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We perform a full-wave analysis of a stackable lens proposed in a recent paper �Ramakrishna et al., J. Mod.
Optics 50, 1419 �2003��. This lens was suggested for improving subwavelength imaging and can be obtained
by splitting a single-layer lens into a set of thinner layers. Our analysis shows that �i� such a lens, which forms
a one-dimensional photonic crystal �PC�, is a resonator cavity for traveling Bloch waves that cannot leave this
PC resonator due to total internal reflection; �ii� imaging is possible outside the band gaps only and no imaging
can be achieved in the vicinity of the eigenstates of the PC resonator as well as near the state associated with
the excitation of the volume plasmon; �iii� the expected advantage is due to thinning the layers, which results
in shifting of both the band edge and the eigenstates toward higher values of the wave number; and �iv� a
single-layer lens has the broadest working range compared to a stackable lens with the same elementary layer
thickness.
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I. INTRODUCTION

In 1968, Veselago1 showed that a medium with both nega-
tive permittivity and permeability �a left-handed medium�
exhibited a negative refraction as predicted in Ref. 2. The
most pronounced property of the left-handed medium, pre-
dicted by Veselago, is that a slab made of such a material
acts as a focusing lens, producing a real image of a source
placed in front of the slab. In 2000 Pendry3 showed that an
image produced by the Veselago lens consists not only of far
field harmonics but also of near field harmonics of the
source. Thus, it has become possible to overcome the Ray-
leigh limit in imaging employing surface plasmon-magnon
resonances excited by the near fields.3,4 As a result, a slab of
thickness L at a distance l2 behind the lens perfectly restores
the image of the source placed at a distance l1 in front of the
lens, where these distances are related by the equation l1
+ l2=L.3 The latter fact is very important in photolithography
because the left-handed slab shifts the perfect image from a
stencil-photoresist interface to deeper inside the photoresist,
making the performance of the ultimate mask better.5,6

However, a left-handed medium is still not known in op-
tics; therefore, Pendry3 suggested using a medium �e.g., sil-
ver� with negative permittivity only for optical applications.
Such a medium does not exhibit negative refraction, and
space harmonics with small values of the transverse wave
number kx are not focused and do not create an image. Nev-
ertheless, in a slab with �2=−1, �2=1 placed in the xy plane,
the TM space harmonics with high values of kx are still am-
plified by the plasmon resonance, which makes the resolu-
tion of small details possible.

To describe wave propagation through such a slab for
high values of kx �k0 /kx�1, k0=� /c�, one can use an elec-
trostatic approximation.3 In the Maxwell equations, one can
ignore the time derivatives compared to the spatial ones. In
this case, the values of normal components of the wave vec-
tors in vacuum,

kz1 = �k0
2 − kx

2�1/2 � ikx, �1a�

and in the negative-epsilon medium,

kz2 = ��2�2k0
2 − kx

2�1/2 � ikx, �1b�

as well as the corresponding impedance values for the TM
wave,

�1 =
kz

k0
�

ikx

k0
, �2 =

kz

�2k0
�

ikx

�2k0
, �2�

no longer depend on the permeability. Therefore, the sign of
� is immaterial and the TM space harmonics are treated by
this lens in the same way as by a slab of left-handed material.
This note does not concern the TE-polarized waves, for
which �=�k0 /kz�−i�k0 /kx. Further, we will consider the
case of the TM polarization.

To study the lens, we decompose the electromagnetic field
into plane waves and employ the transfer function method.4,7

For example, for the TM polarization this method implies
that the source and image fields can be presented as

Hy0�x�e−i�t =� h�kx�exp�i�kxx − �t��dkx

and

H�x� =� h�kx�T�kx�exp�ikxx�dkx,

respectively, with T�kx� being the transfer function. To find
the transfer function, it is convenient to resort to the transfer
matrix formalism.8 The transfer matrix M relates the com-
plex amplitudes of the incident and reflected waves to the
ones on the opposite side of the one-dimensional �1D� sys-
tem. For a given polarization, the 2�2 M matrix has ele-
ments mij. One can see that the transfer function is equal to
1/m22. The single-layer-lens transfer matrix, M�l1 ,d , l2�, cor-
responding to the pass from the source placed at z=0 to the
image plane at z= l1+d+ l2, is equal to the product
J1�l1�SJ2�d�S−1J1�l2�, where
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S = �
�2 + �1

2�2

�2 − �1

2�2

�2 − �1

2�2

�2 + �1

2�2

�, Ji�l� = �exp�ikzil� 0

0 exp�− ikzil�
�

which takes into account Fresnel’s formulas and “propaga-
tion” along the z axis.

Within the framework of the electrostatic approximation,
the transfer function of a slab with �2=−1, �2=1 is identi-
cally equal to unity.3,4 Indeed, Eqs. �1� and �2� yield ��1

+�2�2=0 and kz2=kz1=kz static. This makes the single-layer-
lens transfer function,

T�kx,l1,L,l2� =
1

m22

=
4�1�2exp�ikz1�l1 + l2��

��1 + �2�2 exp�− ikz2L� − ��1 − �2�2 exp�ikz2L�
,

�3�

equal to unity at l1+ l2=L.
It should be remembered that large details will be restored

with distortions, because the electrostatic approximation is
not valid at low values of kx �kx	k0� and the transfer func-
tion comes to depend on kx �Fig. 1�. Unfortunately, the trans-
fer function tends to zero at kx�kx*, where kx* is a certain
value depending on the properties of the lens and surround-
ing media �see Fig. 1 and Ref. 4�. This phenomenon is asso-
ciated with the inadequacy of the electrostatic approxima-
tion. At high values of kx, the correction to the electro-
static value ��1+�2�2=0 is still small; however, in Eq. �3�,
��1+�2�2 is multiplied by the exponentially large factor
exp�−ikz2L��exp�kxL�, which makes the transfer function
�3� vanish at high values of kx.

Besides the domain of high values of kx �kx�kx*�, the
deviation from the electrostatic approximation is observed
near some points where the transfer function has singularities
�see Fig. 1�. It is the objective of this study to investigate the
origin of these singularities and to determine the role they
play in imaging.

II. THE STACKABLE PENDRY-RAMAKRISHNA LENS

It is well known that the resolution of the single-layer
Pendry lens is restricted by losses �see Refs. 3 and 7�. To
decrease the losses, it was suggested in Ref. 4 to cut the
silver slab into multiple thin layers separated by thin dielec-

tric layers �see Fig. 2�. Below, we follow Ref. 4 in assuming
that the total thickness of the epsilon-negative layers L is the
same for all values of N, so that the layers become thinner
with increasing N.

The analysis of a stackable lens in the electrostatic ap-
proach is similar to the analysis of the single-layer lens, Eqs.
�1� and �2�. The stackable-lens transfer matrix MN�l1 , l2�, de-
scribing the pass from the source placed at z=0 to the image
plane at z= l1+ �2N−1�d+ l2, is equal to the product

J1�l1�SJ2�d�S−1�J1�d�SJ2�d�S−1�N−1J1�l2� .

In the electrostatic approach

S = �0 1

1 0
� = S−1

and

J1�l1�SJ2�d�S−1 = J1�l1�J2
−1�d� ,

and as a result, MN�l1 , l2�=J1�l1�J1�l2�J1
−1�d��J1�d�J2

−1�d��N

and the transfer function is equal to TN�kx , l1 ,L , l2�
=exp�ikz static�l1+ l2−d��.

Ultimately, we obtain an ideal image at a distance which
meets the condition l1+ l2=d=L /N. It is worth noting that the
position of the image l2 approaches the lens surface with the
increase of N as l2=d− l1=L /N− l1 �L is the total thickness of
all metamaterial layers, and d is the thickness of one elemen-
tary layer�. In particular, if we keep l1= l2, then l2=0.5L /N,
for l1=0 we obtain l2=L /N. This makes the stackable lens
less promising for use in photolithography, where it is desir-
able to place the image as deep as possible into a layer of
photoresist.5,6 This displacement of the image is responsible
for a decrease in the field amplitude. Indeed, the decay of the
amplitude of the evanescent wave in the region behind the
lens is independent of the lens structure. For producing an
image, the strength of the field of this wave must have the

FIG. 1. The transfer function of a single-layer Pendry lens,
k0L=0.5.

FIG. 2. The lens structures and the corresponding distributions
of magnetic field for the single-layer �top structure and curve� and
three-layer �bottom structure and curve� lenses. The gray and white
layers have permittivities �1=−1 and �2=1, respectively, ampli-
tudes of the incident wave are equal to unity in both cases; k0L
=0.5, kx /k0=7.
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same value as that in the respective wave in the source. Be-
cause the distance between the image plane and the lens
surface is shorter for the stackable lens, the amplitude of the
field at its surface is lower �see Fig. 2�.

It seems that, thanks to the lower field amplitude, the
stackable lens can overcome a typical defect of a single-layer
Pendry lens which is the sensitivity of the image quality to
the energy dissipation3,4 or, to be more precise, the presence
of the imaginary parts of � and/or �. Because negative val-
ues of � and � are possible only in the materials exhibiting
frequency dispersion, as follows from the Kramers-Kronig
relations, nonzero imaginary parts are nearly always present.
At first sight, the appearance of the imaginary part of the
dielectric permittivity, �=��+ i��, primarily results in losses,
which are proportional to ��EE* and are greater in the single-
layer lens than in a stackable lens.

However, in Ref. 4, by means of a computer simulation, it
was shown that the splitting a single-layer lens into N pieces
leads to the improvement of the image even in the absence of
losses. To understand this effect and the real cause for the
image deterioration due to the imaginary part of the
permittivity,7 one has to employ a full-wave analysis.

First of all, this analysis shows that the appearance of ��
primarily results not in the wave attenuation, which is pro-
portional to exp�����2L�k0 /kx� /
1−��k0

2 /kx
2�, but causes the

waves’ misphasing, which is linear in �� and proportional to
the total thickness, L, of the metamaterials. Indeed, assuming
that ����� we obtain7

kz/k0 � i
kx
2/k0

2 − �� +
�k0/kx�


1 − ��k0
2/kx

2
�� + i

�k0/kx�3

�1 − ��k0
2/kx

2�3/2 ����2

+ . . . .

The consequence of this misphasing is the destructive in-
terference that destroys the image. Hence, the reduction of
the field amplitude and the energy dissipation, which accom-
pany splitting the lens into parallel slices, is not the main
effect that makes the lens performance better. There should
be another mechanism that also works in the absence of
losses.4

Secondly, in contrast to the electrostatic approach, the
computer simulation4 shows an existence of singularities of
the transfer function.4 The results of our simulation for a
four-layer lens are shown in Fig. 3�a�. This dependence of
the transfer function on kx resembles that of the single-layer
lens with the only difference that the number of singularities
increases. To analyze this dependence, it is useful to regard
the stackable lens as a fragment of a photonic crystal �PC�.
Such an approach allows us to give a physical interpretation
of all the features of the transfer function.

First, we can obtain the upper estimate for kx*. This can be
done by treating a single-layer lens as a slab of the PC,
which has a two-layer primitive cell consisting of a single-
layer lens and a vacuum layer of the same thickness d=L.
We can rewrite Eq. �3� in the form suitable for the interpre-
tation in terms of the PC band structure. At high values of kx,
in the jth layer, we have −ikzjd=� j �kxd	1 and exp�� j�
�2 cosh�� j��2 sinh�� j�. Then the transfer function �3� may
be rewritten as

T �
1

2

1

cosh��1�cosh��2� +
1

2
� �1

�2
+

�2

�1
�sinh��1�sinh��2�

.

�4�

The denominator of T is equal to the right-hand side of
the well-known dispersion equation for the Bloch wave num-
ber kzB of a one-dimensional PC �see Ref. 9�,

cos 2kzBd = cos kz1d cos kz2d

−
1

2
� kz1/�1

kz2/�2
+

kz2/�2

kz1/�1
�sin kz1d sin kz2d , �5�

where the numerical subscripts denote the layer numbers in
the primitive cell. Finally, Eq. �4� transforms into the follow-
ing expression:

T �
1

2

1

cos 2kzBL
. �6�

In the band gap, cos 2kzBL tends to infinity with an increase
of kx, which leads to vanishing of the transfer function. Al-
though in the general case of the N-layer lens the expression
for the transfer function T looks much more complicated
than Eq. �3�, we arrive at the same result: at kx	kx*, the
transfer function is almost equal to zero �see Figs. 3�a� and
3�b��. Here and below, kx* denotes the upper estimate asso-

FIG. 3. �a� The transfer functions for a four-layer lens of the
elementary layer thickness L /4 �solid line�, a single-layer lens of
the thickness L �dotted line�, and a single-layer lens of the thickness
L /4 �dashed line�. The working ranges, where the deviation of the
transfer function from unity is less than 20%, for each case are
situated between the points B and E, C and D, A and F, respec-
tively. k0L=0.5. �b� cos�kzB2d� and Re�kzB2L /
� for the PC, corre-
sponding to the solid and dashed lines in �a�.
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ciated with the band edge kzB�kx* ,k0� of the PC. Thus, the
interval where the transfer function markedly differs from
zero is the PC conduction band. The size reduction of the PC
cell brings the band edge kzB�kx* ,k0� to higher values of kx

�for comparison, in Fig. 3 we plot the transfer function of the
original single-layer lens as in Fig. 1�. This explains why it is
advantageous to make the lens out of a larger number of
layers if the total thickness is kept constant.4

In the case of the stackable lens, the electrostatic approxi-
mation becomes inadequate and image deterioration begins
at smaller values of kx and kzB than the band edge values kx*
and kzB�kx* ,k0�. The working range of imaging where the
transfer function is close to unity is shown in Fig. 3�a� �the
BE interval�. This range is limited by the singularities of the
transfer function. The transfer function of an N-layer lens has
N+1 singularities enumerated and referred to as n
=0,1 , . . . ,N �Fig. 3�a��. Employing the PC approach, we can
reveal their origin.

The distribution of the tangential magnetic field, Hy�z�,
corresponding to these singularities is either an even or odd
function with respect to the center of the lens �Figs. 4 and 5�.
In particular, the Hy distribution corresponding to the zeroth
�Fig. 4� and the first �Fig. 5�a�� singularities are even func-
tions. Starting with the first singularity, the symmetry of the

solutions alternates, with the simultaneous increase in the
number of nodes of the solution by one �Fig. 5�. The zeroth
state violates this regularity. The reason is that the nature of
the zero state is a volume plasmon resonance, whereas the
remaining N states are modes of the PC resonator.

The zero singularity �n=0� of the transfer function of the
stackable lens exists at kx=k0�1+�� with ��1, and the ef-
fective propagation constant �the Bloch wave number� kzB is
very small. At the frequency corresponding to k0L=0.5, we
have kzBL	0.01
,10 so that the Bloch wave sees a homog-
enized medium which is an effective uniaxial crystal with
�ef f xx=�ef f yy = 
��=0 and �ef f zz=1/ 
1/��=�. When these
conditions are satisfied, the excitation of a volume plasmon
is possible. This plasmon differs from the well-known Lang-
muir plasmon where Dz=0, and Ez�0. In our case, due to
the relation Dz=Ez / 
1/��, we have an anti-Langmuir plas-
mon with Dz�0, 
Ez�z=0. More precisely, the anti-Langmuir
plasmon is TM polarized with Dz�x��0, Hy�x��0,

Ez�x ,z��z=0. Indeed, the Maxwell equations reduce to

d

dx
Hy = ikxHy = − ik0Dz,

d

dz
Ex = ik0Hy .

To construct an eigenstate for finite L, we have to match
the solution inside the PC with two evanescent waves outside
the PC slab. In these evanescent waves, the phase shift be-
tween the electric and magnetic fields is ±
 /2. A linear dis-
tribution of the electric field inside the PC, Ex�z�=Ex�0�
− iBz, with constant B being in phase with Hy, satisfies the
boundary conditions. In our discussion we set kzB=0. In the
exact solution, in an evanescent wave, kx=k0�1+��	k0 with
nonzero kzBL	0.01
. Nevertheless, the field is distributed
near kzB=0 in the anti-Langmuir plasmon �see Fig. 4�.

The position of the zeroth resonance depends slightly on
N and d. Computer simulation shows that a decrease of d at
fixed L=Nd leads to a shift of the zeroth resonance to the
left, kx→k0, whereas the first resonance moves to the right.
An increase of N at fixed d results in a shift of the zeroth
resonance to the right �see Fig. 3�a��. Simultaneously, the
new PC resonator’s mode arises. This mode shifts the n=1
singularity to the left �see Fig. 3�a��. At some value of N, the
zeroth and first singularities annihilate each other with con-
sequent appearance of a new zeroth resonance.

Let us return to the remaining N eigensolutions �Fig. 5�.
They exist at the high values of kx �kx
k0�. Since the con-
dition of total internal reflection in the vacuum layers is ful-
filled, the local values of kiz are purely imaginary quantities
inside and outside the PC. The Bloch wave number, kzB,
however, is real �see Refs. 11–13�. Under these conditions
the Pendry lens can be treated as a resonator cavity for the
traveling Bloch wave excited by the incident evanescent
wave.11

The zero boundary conditions are fulfilled at infinity. For
estimations, it seems reasonable to consider the resonator
shown in Fig. 6. The walls are separated by a half-integer
number �N+1/2� of periods. The zero condition on the

FIG. 4. Re�Hy� �solid line� and Im�Ex� �dashed line� distribu-
tions in the zero eigenstate �n=0� in a four-layer stackable lens.

FIG. 5. A magnetic field distribution in the eigenstates of the
four-layer stackable lens. The plots �a�, �b�, �c�, and �d� correspond
to n=1, 2, 3, and 4, respectively.
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boundaries of the resonator �magnetic wall condition� means
that sin�kzB�2L+d��=sin�kzB�2Nd+d��=0 or

kzB2d�N + 1/2� = 
 · n �n = 1,2, . . . ,N� , �7�

which for large n and N are in a good agreement with an
empirical law obtained in our computer simulation �see Fig.
7�,

kzB2d�N + 1/2� = 
 · �n − 1/2� �n = 1,2, . . . ,N� . �8�

This equation can be obtained by taking into account the
intracellular structure of the Bloch waves �see the Appendix�.

The visible thickening of singularities in Fig. 3�a� is due
to the nonlinear dependence of knzB on knx, Eq. �5� �n numer-
ates eigenstates�. The main features of the transfer function
of stackable lenses with fixed L are summed up in Fig. 8.
With increasing N we can see that �i� positions of resonances
knzB �solid circles� are almost independent of N, �ii� the cor-
responding values of knx increase, �iii� the band edge
kzB�kx* ,k0� slightly shifts to higher values, �iv� the number of
resonances increases, and �v� the working range situated be-
tween the singularities with n=0 �volume plasmon reso-
nance� and n=1 �the PC resonator mode� expands.

III. CONCLUSIONS

It seems reasonable to consider the first mode of the PC
resonator as the upper limit of the working range. Indeed, the
change of sign of the phasors causes destructive interference
of different evanescent waves and destroys the image. This is
the reason why we do not consider the domain with reso-
nances to be the working range.

The division of the lens into parts without changing the
total thickness of the material leads to an improvement of the
image �see Fig. 3�a��. For example, for a four-layer lens the
working range, where the deviation of the transfer function
from unity is less than 20%, expands from the interval CD to
the interval BE �Fig. 3�a��. Nevertheless, the single-layer
lens made of one layer of the obtained photonic crystal
works better than the whole crystal �the working range ex-
pands to the interval AF in Fig. 3�a��, because an addition of
new layers of the fixed thickness d causes an increase of the
total thickness L and shrinking of the working range. Indeed,
as it follows from Eq. �8� for n=1,

k1zB = 

1/2

2d�N + 1/2�
=




4�L + d/2�
.

As was mentioned above, with an increase of N the zero
singularity moves to the right �from A to B� whereas the first
singularity moves to the left �from F to E�. Therefore, an
increase in the number N of the layers causes an expansion
of the working range at fixed values of L and a reduction in
this range at fixed values of d.
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APPENDIX

For high values of kx the fields are rapidly vanishing while
a wave moves away from the slab. Thus, it seems reasonable

FIG. 6. A resonator formed by a stackable lens.

FIG. 7. The transfer function of a four-layer lens versus the
Bloch wave number Re kzB2d /
. The vertical lines indicate the
values of kzB2d /
= �2n−1� / �2N+1�, n=1, . . . ,N. A point
kzB2d /
=1 corresponds to the band edge, k0L=0.5.

FIG. 8. The dependence of kzB on kx for different numbers of
layers N at a fixed value of L �solid lines�. The values of N are
shown on the top ends of the curves. The curves terminate at the
band edges. The solid circles indicate the eigenvalues of the PC
resonator. The volume plasmon state is situated close to the coordi-
nate origin. k0L=0.5. The dashed lines connect the eigenvalues with
the same n to illustrate a weak dependence of their position on N.
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to consider the field values to be equal to zero at a distance d
from the slab �see Fig. 5�. We arrive at the problem of the 1D
resonator where the cavity includes the PC slab and the walls
are magnetic �at the walls, the magnetic field is equal to
zero�. The length of the resonator is 2L+d. The electromag-
netic field inside the cavity is a sum of two Bloch waves
traveling in opposite directions �see Fig. 6�.

The magnetic field of the Bloch wave traveling in the
positive z direction is H1�z�= f�z�exp�ikBz�. At the left
boundary of the PC slab, we have H1�0�= f�0�= f1. Since f�z�
is a periodic function, f�2d ·m�= f1 �m=0, . . . ,N� and
H1�2d ·m�= f1exp�ikB2d ·m�. Let us note that the walls are
separated by a half-integer number of the crystal periods;
therefore, the value of the periodic function on the right
boundary differs from f1. Let us denote it as f2= f�d+2dm�
�m=0, . . . ,N�. Thus, H1��2N+1�d�= f2exp�ikB�2N+1�d�.

Owing to the symmetry of the PC resonator, the value of
the second Bloch wave H2�z� on the right boundary has the

same magnitude as the value of the first Bloch wave on the
left wall, that is H2��2N+1�d�= ±H1�0�= ± f1.

The sum of the magnetic fields of these Bloch waves is
equal to zero on the walls of the PC resonator: H1��2N
+1�d�+H2��2N+1�d�=0 or

f2 · exp�ikB�2N + 1�d� ± f1 = 0. �A1�

One can see from Eq. �A1� that �f1�= �f2� and exp�ikB�2N
+1�d�= �exp i��1−�2� with �1=arg�f1�, �2=arg�f2�, or

kB�2N + 1�d = �1 − �2 + 
n, n = 0,1,2, . . . . �A2�

If the cavity were filled with uniform material, the solu-
tions are usual plane waves �f�z�=constant� and �1−�2=0,
which leads to the ordinary resonance condition �7�. Follow-
ing Ref. 8 one can find the ratio

f2

f1
=

�1
exp�− ikBd�

sinh �1d
+ �2

exp�ikBd�
sinh �2d

�1 coth �1d + �2 coth �2d
=
� �2

sinh �2d
+

�1

sinh �1d
�cos�kBd� + i� �2

sinh �2d
−

�1

sinh �1d
�sin�kBd�

�1 coth �1d + �2 coth �2d
= � + i� .

At kx
k0, kxd
1, k0d	1, and �1+�2=0 we arrive at the following estimate:

�

�
=

sinh �1d

�1
+

sinh �2d

�2

sinh �1d

�1
−

sinh �2d

�2

�
�1

2 + �2
2

�1 − �2
·

1

2
� k0

kx
�2

�1 − kxd coth kxd� � 1.

Thus the value of f1 / f2=�+ i� is an almost purely imaginary quantity. It means that a phase shift between f1 and f2 is
approximately equal to ±
 /2 and we arrive at Eq. �8�.
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