for
the increasingly complex compound semiconductors of inter-
est today. Not only does the vibrational entropy shift the
critical temperature, it also modifies the solubility limits of
each component and does so in a nonsymmetric manner. The
present results also point to the importance of determining all
of the contributions to the free energy self-consistently; that
is, using the same energetics description for relaxing the
atomic structures, calculating enthalpies of formation and vi-
brational contributions to the free energy. While the present
results represents a significant advance in compound semi-
conductor alloy phase diagram calculations, further improve-
ments should include the effects of short range order in the
disordered phase and better approximations to the entropy of
mixing �see, e.g., Ref. 57�.

ACKNOWLEDGMENTS

The authors gratefully acknowledge useful discussions
with C. Jiang, A. van de Walle, and D. Vanderbilt. This work
was supported by Visiting Investigator Program, Agency for
Science, Technology and Research �A*STAR�, Singapore.

FIG. 6. �Color online� A comparison of the pseudobinary dia-
grams of zinc-blende and wurtzite InxGa1−xN �including the effects
of lattice vibrations�. The solid lines correspond to the equilibrium
binodal curves, and the dashed lines represent the spinodal curves.
The points represented by the filled and open circles represent the
experimental data4 for which phase separation was and was not
observed, respectively.
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