
Light wave states in two-dimensional quasiperiodic media

K. Wang*
Laboratoire de Physique des Solides, UMR CNRS, 91405 Orsay, France

�Received 1 December 2005; revised manuscript received 14 February 2006; published 27 June 2006�

We study light wave behavior in two-dimensional quasiperiodic dielectric structures through the approxi-
mant ones. We show that, unlike the classic cases, light localization occurs in these structures due to local
resonances in regions where scatterers form high-symmetry patterns, without involving any disorder. More-
over, introduction of disorder by structure randomization can lead to more extended states and a strong increase
in light propagation.
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Light is known to undergo Anderson localization when
propagating through disordered strongly scattering dielectric
media,1,2 due to destructive interference between randomly
multiscattered waves. This phenomenon has been intensively
studied, motivated both by fundamental interest and impor-
tant applications in various fields,2,3 involving random laser
and disordered photonic band-gap materials.4 The localiza-
tion is suppressed in perfectly ordered dielectric media, such
as simple periodic photonic crystals,5 where light waves are
described by extended normal states. In the present work, we
study the light wave behavior at the photonic gap edges in
two-dimensional �2D� quasiperiodic �QP� and related ap-
proximant dielectric structures, based on Maxwell’s equa-
tions, and compare the results with the classical localization
cases. QP structures offer many interests as they differ from
both the disordered and simple periodic structures from nu-
merous points of view. Indeed, as compared to the former,
they are perfectly ordered and determinist; as compared to
the latter, they are aperiodic and characterized by higher de-
gree rotational symmetry �for dimension D�2� and richer
and more general geometrical configurations. Early studies
on light propagation in QP dielectric structures were essen-
tially concentrated on 1D cases, focusing on the structure
self-similarity and the lack of periodicity.6 Interest in local-
ized photonic states arises following the discovery of photo-
nic band-gap materials.5 It has been shown that local reso-
nant cavities7 as well as localized states inside the photonic
gaps8 are found in 1D aperiodic sequences. In fact, both of
these modes are related to artificially introduced segment de-
fects in the sequence structures. There is also indication that
light localization occurs at gap edges in defect-free 1D Fi-
bonacci crystals, where computed field intensity is found
critically distributed all over the sample.9 In the 2D case, QP
related photonic structures are shown to display quite isotro-
pic photonic band gaps,10 which are determined by the aver-
age interplane distance of the quasilattice.11 It is reported that
localized states exist inside the photonic gap in dodecagonal
�12-fold symmetry� structures.12 The reason for the localiza-
tion is attributed essentially to the locally high density of
dielectric scatterers on the maximum symmetry �12-fold� lo-
cal centers. The same study suggests, however, that localiza-
tion is not a general phenomenon in 2D high-symmetry QP
structures since it concludes that there is no localization in
QP structures with lower than 12-fold rotational symmetry
order, namely the decagonal �10-fold� and octagonal �8-fold�
structures, although they both contain maximum symmetry

�respectively 10- and 8-fold� local centers.12 On the contrary,
a more recent investigation shows that gap edge related la-
sering effect involves localization in k space in QP photonic
structures of decagonal symmetry.13 For comparison, we can
mention an early study on a model atomic decagonal AlMn
alloy, where a strong tendency toward the localization is
found for certain atomic vibrational states,14 resulting from
the coupling between vibrational modes propagating along
and perpendicularly to the quasiperiodic atomic plane. As a
matter of fact, the 1D dielectric Fibonacci sequence reflects
only the lack of periodicity, but not the high degree symme-
try of the quasilattice. In the case of 2D dielectric structures,
it is unclear how the electromagnetic modes are affected by
the global QP order or the symmetry order of the local lattice
patterns, and the underlying mechanisms remain unknown as
well. Further, structure disorders are known to lead to local-
ization in classic structures; it is interesting to investigate
their effects in the QP structures.

In this work, we consider the octagonal QP dielectric
structure, which is both simple and representative of QP
structures containing maximum symmetry local centers, and
results can be generalized to those QP cases. We will study
local structure effects and show that light wave modes at the
photonic gap edges are localized on certain particular local
structures that characterize both the QP and approximant
structures, and we propose an explanation in a framework
similar to the molecular orbital �MO� theory. The QP lattice
and its approximants are intimately related. Indeed, a QP
lattice can be successively approached by its approximants
of increasing size. The latter are, moreover, of particular in-
terest if we are interested in local structure effects, since they
contain the same local patterns as the former. And, thanks to
their periodicity, exact solution of Maxwell’s equations can
be obtained. The octagonal QP lattice is defined by the cut-
and-projection algorithm used previously.11 It can be ap-
proached through the same method by its best approximants
of order pn /qn=1/1 ,3 /2 ,7 /5 , . . ., which approximates the
irrational number �2.11 There are six local patterns in an
octagonal QP lattice, among which is the maximum symme-
try �8-fold� local center �the octagonal pattern A�, as shown
in Fig. 1�a�. The 3/2 approximant is the lowest order �thus
the simplest� best approximant structure that contains all of
them �see the same figure�. It is therefore a good candidate
for investigating local structure effects.

The approximant dielectric structure is formed by scatter-
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ers that are infinite high dielectric cylinders of �=13 and
radius r=0.28a, with a the tile edge length. The cylinders are
placed perpendicular to the lattice plane at the lattice nodes
in an air background. Maxwell’s equations are solved for TM
polarization using a plane-wave method. The obtained band
diagram is shown in Fig. 1�b�, which displays two main pho-
tonic gaps similar to that obtained in Ref. 11. The bands
below the two main photonic gaps �at, respectively, �̄
=0.24 and �̄=0.45 ��a /2�c��, which will be referred as I
and II in the following, display a strong flatness ���̄ / �̄
�10−3 and �10−4, respectively�, implying a strong group
speed reduction for the whole bands �see below�. The electric
field patterns corresponding to bands I and II are displayed in
Fig. 2. This figure shows clearly that for both bands, the
electric field is localized on the same octagonal ring of pat-
tern A in Fig. 1�a�, which is the most symmetrical local pat-
tern. For band I, the electric field forms octapole modes

while for band II it forms hexadecapole ones. The field in-
tensity on the octapole, normalized to unity on an area of a2,
is displayed in the same figure in a slice along the x direc-
tion. It shows well that the intensity is essentially confined
on the ring. The intensity follows a Gaussian-like distribu-
tion on each cylinder, with a peak width that corresponds
roughly to the cylinder diameter.

The intensity distribution in Fig. 2 suggests that the field
patterns are essentially determined by the scatterers on the
octagonal ring, and that the adjacent structures are not sig-
nificantly concerned. This suggests a local interaction
mechanism. To investigate this, we first remove the adjacent
cylinders both inside and outside the ring. We find that the
corresponding band frequencies, as well as the electric-field
patterns �Figs. 3�a� and 3�b��, remain unchanged. This indi-
cates that the multipole mode formation is dominated by the
nearest-neighbor interaction. Indeed, the octagonal quasilat-
tice displays two internode distances, namely a and
��2−�2�a ��0.77a�. The nodes on the ring are separated by
the shorter one. Moreover, we can increase the interring dis-
tance by considering the 7/5 approximant that contains
seven rings per cell. We introduce tile flips �as exemplified
by G in Fig. 1�a�� in the cell so that only one ring per cell
remains, and the interring distance is increased to �7
+5�2�a. We can check that the same multipole modes are
formed on the rings �see Figs. 3�c� and 3�d��, with the same
mode frequencies as the 3/2 approximant. This shows that
these modes are independent of interring distance and are not
caused by interring interference.

The above analyses indicate that the localized modes re-
sult essentially from nearest-neighbor coupling on high-
symmetry local patterns. In order to investigate this phenom-
enon, let us consider an individual ring with the same
physical and geometrical parameters. An octagonal ring is
described by the D8 group, of which the character table is
given in Table I. We will consider here, in a framework simi-
lar to the MO theory, the s and the tangential p �denoted as
pT� waves on the cylinders. The characters of their respective
representations, namely �S and �T, are given in the same
table.

Under the D8 group, �S and �T can be decomposed into

FIG. 1. �a� A portion of the 3/2 approximant of the octagonal
quasilattice, formed by square and 45° rhombus tiles. The unit cell
is bordered by dashed lines. The six local patterns characterizing the
quasilattice are marked by circles and labeled from A to F. G shows
a tile flip without lattice distortion. �b� The band diagram of the 3/2
approximant calculated for the TM polarization. The frequency lev-
els of the first two Mie resonances are also indicated.

FIG. 2. �Color online� Electric-field patterns at �, X, and M
points for bands I ��a�, �c�, and �e�� and II ��b�, �d�, and �f�� in the
3/2 octagonal approximant. The “+” and “−” signs indicate the
field polarities. The unit cell is bordered by dashed lines. The field
intensity in a slice passing through the ring center along the x axis
is displayed in �g�, where the shadowed zones represent the cross
sections of the cylindrical scatterers.

FIG. 3. �Color online� �a,b� Electric-field patterns for bands I
and II in the 3/2 approximant, where the adjacent scatterers inside
and outside of the octagonal ring are removed. �c,d� Field patterns
in a tile-flipped 7/5 approximant containing only one octagonal
ring per cell. The “+” and “−” signs indicate the field polarities.
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�S = �1 + �3 + �5 + �6 + �7, �1�

�T = �2 + �4 + �5 + �6 + �7, �2�

where �1 and �3 describe, respectively, the bonding and the
antibonding states of the s wave; �2 and �4 those of the pT
wave; and �5, �6, and �7 the partially bonding, the nonbond-
ing, and the partially antibonding states of both waves. The
last three states are all doubly degenerate.

Indeed, the field patterns of bands I and II are described,
respectively, by �3 and �4 representations. We will show in
the following that they can effectively be considered as the
antibonding states of, respectively, the s and pT waves on the
ring. We first compute the eigenmodes of the octagonal ring.
To achieve this, we put the octagonal ring at the center of a
cylindrical cavity in a dielectric medium, in which additional
holes can be placed. Maxwell’s equations are solved using a
periodic square boundary condition. The parameters of the
structure surrounding the ring �dielectric constant, hole size,
and interhole distance� can be modulated to reduce compli-
cations arising from the coupling with the wave modes re-
sulting from the imposed boundary condition, and to check
that the obtained eigenfrequencies on the octagonal ring are
not artifacts due to the surrounding structure.

Actually, all the field patterns described by the represen-
tations in Eqs. �1� and �2� are obtained �Fig. 4�. The corre-
sponding frequencies are listed in Table II, where �̄ / �̄� de-
notes the slight frequency shifts following the lift of the
double degeneracy of the �6 states, due to the imposed

square boundary condition. We note, in particular, that �̄�3
and �̄�4

correspond, respectively, to the frequency levels of
bands I and II.

In the nearest-neighbor approximation, the interscatterer
interaction is described by a coupling parameter g that is
proportional to ��n

* �H ��n+1	, with ��n	 the wave function on
the nth scatterer and H the Hamiltonian. The energy levels
can easily be calculated using Hückel theory.15 For a weak g
value, we obtain the frequency levels

� = �0 + g,�0 + g/�2,�0,�0 − g/�2,�0 − g �3�

for an octagonal ring, where �0 stands for the mode fre-
quency on an isolated individual scatterer. These frequency
levels correspond, respectively, to those of �1 ��2�, �5, �6,
�7, and �3 ��4� states. Equation �3� implies that the fre-
quency differences between �i �i=1, . . . ,7� and the non-
bonding states ��6�, ��̄�i

= �̄�i
− �̄�6

, are symmetrical for i
= �5,7� and �1,3� and �2,4�, and that the frequency differ-
ence ratio ��̄�i

/��̄�j
=�2 for �i , j�= �3,7�, �1,5�, �4,7�, and

�2,5�. The values in Table II follow closely these relations.
In order to understand the origin of the local mode forma-

tion, let us consider the nonbonding states ��6�. Indeed, their
frequencies can be related to the first two Mie resonances,16

which occur for an infinite cylinder of �=13 for the size
parameter x=2�r /	=0.29 and 0.65, with 	 the incident
wave length. This corresponds to the frequencies �̄=0.16
and 0.37��a /2�c�. These two frequencies are very close to
�̄�6

for, respectively, the s and pT waves �Table II�, and the
slight differences can be explained if we consider that indi-
vidual Mie states decay slowly �asymptotically as 1/r� and
residual interaction between next-neighbor cylinders can
subsists.

The above analyses show that the field patterns as well as
the frequency levels of bands I and II are indeed determined
by the local ring patterns alone. The field distribution can be
considered, moreover, as, respectively, the s and pT antibond-
ing states of the first two Mie resonance modes in a tight-
binding framework. It is worth noting that here the Mie fre-
quencies lie far from the gaps �see Fig. 1�b��, contrary to the
simple periodic cases, where the Mie resonances are found
directly related to the gap opening.17

The fact that the highest symmetry patterns yield the
highest frequency modes is not surprising, if we consider
that these patterns imply the strongest nearest-neighbor num-
ber, and thus the highest frequencies for the antibonding
states. Local patterns with fewer nearest neighbors will form
antibonding states with lower frequencies. As an example,
pattern B of Fig. 1�a� contains seven nearest-neighbor scat-
terers, and leads to the antibonding states displayed in Fig. 5,

TABLE I. The character table of the D8 group. The characters of
the �S and �T representations are also listed.

D8 E 2C8 2C4 2C8
3 C2 4C2� 4C2�

�1�A1� 1 1 1 1 1 1 1

�2�A2� 1 1 1 1 1 −1 −1

�3�B1� 1 −1 1 −1 1 1 −1

�4�B2� 1 −1 1 −1 1 −1 1

�5�E1� 2 �2 0 −�2 −2 0 0

�6�E2� 2 0 −2 0 2 0 0

�7�E3� 2 −�2 0 �2 −2 0 0

�S 8 0 0 0 0 2 0

�T 8 0 0 0 0 −2 0

FIG. 4. �Color online� Electric-field patterns of the s and pT

eigenmodes on the octagonal ring. The “+” and “−” signs indicate
the field polarities.

TABLE II. The eigenfrequencies of the s and pT modes on the
octagonal ring.

�1 �2 �5 �6 �7 �3 �4

�S 0.10 0.12 0.17/0.18 0.22 0.24

�T 0.34 0.36 0.39/0.40 0.43 0.45
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which correspond to frequency levels lying just below bands
I and II. This illustrates also the reason why bands I and II do
not lie deep in the main gaps, but rather at the low edges,
since various patterns lead to different modes �with, of
course, possible coupling between them as well as with ex-
tended modes� with frequency levels below these two bands.
Such localization effects should be a common phenomenon
for QP and approximant structures that are characterized by
maximum symmetry local patterns.

Another point of interest is the effect of disorder in such
systems. To investigate this, we introduce structure disorders
by randomly flipping the tiles in the 3/2 approximant lattice
in the way exemplified by G in Fig. 1�a�. The resulting struc-
tures are randomly tiled, though neither node density modi-
fication nor lattice distortion are involved. Maxwell’s equa-
tions are solved on the resulting structures. The obtained
band diagrams are similar to that of the perfect structure in
Fig. 1. The field distributions, however, are strongly modi-
fied. Figure 6 shows two examples ��a� and �b��, where the
electric-field distributions are obviously more extended, and
we can thus expect a better light propagation. Indeed, as
shown in Fig. 6�f� �curves a and b�, strong increases of the
light group velocities �vg�, which can reach one magnitude as
compared to that for the perfect structure �curve p�, are ob-
tained. This behavior contrasts with the classical cases where
structure disorders are known to lead to localization effects.
In the present case, however, this can be understood if we
consider that the low group velocity in the perfect structure
is related to the localization that occurs on the octagonal
rings. Disorders decrease local symmetry order, implying
lower numbers of nearest-neighbor scatterers, and thus dis-
favor the formation of localized high-frequency antibonding
states, leading to group velocity increase. This is again char-
acteristic of QP structures of D�2, where structure disorders
break the local symmetry of perfect lattices. We can also
alter the structure order through local rearrangements in spe-
cific regions, by introducing disorders only in the regions
surrounding pattern A �Fig. 6�c��, or by transforming pattern
A into a square while taking care not to generate a new
octagon �Fig. 6�d��. It is worth noting that in the latter case
the replacement of the octagon by the square, achieved by
four tile flips, is a local order violation, since a perfect QP
lattice does not contain such square patterns formed by four
square tiles �see the six local patterns in Fig. 1�a��. So the
structure in Fig. 6�d� is an approximant structure containing
locally defects that decrease the symmetry order of pattern A.
The corresponding group velocities for these two structures

are displayed in Fig. 6�f� as well. The vgcurves �c and d�
show that these modifications lead to anisotropic vg changes
following different directions. In particular, vg is signifi-
cantly increased in two out of three directions in the case of
�d�. This confirms that the low group velocity is essentially
related to the antibonding states on the octagonal rings.
Besides, structure modulation in surrounding regions affects
interring correlation.

Generally, highly symmetrical local patterns in dielectric
structures imply high local scatterer densities, but the latter
do not necessarily mean the former. Indeed, for perfect QP
structures characterized by high-symmetry local patterns, the
symmetrical distribution of scatterers in the local patterns
plays an important role in the localization process. Figure
6�e� provides an illustration where we introduce distortion in
pattern A by slightly shifting �for 
20% of the interscatterer
distance� some scatterers on the octagonal ring from their
initial positions, so that the local octagonal symmetry is bro-
ken, but all eight scatterers remain on the ring and the den-
sity of pattern A is unchanged. As shown by the same figure,
the corresponding field distribution on the octagonal ring
varies following the scatterers. The group velocity �curve e
in Fig. 6�f�� is significantly increased in all three directions
as compared to curve p. As a matter of fact, this can also be
understood in the framework of nearest-neighbor resonances,
since asymmetrical scatterer distribution leads to dispersion
in the coupling between neighbor scatterers, resulting in less
flat frequency dispersion curve. Indeed, the width of band I
resulting from the above structure distortion is twice as large

FIG. 5. �Color online� Electric-field patterns corresponding to
the next frequency levels below, respectively, bands I �a� and II �b�.
The “+” and “−” signs indicate the field polarities. These modes are
formed on pattern B in Fig. 1�a�.

FIG. 6. �Color online� Electric-field patterns of band I in struc-
tures following various rearrangements, where the “+” and “−”
signs indicate the field polarities: �a� and �b� the structures are ran-
domized; �c� disorders are introduced only in regions surrounding
pattern A; �d� the octagonal ring in pattern A is transformed into a
square; �e� the octagonal symmetry of pattern A is broken. The
corresponding group velocities are labeled from a to e and dis-
played in �f�, where curves p and g are group velocities of, respec-
tively, band I and the band next to it in the perfect structure of Fig.
1�a�.
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in frequency as compared to the perfect structure.
Finally, we note that there are numerous bands in the two

frequency ranges below, respectively, bands I and II. Some
of them correspond to localized states as well but on differ-
ent local structure patterns. And they are all less flat than,
respectively, bands I and II. For example, as mentioned
above, the band lying just below band I corresponds to the
mode on pattern B �Fig. 5�a��. This band is the second flattest
next to band I in the corresponding frequency range. The
corresponding group velocity �curve g in Fig. 6�f�� is glo-
bally higher than that of band I �curve p�.

The present work differs from Ref. 12, by showing that
localization occurs in QC structures due to nearest-neighbor
resonances, and that symmetry distribution of scatterers in
local patterns, rather than their density, constitutes the most
favorable localization condition. Moreover, we show that lo-
calization does occur in lower-order rotational symmetry QP
structures, thus suggesting that this can indeed be a general
phenomenon for QP structures containing maximum symme-
try local centers. It is also worth mentioning that the trans-
port behavior in an infinite-sized QP system can be more
complicated as compared to approximants of finite-sized unit
cells. However, the results of the present work can still quali-
tatively hold, since all the characteristic local patterns of the

parent QP lattice are contained in the approximants, and the
unit cells of the latter are repeated infinitely many times in
the QP lattice. Moreover, in practice, QP samples of finite
size can be considered as equivalent to approximants.

In summary, we studied the light wave states in quasip-
eriodic dielectric media through investigations on the ap-
proximant structures. We have shown that the bands below
the main photonic gaps are formed by states localized on the
highest symmetry local patterns that are common to the
quasilattice and the approximants. Unlike the classical local-
ization case, here the localized states are not related to de-
structive interference, but rather determined by resonances
between local nearest-neighbor scatterers at Mie resonance
modes. More particularly, structure disorders can lead to
more extended field distribution and strong increase in light
propagation. This study can trigger direct experimental ob-
servations, such as light wave distribution and transmission
in high-symmetry quasiperiodic and related dielectric struc-
tures in the localization regime. It also provides a new physi-
cal mechanism of optical confinement and light slowing. The
same approach can be generalized to other 2D and 3D qua-
siperiodic structures, as well as to other wave cases such as
sound propagation.
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