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We examine the spinless one-dimensional Falicov-Kimball model �FKM� below half filling, addressing both
the binary alloy and valence transition interpretations of the model. Using a nonperturbative technique, we
derive an effective Hamiltonian for the occupation of the localized orbitals, providing a comprehensive de-
scription of charge order in the FKM. In particular, we uncover the contradictory ordering roles of the
forwardscattering and backscattering itinerant electrons: the latter are responsible for the crystalline phases,
while the former produces the phase separation. We find an Ising model describes the transition between the
phase separated state and the crystalline phases; for weak coupling we present the critical line equation, finding
excellent agreement with numerical results. We consider several extensions of the FKM that preserve the
classical nature of the localized states. We also investigate a parallel between the FKM and the Kondo lattice
model, suggesting a close relationship based upon the similar orthogonality catastrophe physics of the associ-
ated single-impurity models.
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I. INTRODUCTION

The Falicov-Kimball model �FKM� describes the interac-
tion between conduction electrons and localized atomic or-
bitals. The Hamiltonian of the one-dimensional �1D� FKM
for spinless Fermions is written

HFKM = − t�
j

�cj
†cj+1 + H . c . � + � f�

j

nj
f + G�

j

nj
fnj

c,

�1�

where t�0 is the conduction �c� electron hopping, � f is the
energy of the localized f-electron level, and G is the on-site
interorbital Coulomb repulsion. The concentration of elec-
trons is fixed at n= �1/N�� j��nj

f�+ �nj
c��, where N is the num-

ber of sites. In this work we consider only the case n�1. We
work throughout at zero temperature T=0.

The FKM was originally developed as a minimal model
of valence transitions: continuous or discontinuous changes
in the occupation of the f orbitals �the atomic “valence”�
were observed when varying the coupling G or the f-level
energy � f.

1 Since only the distribution of electrons across the
two orbitals is of interest, the model has traditionally been
studied for spinless fermions. These early works, however,
neglected an important feature of HFKM: the occupation of
each f orbital is a good quantum number and so may be
replaced in Eq. �1� by its expectation value nj

f → �nj
f�=0,1. It

was quickly realized that in many physical systems display-
ing a valence instability �e.g., SmB6 and Ce�, this is an in-
appropriate idealization. Instead of a mixture of atoms with
different integer valence, in these materials each atomic or-
bital exists in a superposition of its different occupancy
states.2 Although the FKM was modified to include this
quantum behavior by the addition of a c-f hybridization
term,3,4 it has now been superseded as a model of valence
transitions by the periodic Anderson model.5

The FKM was reinvented by Kennedy and Lieb in 1986
as a simple model of a binary alloy.6 Assuming fixed c- and
f-electron populations, the sites with occupied and unoccu-
pied f orbitals may be regarded as different atomic species A

and B, respectively. The Coulomb repulsion G is interpreted
as the difference between the single-particle energies of the
two atoms. For this so-called crystallization problem �CP�,
the ground state is defined as the configuration of the two
atomic species �f electrons� that minimizes the energy of the
c electrons. The ordering of the different atomic constituents
in a binary alloy is an important theoretical and experimental
problem: in realistic systems a large range of ordered struc-
tures are observed, although the electronic mechanisms re-
sponsible for these phases have remained largely obscure.7,8

By studying a simple model such as the FKM, some insight
into the origin of the charge order might be obtained.

Kennedy and Lieb analyzed Eq. �1� for a bipartite lattice
at half filling and equal concentrations of c and f electrons.
In the limit of T=0 and strong-coupling, they proved that the
f electrons occupied one sublattice only, the so-called check-
erboard state. This crystalline state is, however, unique to
half filling: for all other fillings, the G→� ground state is
the so-called segregated �SEG� phase.9,10 The SEG phase is
characterized by the f electrons forming a single cluster, ar-
ranged in such a manner as to present the smallest perimeter
with the rest of the lattice, which is occupied by the c elec-
trons. These strong-coupling results hold for all dimensions
D. At weak and intermediate coupling, the situation is con-
siderably more complicated: for D=1, both analytical11,12

and numerical13–15 studies have revealed a myriad of differ-
ent crystalline orderings of the f electrons. The SEG phase is
also realized, but not as ubiquitously as at strong coupling.
Intriguingly, for certain c- and f-electron fillings, the system
is unstable towards a unique phase-separated coexistence be-
tween a crystalline state and the state with completely empty
or full f orbitals.12,15–17 We refer to such ground states in
what follows as the “crystalline-homogeneous phase-
separated” �CHPS� states. The study of the FKM in higher
dimensions has revealed similar behavior;18,19 the under-
standing of the D→� limit phase diagram is particularly
advanced.20

Contemporary with Kennedy and Lieb’s work, Brandt and
Schmidt introduced the FKM as an exactly-solvable model
of a “classical” valence transition.21 The distribution of the
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electron weight between the two orbitals is not fixed, but
instead determined by the interactions. Quantum effects such
as superposition of orbital states are ignored: as in the CP,
the valence transition problem �VTP� is concerned with the
configuration adopted by the available f electrons. Despite
the similarity between the two interpretations, apart from the
D→� limit20 and the D=1 half-filling case,22,23 very little is
known about the ground states of the VTP. Since the ordered
configurations found for the CP occur over a wide range of
different fillings and coupling strengths, we can nevertheless
expect that the VTP has a similarly rich phase diagram.

Although an impressive catalog of charge-ordered phases
has been assembled for the 1D FKM, only the weak-
coupling crystalline phases are easily explicable as due to the
c-electron backscattering off the localized orbitals. The
mechanism responsible for the weak-coupling SEG and
CHPS states remains unknown; the competition between
crystallization and the segregation is also poorly compre-
hended. In this paper, we expand upon our previous work,24

outlining a comprehensive theory of the charge order in the
FKM, with particular emphasis on the phase-separated �i.e.,
SEG and CHPS� states.

To describe the c electrons, we use the well-known non-
perturbative bosonization technique, specially adapted to ac-
count for the presence of localized orbitals. We then canoni-
cally transform the bosonized FKM, rewriting the
Hamiltonian in a new basis that reveals the origin of the
phase separation to be the c-electron delocalization. Such a
mechanism has previously been proposed to account for the
ferromagnetic phase in the 1D Kondo lattice model
�KLM�,25 pointing to a nontrivial connection between the
two models based upon orthogonality-catastrophe physics.
Decoupling the c and f electrons in the transformed Hamil-
tonian, we obtain an Ising-like effective Hamiltonian de-
scribing only the occupation of the f orbitals. The competi-
tion between the segregation and crystallization is clearly
evident in this effective model: at weak coupling we find the
backscattering crystallization dominates the physics, but with
increasing G the electron delocalization drives the system
into the SEG or CHPS states. We verify that segregation is
also present in the VTP.

Our paper is arranged as follows. In Sec. II we give a
brief outline of our bosonization procedure, and present
HFKM in the bosonic form. We proceed to a description of
the canonical transform in Sec. III, including a discussion of
the resulting terms. We argue in Sec. IV for the derivation of
the effective Hamiltonian for the localized f orbitals from the
canonically transformed Hamiltonian; this is subsequently
used in Sec. V to interpret the numerically determined phase
diagrams for the CP �Sec. V A� and the VTP �Sec. V B�. We
also present a brief analysis of several extensions of the
FKM in Sec. VI, specifically intraorbital nearest-neighbor
interactions and the introduction of spin, focusing upon pos-
sible alteration of the CP phase diagram. We conclude in Sec.
VII with a summary of our results and the outlook for further
work.

II. BOSONIZATION

The technique of bosonization has for many years been
used to study the critical properties of one-dimensional

many-electron systems.26 It relies upon the remarkable fact
that an effective low-energy description of such systems may
be constructed in terms of bosonic fields: this representation
is usually much easier to manipulate than the equivalent fer-
mionic form. The bosonization of a tight-binding Hamil-
tonian is often performed in the continuum limit where the
lattice spacing a→0;26 this approach is, however, inappro-
priate for systems involving localized electron states. Never-
theless, for the FKM the usual bosonization approach can be
generalized to account for the presence of the localized f
electrons. As explained in Ref. 27, this is accomplished by
imposing a finite cutoff ��a on the wavelength of the
bosonic density fluctuations. Below we summarize our
methodology.

The Bose representation is most conveniently written in
terms of the dual Bose fields. For a system of length L�a
we have

��xj� = − i�
�

�
k�0

	

kL

��k����k�eikxj , �2�

��xj� = i�
�

�
k�0

�
	

kL

��k����k�eikxj . �3�

At the core of the bosonization technique are the chiral
density operators


��k� = q �
0��k��	/a

ck�−k
† ck� �4�

which describe coherent particle-hole excitations about the
right and left Fermi points: as subscript �otherwise� we have
�=R�+�, L�−� respectively. The 
��k� are the basic bosonic
objects, obeying the standard commutation relations

�
��k�,
���k��	 = 
�,��
k,−k�
�kL

2	
�5�

for wave vectors 
k 
 �
	
� . The physical significance of the

Bose fields is as potentials �x��xj� and �x��xj� are, respec-
tively, proportional to the departure from the noninteracting
values of the average electron density and current at xj.

The bosonic wavelength cutoff is enforced in Eq. �2� and
�3� by the function ���k� which has the approximate form

���k� � �1 
k
 �
	
� ,

0 otherwise.
�6�

We expect that ���k� is a smoothly varying function of 
k
,
reflecting the gradual change in the nature of the density
fluctuations. We require, however, that ���k� be not too
“soft,” i.e., ��

m�k�����k� for m=2,3 ,4. The cutoff essen-
tially “smears” the Bose fields over the length � below
which the density operators do not display bosonic charac-
teristics. The commutators of the Bose fields reflect this
smearing, with important consequences for our analysis:

���xj�,��xj��	− =
i	

2
sgn��xj� − xj� , �7�
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��x��xj�,��xj��	− = − i	
��xj� − xj� . �8�

sgn��x� and 
��x� are the �-smeared sign and Dirac delta
functions, respectively. The precise form of these functions
depends upon ���k� �see Sec. III A�.

As is customary, we linearize the c-electron dispersion
about the two Fermi points. This allows a decomposition of
the j-site annihilation operator in terms of states in the vicin-
ity of kF �the right-moving fields� and −kF �the left-moving
fields�:

cj � cRje
ikFxj + cLje

−ikFxj .

Remarkably, the density operators 
��k� generate the entire
state space of the linearized fermion Hamiltonian. A Bose
representation for the c�j may then be derived by requiring
that it correctly reproduces the Fermion anticommutators and
noninteracting expectation values. This leads to the funda-
mental bosonization identity

c�j =
Aa

�
F̂�exp�− i����xj� − ���xj�	� . �9�

We note that this identity is only rigorously true in the long-
wavelength limit, that is, it correctly reproduces the behavior
of the c-electron wave components with 
k
��−1. Although
a strict bound on � cannot be given for an arbitrary realistic
system,26,27 generally speaking the bosonization identity is
unable to properly account for the properties c�j operators
beneath the scale of the interelectron separation ��kF�−1. The
dimensionless parameter A is a normalization constant de-

pendent upon the cutoff function. The Klein factors F̂� obey
the simple algebra

�F̂�,F̂��	+ = 2F̂�F̂�
�,��, �F̂�,F̂��
† 	+ = 2
�,��. �10�

The Klein factors act as “ladder operators:” since the Bose
fields only operate within subspaces of constant particle
number we require operators to move between these different
subspaces if we are to regard Eq. �9� as an operator identity.

That is, F̂� may be thought of as lowering the total number of
�-moving electrons by 1.

The Bose representation for any string of Fermion opera-
tors may be derived from Eq. �9� using standard field-theory
methods. Of particular note is the representation for the j-site
occupancy operator nj

c:

nj
c � �

�,��

c�j
† c��je

−i��−���kFxj = n0
c −

a

	
�x��xj�

+
Aa

�
�

�

F̂�
†F̂−�ei2���xj�e−i2�kFxj . �11�

The first term on the right-hand side �RHS� n0
c is the nonin-

teracting c-electron concentration; the second term gives the
departure from this value in the interacting system and is due
entirely to forward scattering ��→� processes�; the third
term is the first order backscattering ��→−� processes� cor-
rection. Higher order backscattering corrections are usually
neglected.26

The Hamiltonian in boson form. We bosonize the FKM

Hamiltonian using the above methodology. Since only the
itinerant c electrons can be bosonized, we require that there
be a finite population in the noninteracting c-electron band.
For the CP this simply requires us to assume finite concen-
trations of the two species nc and nf for the c and f electrons,
respectively, which do not change with the addition of the
interaction term. For the VTP, we impose the condition that
the f level coincides with the Fermi energy in the noninter-
acting system: as we consider only the case n�1, we limit
ourselves to −2t�� f �−2t cos�	n /a�. For � f outside this
range, our bosonization approach does not work. We discuss
this in more detail in Sec. V B.

Before bosonizing the Coulomb interaction, we rewrite
the f-electron occupation in terms of pseudospin-1

2 operators
nj

f − 1
2 =� j

z. In the pseudospin representation, spin-↑ �↓� at site
j indicates an occupied �unoccupied� f orbital. For the CP,
the condition of constant f-electron concentration then trans-
lates into a fixed pseudospin magnetization mz=nf − 1

2 . The
use of the pseudospins will considerably simplify the subse-
quent manipulations. We rewrite the Coulomb interaction

G�
j

nj
fnj

c = G�
j

� j
znj

c − 1
2G�

j

� j
z + const. �12�

We have used the requirement of constant total electron con-
centration to obtain the second term. Substituting Eq. �11�
into Eq. �12�, we bosonize the FKM Hamiltonian

HFKM =
vFa

2	
�

j

���x��xj�	2 + ��x��xj�	2� + G�n0
c − 1

2��
j

� j
z

−
Ga

	
�

j

� j
z�x��xj� +

GAa

�
�
�,j

� j
zF̂�

†F̂−�ei2���xj�e−i2�kFxj .

�13�

For c-electron concentration nc, the Fermi velocity is defined
vF=−2ta sin�kFa�, where kF=	nc /a. Note that the parameter
� f only enters into Eq. �13� indirectly through vF and kF.
Since the Klein factor products in the backscattering correc-
tions �the last term in Eq. �13�	 commute with the Hamil-
tonian, we replace them by their expectation value

F̂�
†F̂−�= �F̂�

†F̂−��=1.

III. THE CANONICAL TRANSFORM

The work on the CP has established that the c electrons
mediate interactions between the f electrons via the interor-
bital Coulomb repulsion, although the precise mechanisms
are poorly understood. Here we seek to reveal the electronic
origins of the charge order by rotating the Hilbert space basis
to decouple the c and f electrons. We apply a lattice gener-
alization of the canonical transform used by Schotte and
Schotte in the x-ray edge problem �XEP�:28

Û = exp�i
Ga

	vF
�
j�

� j
z��xj��� . �14�

The canonical transform bears a close resemblance to the
transform used by Honner and Gulácsi in their analysis of
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the KLM.25 We argue below that this reflects a fundamental
connection between the FKM and the KLM.

A major advantage of the Bose representation is that the
transformation of the Bose operators under Eq. �14� may be
calculated exactly using the Baker-Hausdorff formula. This
allows us to carry the canonical transform of the Hamiltonian
through to all orders. The effect of the transform may be
summarized as follows:

Û†��xj�Û = ��xj� −
Ga

2vF
�
j�

� j�
z sgn��xj� − xj� , �15�

Û†�x��xj�Û = �x��xj� +
Ga

vF
�
j�

� j�
z 
��xj − xj�� . �16�

All other operators in Eq. �13� are unchanged by the trans-
form. In particular, we note that the transform preserves the f

configuration, i.e., Û†� j
zÛ=� j

z.
The transformation of the derivative of the � field �Eq.

�16�	 is of special note, as it makes explicit the dependence
of the c-electron density 
�xj�=n0

c − a
	�x��xj� at site j upon

the local f-electron occupation

Û†
�xj�Û = 
�xj� −
Ga2

	vF
�
j�

�nj�
f − 1

2�
��xj − xj�� . �17�

As expected, the effect of the Coulomb interaction is to en-
hance �deplete� the c-electron density, where the f orbitals
are empty �occupied�. This delocalized response to the
f-orbital occupation is the mechanism for the phase separa-
tion.

Substituting the transformed Bose fields �Eqs. �15� and
�16�	 into Eq. �13�, we obtain

Û†HFKMÛ =
vFa

2	
�

j

���x��xj�	2 + ��x��xj�	2�

+ G�n0
c − 1

2��
j

� j
z −

G2a2

2	vF
�
j,j�

� j
z
��xj − xj��� j�

z

+
2GAa

�
�

j

� j
zcos�2���xj� − K�j� − kFxj	� ,

�18�

where we have introduced the simplifying notation

K�j� =
Ga

2vF
�
j�

� j�
z sgn��xj� − xj� �19�

for the string operator in Eq. �15�. Since the canonical trans-
formation of HFKM has been carried out exactly, it follows
that Eq. �18� is identical to Eq. �13�. The result of our trans-
formation is to have rewritten HFKM in a new basis that
includes the effective interactions between the f electrons.
The rest of this paper will be concerned with the study of Eq.
�18�; we begin by examining the origins of the terms involv-
ing the f electrons in the transformed Hamiltonian.

A. The Ising interaction

The removal of the forward-scattering Coulomb interac-
tion by the canonical transform introduces an effective inter-
action between the f electrons:

−
G2a2

2	vF
�
j,j�

� j
z
��xj − xj��� j�

z . �20�

Unlike other effective interactions, such as the weak-
coupling Ruderman-Kittel-Kasuya-Yosida theory29 or the
large-G expansion,17 Eq. �20� is nonperturbative. Further-
more, Eq. �20� differs from these other effective interactions
in being responsible only for the segregation and phase sepa-
ration. Its significance warrants some discussion upon its
properties and origins.

The interaction is implicitly dependent upon the proper-
ties of the c electrons: the form of the potential in Eq. �20� is
the Fourier transform of the cutoff function


��xj� =
1

L
�

k

���k�eikxj . �21�

To concretely illustrate the variation of the interaction, we
consider three choices of cutoff

���k� = ���	
� − 
k
� , step function,

exp�− �2k2/2	2� , Gaussian,

exp�− �
k
/2	� , exponential.

�22�

Here ��x� denotes the well-known Heaviside step function.
For simplicity, we evaluate the summation Eq. �21� in the
thermodynamic limit L→� and for a continuum system
�valid for ��a�. We thus find


��x� = �
0

� dk

	
cos�kx����k�

= ��1/	x�sin�	x/�� , step function,

�
	/2��exp�− 	2x2/4�2� , Gaussian,

�/��2 + 	2x2� , exponential.

�23�

These integrals are plotted in Fig. 1; this plot makes it
clear that � characterizes the range of the interaction Eq.
�20�. For the step-function cutoff the potential will take nega-
tive values for x��. Since � is limited below by the lattice
constant, however, the nearest-neighbor value 
��a� is al-
ways non-negative30 and exceeds in magnitude all other val-
ues of the potential. In the pseudospin language the interac-
tion �20� is ferromagnetic below the bosonic wavelength
cutoff. Furthermore, beyond this length scale the potential is
insignificant.

The canonical transform reveals that the forward-
scattering mediates attractive interactions between the f elec-
trons; as such, it can account for the SEG �Ref. 9� and CHPS
phases.12,15 This is not unexpected, as the forwardscattering c
electrons transfer small crystal momentum ��kF� to the f
orbitals, thus only interacting with the long-wavelength fea-
tures of the underlying f-electron configuration.
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To understand the physical origin of Eq. �20� we consider
the details of the bosonization process. Because of the
bosonic wavelength cutoff, our treatment can only describe
density fluctuations over distances �O���. The bosonic
fields cannot distinguish separations less than this distance,
hence the smeared canonical field commutators �7� and �8�.
Our description of the FKM thus assumes that the c electrons
are delocalized over a characteristic length ��: the
�-smeared 
 functions �Fig. 1� may be very crudely con-
ceived as the probability density profile of these delocalized
electrons, i.e., 
��x�
2�
��x�. The finite spread of the
c-electron wave functions carries the interorbital Coulomb
repulsion over several lattice sites �see Eq. �17�	, directly
leading to the segregating interaction �20�.

In the familiar bosonization description of one-component
systems such as the Hubbard model, � is regarded as a short-
distance cutoff which defines the minimum length scale in
the system �usually the average interelectron separation
�kF

−1�. This is analogous to the use of the infrared cutoff in
field theory, and making � arbitrarily small does not alter the
critical properties of the model.26 Such arguments cannot,
however, be made for the c electrons in the FKM, where
the limiting length scale of the bosonic description is deter-
mined by the interactions with the localized f electrons: the
parameter � therefore enters our bosonic theory as a finite
but undetermined length. We estimate � by examining the
short-range fermionic scattering of the c electrons off the f
orbitals.

The configuration adopted by the f electrons in the FKM
acts as a single-particle potential for the c electrons. That is,
the c electrons move in a site-dependent potential that takes
only two values +G /2 or −G /2, corresponding to occupied
and unoccupied underlying f orbitals, respectively. Below
the average interelectron separation �kF

−1=a /	nc�, the c elec-
trons move independently of one another and their motion is
therefore described by a single-particle Schrödinger equa-
tion. In the limit nc→0 the average interparticle separation is
much larger than the lattice constant: it is here acceptable to

take the continuum limit of the lattice model, yielding a
simple form for the Schrödinger equation describing the low-
energy �E=0� wave functions ��x�:

�x
2��x� = Gm��x

z���x� , �24�

where m is the bare electron mass.
The motion of the c electrons across the lattice is analo-

gous to the familiar problem of elementary quantum me-
chanics of a particle in a finite well.31 For a c electron mov-
ing in a region free from f electrons ���x

z�=− 1
2 �, the energy of

the c electron exceeds the potential and so we find the solu-
tions for ��x� to be plane waves. In contrast, the c-electron
energy is less than the potential in a region of occupied f
orbitals ���x

z�= 1
2 �: we therefore find exponentially decaying

solutions ��x��exp�−x /�� characterized by the length scale
��
1/G. Since we identify � with the finite spread of the
delocalized c electron wave functions, we conclude that
���. We therefore expect �=b
t /G where b is a constant to
be determined.

1. Relationship to the KLM

The similarity of the canonical transform �14� to that used
by Honner and Gulácsi in their treatment of the KLM sug-
gests a connection between the two models. This relationship
is best revealed by considering the single-impurity limit of
these lattice models; for the FKM, the associated impurity
problem is the XEP.

As is well known, the sudden appearance of the core hole
in the XEP excites an infinite number of electron-hole pairs
in the conduction band, leading to singular features in the
x-ray spectrum �the orthogonality catastrophe�. Schotte and
Schotte recast the problem in terms of Tomonaga bosons: the
core hole potential directly couples to the boson modes of
the scattering electrons, and may be removed by a suitable
shifting of the oscillator frequencies.28 The canonical trans-
form �14� repeats this procedure across the 1D lattice. Al-
though the f electrons in the FKM are static, the appearance
of the core hole in the XEP is equivalent to suddenly turning
on the interactions in the FKM. Since we start with nonin-
teracting boson fields in Eq. �13�, this is a perfect analogy.

The spin-1
2 Kondo impurity is another classic example of

the orthogonality catastrophe, although the singular behavior
here arises due to the shifting of the spin-sector boson fre-
quencies. In the usual Abelian bosonization approach the bo-
son modes only directly couple to the z component of the
impurity spin: ignoring the transverse terms the problem is
identical in form to the XEP. Despite the complications in-
troduced by the transverse terms, for special values of Jz �the
Toulouse point� it is possible to map the problem to the ex-
actly solvable resonant-level model by shifting the c-electron
boson frequencies as in the XEP.32,33 For the lattice case this
argument may be generalized to arbitrary Jz:25 Honner and
Gulácsi’s canonical transform therefore shifts the KLM’s
spin-sector boson frequencies in precisely the same way as
the transform Eq. �14� shifts the charge-sector boson fre-
quencies in the FKM.

The similarity between the charge-sector physics of the
FKM and the spin-sector physics of the KLM suggests a

FIG. 1. The form of the interaction potential �20� for the differ-
ent cutoff considered in the text.
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parallel between the segregating interaction �20� and the
Kondo double exchange. This is made explicit by our boson-
pseudospin representation: ignoring the backscattering term
in Eq. �13�, the Hamiltonian is identical to the spin sector of
a forwardscattering J�=0 KLM. Within their Abelian
bosonization description, Honner and Gulácsi found the for-
wardscattering z-exchange term in the KLM directly respon-
sible for mediating the double exchange between the local-
ized spins.25 The origin of this double-exchange term is
therefore identical to our segregating interaction.

The shifting of the FKM’s charge-sector Bose frequencies
produces distortions of the c-electron density in response to
the local f occupation �see Eq. �17�	. These deviations from
the homogeneous noninteracting density n0

c may be inter-
preted as polaronic objects;28 note, however, that because of
the lack of fluctuations in the f orbitals, these distortions are
frozen into the ground state. This illustrates an important
departure from the KLM physics, where the spin-flip �J�-�
exchange terms cause the z component of the lattice spins to
fluctuate, giving the distortions of the c-electron spin density
�i.e., spin polarons� mobility.

It is possible to modify the FKM in order to replicate this
aspect of the KLM physics. The simplest such extension is
the addition to Eq. �1� of an on-site hybridization term be-
tween the c and f orbitals Hhyb=V� j�cj

†f j +H.c . �, which de-
fines the quantum Falicov-Kimball model �QFKM�. Using a
bosonization mapping at the Toulouse point, Schlottmann
found that the J�-exchange term of the Kondo impurity is
equivalent to the hybridization potential in the single-
impurity limit of the QFKM.34 In the lattice case, the po-
laronic distortions acquire mobility as in the KLM: this cou-
pling of the c- and f-electron densities may be identified as a
Toyozawa “electronic polaron.”36 Electronic polarons in the
QFKM have previously been studied by Liu and Ho;4 our
work on the 1D QFKM largely confirms their scenario.24,35 A
complete account of this work is in preparation.37

B. The longitudinal fields

The other two terms in the transformed Hamiltonian in-
volving the � pseudospins are a constant and a site-dependent
longitudinal field. The former is only of importance to the
VTP: the renormalization of the f level by the Coulomb in-
teraction will drive a “classical” valence transition. The sign
of this term is proportional to n0

c − 1
2 , which implies a strong

dependence upon the noninteracting band structure: if
� f �0, the f level will be renormalized upwards, emptying its
contents into the c band; for � f �0 the f level is lowered
below the c band, and so all electrons will eventually possess
f-electron character. Since this term does not determine the
configuration adopted by the f electrons but rather only their
number, we leave further discussion to when we analyze the
VTP phase diagram.

The site-dependent field is of more general interest. This
originates from the 2kF-backscattering correction and is di-
rectly responsible for the crystalline order in the FKM. Be-
fore demonstrating how the crystalline f configurations can
be extracted from this term, we first briefly review the
present understanding of the weak-coupling periodic phases.

The origin of the crystalline order is a Peierls-like mecha-
nism: a 1D metal is always unstable towards an insulating
state when in the presence of a periodic potential with
wave vector 2kF.38 In the context of the FKM, a Peierls
instability can arise when the f electrons crystallize in a pe-
riodic configuration with wave vector 2kF. This is the case
for weak coupling and we repeat a theorem due to Freericks
et al.:12 given rational c-electron density nc= p /q �p prime
with respect to q� and G / t�q, then for f-electron densities

�nf = pf /q�1−
 �pf not necessarily prime with respect to
q, 
�0.371� the f electrons occupy the sites x=nq+kj,
where n is an arbitrary integer and kj satisfies the relation

�pkj�mod q = j, j = 0,1, . . . ,pf − 1. �25�

For example, consider the case nc= 3
8 and nf = 5

8 . The unit cell
has eight sites, and the f electrons occupy the first, second,
fourth, fifth, and seventh sites �see Fig. 2�a�	.

Our approach reproduces this important result. In the pure
crystalline phase, the c-electron spectrum is gapped.39 We
therefore replace ��xj� in the cosine term of Eq. �18� by the
uniform average ���. Ignoring the O�G2� Ising interaction, at
weak coupling the � pseudospins are therefore arranged by
the field

2GAa

�
�

j

� j
zcos�2���� + K�j� − kFxj	� . �26�

The string operator K�j� is a constant of the motion and so it
may be replaced by its eigenvalue. Referring to Eq. �19�, this
term subtracts the magnetization of the � pseudospins more
than � to the right of site j from the magnetization of the �
pseudospins more than � to the left of site j: for an infinite
chain in the pure crystalline phase this quantity vanishes
K�j�=0. We thus have only to choose ��� to minimize the
backscattering energy. This of course implies a nontrivial

FIG. 2. �a� The configuration of the f ions in the weak-coupling
homogeneous unit cell for nc= 3

8 , nf = 5
8 . The filled and empty circles

represent occupied and unoccupied sites, respectively. �b� The pseu-
dospin representation for the configuration �a�. �c� The variation of
the effective magnetic field heff produced by the 2kF-backscattering
correction across the unit cell. heff is in units of 2GAa /�.

P. M. R. BRYDON AND M. GULÁCSI PHYSICAL REVIEW B 73, 235120 �2006�

235120-6



dependence upon the f-electron concentration: for a Q-site
unit cell with f-electron concentration qf /Q, we must mini-
mize ��� over the sum

�
l=1,qf

�l − �
l=qf+1,Q

�l, �27�

where �l=cos�2����−kFxl	� and l is chosen such that
�1��2� ¯ ��Q, xl lying within the unit cell. This minimi-
zation is most easily accomplished numerically; ��� is re-
stricted to values in the interval �0,	�.

The sum �27� assumes that the qf f electrons per unit cell
will occupy the qf lowest-energy sites in the potential �26�.
In terms of the pseudospins, there is a fixed magnetization
qf /Q− 1

2 per unit cell; the ↑ spins occupy the sites with the
smallest magnetic field, with the ↓ spins sitting on the re-
maining Q−qf sites. For the example above with nc= 3

8 and
nf = 5

8 , we find ����0.589 and so the f electrons experience
a potential

2GAa

�
�

j

� j
zcos�1.178 −

3	xj

4a
� .

We plot this potential in Fig. 2�c� along with the � pseu-
dospin orientations �Fig. 2�b�	. It is in good agreement with
the exact result �25�, although there is some ambiguity with
respect to the position of the f electron at the fifth and sixth
sites. Closer correspondence may be achieved by taking into
account higher-order backscattering processes; because
bosonization is only an approximate method on the scale of
the lattice, this approach does not replace the exact calcula-
tions. Nevertheless, our analysis convincingly demonstrates
that bosonization is capable of describing crystallization of
the f electrons in the FKM.

Before proceeding to a discussion of the FKM’s phase
diagram, we note that as the number of f electrons is limited
in the FKM, it may not be possible for a pure crystalline
phase to gap the c-electron spectrum at the Fermi energy. For
example, given a rational c-electron filling nc= p /q and
f-electron filling p� /q�nf � �p�+1� /q the system phase
separates into two crystalline phases determined by Eq. �25�
for pf = p� and pf = p�+1.12 It is also known that for
f-electron concentrations nf �
 and nf �
 the ground state
of the system is a CHPS state. This phase separation behav-
ior cannot be explained purely in terms of c-electron back-
scattering.

IV. THE EFFECTIVE HAMILTONIAN

By themselves, the Ising interaction �Eq. �20�	 and the
longitudinal field �Eq. �26�	 explain the SEG and crystalline
phases, respectively. To understand the origin of the CHPS
states or interpret the numerically determined phase diagram,
however, we must consider the interplay of these terms. In
particular, it is desirable to have a simple effective Hamil-
tonian for the f electrons that includes both the crystallizing
and segregating tendencies of the FKM.

The transformed Hamiltonian �18� offers a straightfor-
ward route to such a description of the f electrons. With the

removal of the term describing the forwardscattering interac-
tion, the only coupling between the two species is in the
2kF-backscattering correction. In the weak-coupling crystal-
line phases it is possible to completely decouple the f elec-
trons from the c electrons by replacing the bosonic ��xj�
field by its expectation value. Combining Eq. �26� with the
interaction �20�, we obtain an effective spin-1

2 Ising model
for the f electrons valid throughout the region where the
crystalline phases are realized:

Heff = −
G2a2

2	vF
�
j,j�

� j
z
��xj − xj��� j�

z

+
2GAa

�
�

j

� j
zcos�2���� + K�j� − kFxj	� . �28�

This is an important result, but our approach is not limited
only to the crystalline phases: for other configurations, the
form of the effective Hamiltonian �28� remains valid, al-
though the site dependence of the longitudinal field is differ-
ent. In the crystalline phases K�j� is vanishing; in the SEG
and CHPS states, however, K�j� has linear variation. Ignor-
ing the short-range deviation of sgn��xj� from the true sign
function, we write

K�j� �
Ga

2vF
�
n=1

�� j+n
z − � j−n

z � . �29�

Assume a phase separation between phase A and phase B
with the boundary at j=0. Then for j��1 we have
approximately27

K�j�� � K�0� +
Ga

2vF
���z�A − ��z�B�
j�
 , �30�

where the subscripts A and B refer to the magnetization in
the A and B phases, respectively. We have chosen the sign of
the linear term by choosing phase A to be realized to the
right and phase B to the left of j=0. Note that K�j� is con-
stant for a pure phase, as we expect.

For the SEG phase, the division of the lattice into
occupied and unoccupied sections implies a variation
K�j���Ga /2vF� 
 j
. Although the conduction electron spec-
trum does not display a gap, the decoupling procedure for the
field ��xj� used in Sec. III B may be easily generalized. In
the SEG phase, the conduction electrons are restricted to a
fraction �1−nf� of the lattice, where they behave as a non-
interacting electron gas. We therefore replace � in Eq. �26�
by its noninteracting average ���=0 to obtain the effective
pseudospin Hamiltonian in the SEG phase.

The CHPS state is the most complex situation to analyze,
as we must account for the very different behavior of the c
electrons for the two configurations. Exact diagonalization
calculations on 3200 site chains reveal that the momentum
distribution of the c electrons is essentially a superposition of
the gapped and noninteracting forms corresponding to the
crystalline and empty regions of the lattice, with vanishingly
small correction due to the interface of these phases in the
thermodynamic limit N→�.39 Decoupling the c-electron
fields as above, we take different averages of the � field in
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the bulk of the two phases: for the homogeneous phase, we
use the noninteracting value ���=0 while we determine ���
for the crystalline phase as in Sec. III B. Approximating K�j�
as in Eq. �30�, we have K�j���Ga /2vF�m 
 j
, where
m= ��z�P+ 1

2 �the magnetization of the periodic phase is
��z�P�.

The effective Hamiltonian across the phase diagram is a
ferromagnetic Ising model in a oscillatory longitudinal field.
This model exhibits all the most important aspects of FKM
physics. It is, however, important to add here a cautionary
note about the limitations of Eq. �28�. The bosonic represen-
tation is only exact for long c-electron wavelengths

k 
 �	 /�, so it is unreasonable to expect Heff to precisely
reproduce the microscopic details of the f-electron configu-
ration realized for given G, nc, and nf. Rather, Heff is prima-
rily relevant to the phase separation, with the site-dependent
longitudinal field acting as an essentially approximate ac-
count of the short-range crystallizing interactions. Further-
more, the form of Heff is quantitatively valid only for G� t.
Nevertheless, we expect that Heff is at least qualitatively cor-
rect over a much larger region of the phase diagram.27

V. THE GROUND STATE PHASE DIAGRAM

A. The crystallization problem

In the CP, the concentration of the f electrons is fixed: the
problem of the ground state phase diagram is then reduced to
finding the pseudospin configuration with magnetization
nf − 1

2 that minimizes the energy �Heff�. This lattice-gas prob-
lem, although conceptually simple, does not have a general
solution. It is therefore appropriate to use approximate meth-
ods to understand the physics.

In general, the segregating Ising interaction has a range �
that extends over several lattice sites. To understand the SEG
phase, however, we need consider only the nearest-neighbor
value of the potential 
��a�. That is, we write the Ising in-
teraction

−
G2a2

2	vF
�
j,j�

� j
z
��xj − xj��� j�

z � −
G2a2

	vF

��a��

j

� j
z� j+1

z .

�31�

This is justified as for realistic cutoff ���k� the interaction
potential 
��x� is attractive for x�� but falls off very
quickly with distance �see Fig. 1	. Truncating the interaction
should not significantly alter the critical properties of the
model, while considerably simplifying the analysis.

To obtain the CHPS states we must extend the Ising in-
teraction beyond the nearest-neighbor approximation used
above. The restriction to fixed magnetization makes this a
challenging problem to analyze and a general criteria for the
phase separation is beyond the capabilities of our approach.
We shall nevertheless demonstrate the formation of a CHPS
state for a single set of input parameters, noting the impor-
tance of considering a delocalization length ��2a.

1. Segregation

In the pseudospin “language” of the effective Ising model
�28�, the SEG phase corresponds to a ferromagnetic state

with two domains: a single block of ↑ spins occupying a
fraction nf of the lattice and ↓ spins in the remaining
�1−nf�N sites. From the form of Heff, we see that the critical
Coulomb repulsion Gc for the onset of segregation is related
to the critical ratio J /h for the onset of ferromagnetism in the
model

H = − J�
j

� j
z� j+1

z + h�
j

� j
zcos�� j j + � j� , �32�

where � j and � j take different constant values in different
macroscopic regions of the lattice.

The Ising model �32� has been studied for constant � and
� by Sire.40 For � /	 irrational, i.e., the quasiperiodic Ising
model �QPIM�, it is found that the critical Ising coupling has
the form Jc=h / sin� 1

2��. At couplings J�Jc the ground state
is ferromagnetically ordered; the adiabatic phase �where the
spins align antiparallel to the direction of the longitudinal
field� is, however, only realized for J�Jc2�Jc, where
Jc2=h sin� 1

2���sin� 1
2 ��+1	�� / sin� 1

2�� and � is the
largest integer smaller than 	 /�. For intermediate couplings
Jc�J�Jc2 the ground state is a quasiperiodic arrangement
of clusters of adiabatically and ferromagnetically ordered
spins. These clusters form as neither the Ising interaction nor
the magnetic field are strong enough to order the entire lat-
tice: ferromagnetic clusters occur where the magnetic field is
weak compared to the Ising term, while paramagnetic clus-
ters are found where the Ising term is weak compared to the
magnetic field. Note that this is not a phase separation
phenomenon.

The work on the QPIM in Ref. 40 was performed within
the grand canonical ensemble and so we must be cautious in
relating these results to the effective Hamiltonian �28�. The
expression for the critical Ising coupling Jc was deduced
from general arguments that should remain valid at fixed
magnetization. Indeed, the difference in energy per site be-
tween the single-domain and the two-domain �SEG� solution
vanishes as O�N−1� in the thermodynamic limit. The QPIM
results should therefore correctly capture the competition be-
tween the adiabatic and ferromagnetic orders present in Eq.
�28�: this provides a condition for segregation to dominate
crystallization. Although the QPIM at weak and strong cou-
pling corresponds to the behavior seen in the small- and
large-G FKM, the agreement breaks down at intermediate
coupling. This is due to the use of the grand canonical en-
semble in Ref. 40, as the SEG and CHPS states do not occur
in the FKM without fixed electron concentration.14

We note that the effective Ising Hamiltonian derived for
the SEG phase must always display ferromagnetic order.
That is, within its range of applicability, the Ising interaction
always dominates the magnetic field. Although the SEG ef-
fective Hamiltonian might display adiabatic order at weak
coupling, since crystallization in the FKM occurs in this
limit a different form of the longitudinal field must be used
in Eq. �28�. To use the QPIM condition to determine the
boundary of the SEG phase, we therefore assume that the
range of applicability of the SEG effective Hamiltonian cor-
responds exactly to the extent of ferromagnetic order.
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A further difficulty encountered when applying the FM
condition derived for the QPIM is that the frequency of
the magnetic field in the SEG phase takes two values
�±�2�	nc±Ga /2vF� for each bulk phase �i.e., the empty
and full sections of the lattice�. Although it is not possible to
determine which value is realized for which section, the FM
condition also holds for half spaces and so we choose �+
which gives the observed monotonic dependence of the criti-
cal line on the filling for weak and intermediate coupling.15

As bosonization is quantitatively correct in the weak-
coupling limit, the expressions for �+ will only rigorously
hold for G small as compared to the conduction electron
bandwidth. In this limit segregation occurs for nc→0 and so
�+�Ga /vF; we use this form to determine the weak-
coupling critical line.

Comparing the coefficients in Eq. �28� with those in Eq.
�32� we find after some algebra the condition for segregation

lim
nc→0

Gca

vF
sin��+/2� =

Gca

vF
sin�Gca/2vF� =

2A	

�
��a�
. �33�

We immediately deduce an important feature of the phase
diagram: from general principles we know that ��O�kF

−1� as
nc→0. Since 
��a���−1 for ��a, the denominator of the
RHS of Eq. �33� tends to a constant as �→�. For the ex-
pression to be consistent, we hence require Gca /vF
=constant�0 as nc→0: we recover the result that segrega-
tion occurs at arbitrarily small G in the limit of vanishing
conduction electron concentration.6

For finite filling, we use our estimate for � /a�
t /G to
obtain the critical line Gc at weak to intermediate coupling.
Assuming Gca /vF�	 /2 for small Gc, we linearize the sine
function in Eq. �33�; after some algebra we find

Gc = 4t sin�	nc�
 A	

�
��a�
. �34�

At weak coupling, we have ��a. We may therefore Taylor-
expand the RHS of Eq. �34� in powers of a /�, keeping terms
up to second order. The coefficients in this expansion are
dependent upon the form of ���k� used; for exponential cut-
off we have

Gca/vF � 
4A	2�1 +
a2

2�2� . �35�

Substituting our estimate for � into this equation, we expect
a linear relationship between Gca /vF and Gc. This also holds
at intermediate couplings, as clearly verified by the numeri-
cal results of Ref. 15: we plot Gca /vF as a function of Gc in
Fig. 3 for three values of the fraction of electrons in the
c-electron band r=nc /n=0.75, 0.5, and 0.25. After some re-
arrangement of Eq. �35�, we obtain the general form of the
critical line

Gc�r,n� =
2B�r�sin�	rn�

1 − 2C�r�sin�	rn�
. �36�

The numerical constants B�r� and C�r� are the y intercept
and gradient of the lines in Fig. 3, respectively; they

are related to the fitting parameters in Eq. �33� by
A=B�r�2 /4	2 and � /a=
B�r�t /2C�r�Gc.

From our fit to the lines in Fig. 3 we find the critical lines
for the three values of r

Gc�n�/t =�
0.5666 sin�n	/4�

1 − 1.5212 sin�n	/4�
, r = 0.25,

0.5 sin�n	/2�
1 − sin�n	/2�

, r = 0.5,

0.4112 sin�3n	/4�
1 − 0.8982 sin�3n	/4�

, r = 0.75.

�37�

These three curves, along with the numerical data, are plot-
ted in Fig. 4. The curves track the data very well for both
r=0.25 and r=0.5; for r=0.75, however, there is a significant
divergence between our theoretical prediction and the nu-
merical results as the coupling increases. The r=0.75 curve
has a maximum at n=2/3 �i.e., n0

c =1/2�, but no evidence of
this maximum is found in the weak-coupling numerical re-
sults. Rather, we expect the critical line to continue to di-
verge as half filling is approached. We thus conclude that
there is a change in the form of Gc�n� at intermediate cou-
pling. The numerical analysis of Gruber et al. indicates that
this occurs at approximately G�2.5t,14 which is consistent
with the observed deviation from the weak-coupling critical
line in Fig. 4.

Any deviation from the weak-coupling form �36� for
r=0.25 and r=0.5 is much less obvious. Since the G→�
asymptotic form of Gc�r ,n� stated in Ref. 14 is not the same
as that given by Eq. �36�, we do, however, expect that a
different expression is valid at G� t. A new functional de-
pendence on n in the strong-coupling regime is reasonable
and does not contradict our own analysis, which we empha-
size is only quantitatively accurate for weak coupling. Im-

FIG. 3. �Color online� Dependence of Gca /vF on Gc / t for three
values of the ratio r. The data is taken from Ref. 15.
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portantly, the physical processes driving the segregation will
remain invariant across the phase diagram.

2. Crystalline-homogeneous phase separation

At weak coupling and sufficiently small or large
f-electron concentration, the FKM is rigorously known to be
unstable towards a CHPS state.12 To obtain these states from
the effective Hamiltonian �28� it is necessary to consider the
range of the forwardscattering Ising interaction as extending
beyond the nearest neighbor.

To illustrate the importance of these long-range terms, we
examine the weak-coupling limit of Eq. �28� for the case
nc= 1

2 , nf = 1
4 , which numerical work indicates is in a CHPS.

Of the Ising interaction �20� we keep the nearest-neighbor J1
and next-nearest-neighbor J2 terms. For G� t, we discard
K�j� in the cosine’s argument, leaving a staggered-field
variation. We thus find an effective Hamiltonian of the form

H = − J1�
j

� j
z� j+1

z − J2�
j

� j
z� j+2

z − h�
j

�− 1� j� j
z. �38�

We calculate E= �H� for three situations: �a� the most homo-
geneous phase with period-4 pseudospin unit cell �↑↓ ↓ ↓ 	;
�b� phase separation between the empty phase ��↓	� and the
period-2 phase with unit cell �↑↓ 	; and �c� segregation. We
find the energy per site for each of these configurations

E/N = �− 1
4h , config . �a� ,

− 1
2J2 − 1

4h , config . �b� ,

− 1
2J1 − 1

2J2, config . �c� .

�39�

These expressions hold in the thermodynamic limit N→�.
Equation �39� indicates that a vanishingly small J2 desta-

bilizes configuration �a� toward phase separation. Since at
weak coupling we expect J1�h, segregation will, however,

not occur; instead configuration �b� is the most stable. This is
the weak-coupling phase separation between a crystalline
and the empty phase �CHPS state� found in Ref. 12. Al-
though our analysis does not provide a general condition for
the appearance of the CHPS state, it shows that the physical
origin of these states is the competition between segregation
and crystallization. Note that as with the SEG phase, fixed c-
and f-electron populations are essential for the appearance of
the CHPS state.

The CHPS states in the n�1 FKM is not confined to the
weak-coupling limit of the phase diagram, but are also
present at intermediate and strong coupling.15,16 For G� t
our bosonization approach will at least qualitatively capture
the physics of the FKM: we therefore expect that the com-
petition between segregation and crystallization that we have
identified as the origin of the weak-coupling CHPS will also
be responsible for the intermediate- and strong-coupling
states.

B. The valence transition problem

In contrast to the CP, the VTP has received little attention
in the FKM literature, despite the close relationship between
the two interpretations. In both the CP and the VTP the
f-orbital occupation is a good quantum number, and the
ground state may be defined as the configuration of the f
electrons that minimizes the energy of the c electrons. The
only difference between the CP and the VTP is that in the
former the distribution of the electrons across the orbitals is
fixed, while in the latter the interactions determine the equi-
librium populations.

For given interacting equilibrium populations in the VTP,
the configuration adopted by the f electrons should be the
same as in the CP for the same fixed electron populations. As
discussed in Sec. III B, the first two terms of Eq. �18� deter-
mine the equilibrium distribution of the electrons across the c
and f orbitals. They can be identified as the noninteracting
Hamiltonian and the f-level shift due to the Coulomb repul-
sion. To estimate the electron distribution for finite G we
therefore assume that the distribution of the nN electrons
across the two orbitals in the FKM is the same as in the
system

H = − t�
j

�cj
†cj+1 + H . c . � + �� f + G�n0

c − 1
2�	�

j

nj
f .

�40�

That is, the contribution of the ordering terms in Eq. �18� to
the shift in electron density between the c and f orbitals is
taken to be negligible. This can be easily justified for a ther-
modynamically large system: the difference between the en-
ergy per site of the SEG phase and the homogeneous phases
due to the Ising interaction is of order 1 /N and the average
value of the backscattering longitudinal field across the lat-
tice is vanishing.

We find that for noninteracting c-electron population n0
c

�fixed by the value of � f =eF� the c-electron population in the
interacting system is given by

FIG. 4. �Color online� Dependence of Gc / t on n for three values
of the ratio r. The data is taken from Ref. 15. The critical lines
Gc�n� of best fit are as derived from Fig. 3. For each value of r, the
SEG phase occurs for G�Gc�n�.
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nc =
1

	
arcos�cos�n0

c	� −
G

4t
�2n0

c − 1�� . �41�

In Ref. 15 phase diagrams for the CP in the nc-nf plane at
constant G are presented. For each G the boundary between
the SEG phase and the crystalline or CHPS states is given by
a straight line of the form nc=��1−nf� where � is a constant
determined from the numerical phase diagrams. Using the
fixed electron concentration condition we may rewrite this

nc =
�

1 − �
�1 − n� , �42�

where n=nc+nf is the total electron concentration. Equating
the RHS of Eqs. �41� and �42� we obtain the expression

cos�r0n	� −
G

4t
�2r0n − 1� − cos� 	�

1 − �
�1 − n	� = 0,

�43�

where r0=n0
c /n is the fraction of c electrons in the noninter-

acting system. Fixing r0 and G, the value of n that solves Eq.
�43� gives the maximum filling for which the SEG phase is
stable.

Using this procedure we calculate from the results of Ref.
15 the critical value of n for r0=0.25, 0.5, and 0.75. Proceed-
ing with our analysis as in the CP �Sec. V A 1� we find that
the linear relationship between Gca /vF and Gc is also well
obeyed in the VTP �Fig. 5�. As before, at weak coupling the
critical line Gc�r0 ,n� has the form given by Eq. �36�. In
particular, we find from the linear best fit to the data in Fig.
5 the following expressions:

Gc�n�/t =�
0.389 sin�n	/4�

1 − 1.289 sin�n	/4�
, r0 = 0.25,

0.363 sin�n	/2�
1 − 0.992 sin�n	/2�

, r0 = 0.5,

0.307 sin�3n	/4�
1 − 0.923 sin�3n	/4�

, r0 = 0.75.

�44�

These are illustrated in Fig. 6 along with the critical lines for
the associated r=r0 CP �Eq. �37�	. As in Sec. V A 1, we find
excellent agreement between the data points and the fitted
curves for both r0=0.5 and r0=0.25. Again, however, we find
for r0=0.75 a significant divergence between our theoretical
predictions and the data for higher values of G. The origin of
this discrepancy is presumably the same as in the CP. Note
also that only four numerical values are presented for r0
=0.25: for G�3t the segregated configuration is realized for
all n�1. This is not unexpected, as in this case we have the
smallest n0

c, and thus the largest shifting of the f level for
given n.

As illustrated in Fig. 4, the division of electrons between
the two orbitals in the CP strongly affects the position of the
critical line for segregation: the more f electrons relative to c
electrons, the smaller the value of G required for segregation.
For n0

c �
1
2 , turning on the interaction in the VTP will shift

the f level to a lower energy relative to the c-electron band,
thus causing a transfer of electrons from the c to the f orbit-
als. Accordingly, we find that segregation in the VTP occurs
at a lower value of G than in the r=r0 CP �Fig. 6�. Eventu-
ally, the f level will be shifted below the bottom of the
c-electron band; this is the case for couplings

FIG. 5. �Color online� Dependence of Gca /vF on Gc / t for three
values of the ratio r0 in the VTP. The data is taken from Ref. 15. FIG. 6. �Color online� Dependence of Gc / t on n for three values

of the ratio r for the VTP. The data is taken from Ref. 15. The
critical lines Gc�n� of best fit �thick dashed lines� are as derived
from Fig. 5. For each value of r0, the SEG phase occurs for
G�Gc�n�. The thin dotted lines are the critical lines in the r=r0 CP.
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Gfull �
− 4t�1 − cos�r0n	�	

2n0
c − 1

. �45�

The absence of any c electrons to cause crystallization or
segregation means that any f-electron configuration is the
ground state. For r0=0.25 and n=1 the critical coupling
Gfull�2.34t, explaining the absence of any G�2t data.

Conversely, for � f �0 and hence n0
c �

1
2 , turning on the

interaction will shift the f level to higher energies and empty
the f-electron orbitals. Segregation may not occur in this
case at all, and the large-G configuration is the empty phase.
From our analysis, we estimate that this will be realized for

Gempty �
− 4t�cos�n	� − cos�r0n	�	

2n0
c − 1

. �46�

Note that we assume n�
1
2 . This scenario is strongly sup-

ported by Farkašovský’s numerical study of the n=1 VTP.22

In his � f-G phase diagram, he found that for � f �0 �n0
c �

1
2

�
all electrons occupy the c-orbital states for sufficiently large
G, while for � f �0 �n0

c �
1
2

� the f orbitals become fully occu-
pied as G is increased.

We note in concluding that we have not addressed the
case where the f level does not lie at the Fermi energy in the
noninteracting system. For example, when � f =0 and n�

1
2

the f level will lie a finite energy 2t cos�n	� above eF. On
the basis of our analysis, it appears that a nonzero f popula-
tion will eventually appear as the f level is shifted in the
presence of a finite G. As G is further increased, the
c-electron band is eventually emptied into the f level. Turn-
ing on the interactions, we thus evolve from a state without
any f electrons into a state with all electrons in the f orbitals.
We must regard this result with caution: since bosonization is
an effective field theory for the excitations about the Fermi
energy, it is difficult to include the localized electrons when-
ever � f �eF. In particular, the bosonic wavelength limit �
implies an effective bandwidth cutoff for the excitations
about eF. What happens when � f lies outside of this effective
bandwidth is unclear and we must go beyond the framework
of bosonization to understand this situation. For this reason,
from the point of view of bosonization the VTP is a more
challenging problem than the CP.

VI. EXTENSIONS OF THE FKM

The FKM is often studied in a modified form with the
addition of extra terms to the basic Hamiltonian �1�. The
most common extensions are c-f hybridization,2–4,24,37

f-electron hopping,41,42 correlated c-electron hopping,43 or
the introduction of spin.20,44,45 In the first two cases, the ex-
tension has a dramatic effect upon the physics as the occu-
pation of each localized orbital is no longer a good quantum
number. The CP and VTP results are then applicable only as
limiting behavior and we cannot easily incorporate these ad-
ditional terms into the analysis presented above. As such,
below we will briefly consider several extensions that main-
tain the “classical” nature of the f electrons: intraorbital
nearest-neighbor interactions and the addition of spin. Our
bosonization formalism is very well suited to assessing the

impact of these extensions upon the ground states of the
“bare” FKM. We do not consider the case of correlated
c-electron hopping, as this requires substantial modification
of the work presented above.

A. Nearest-neighbor interactions

Our study of nearest-neighbor interactions is confined to
their effect upon the CP results. The same conclusions also
hold for the VTP so long as the densities are normal ordered.

1. c electrons

We write the nearest-neighbor interaction between the c
electrons

Hcc = Vc�
j

nj
cnj+1

c . �47�

It is sufficient here to examine only the forward-scattering
contributions of this interaction as the Umklapp and back-
scattering contributions are not relevant below half filling.26

Since Hcc therefore only effects the long-wavelength physics
of the FKM, we apply the continuum-limit approximation
and absorb the interaction into a free-boson Hamiltonian

H̃0 =
va

2	
�

j

���x�̃�xj�	2 + ��x�̃�xj�	2� . �48�

The new Bose fields are related to the Vc=0 fields by the
relations

�̃�xj� =
1


K
��xj�, �̃�xj� = 
K��xj� , �49�

v =
vF

K
, �50�

where

K =
1


1 + 2VcvF/�	at2�
. �51�

The details of this rescaling procedure are identical to
the argument for the forward-scattering sector of the
XXZ chain.46 Note that for an attractive interaction
Vc=−	at2 /vF the velocity of the boson modes vanishes: this
indicates the break-down of the bosonization method, as the
Luttinger liquid is unstable towards the clustering of the c
electrons. We may expect the SEG phase to be realized
whenever this condition holds.

The bosonized FKM with the interaction �47� is identical
in appearance to the Vc=0 bosonized Hamiltonian �Eq. �13�	:
the first term in Eq. �13� is, however, replaced by Eq. �48�
and the Bose fields in the other terms are replaced by their
scaled forms �49�. Our analysis of HFKM+Hcc also proceeds
in a similar way to that in Sec. III, although we rotate the
Hilbert space using a different canonical transform

Û = exp�i
Ga
K

	v �
j�

� j
z�̃�xj��� . �52�

As before, we find the effective segregating interaction �20�,
but with the coefficient changed by a multiplicative factor
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G2a2

2	vF
→

G2a2

2	vF

1

1 + 2Vca/	vF
. �53�

As we can see, the effect of a repulsive �attractive� nearest-
neighbor interaction between the c electrons is to suppress
�enhance� the segregating interaction. This conclusion is not
surprising: the interaction �47� rescales the charge compress-
ibility � of the c electrons

� = �0
vFK

v
= �0K2,

where �0 is the compressibility for Vc=0. Repulsive interac-
tions �K�1� reduce the compressibility while attractive in-
teractions �K�1� enhance it. In the SEG phase the density of
the c electrons is enhanced due to their confinement to a
fraction 1−nf of the lattice. As such, a reduced �enhanced�
c-electron compressibility will resist �assist� the formation of
this state.

We can easily judge the effect of Hcc on the position of
the critical line Gc. Following the same arguments as in Sec.
V A 1, we find in the limit nc→0 the asymptotic form

Gc = �vF

a
+

2Vc

	
�
 2	A

�
��a�
. �54�

The term under the square root is constant for small
c-electron fillings; the expression in brackets therefore deter-
mines the small-nc form of the critical line. We thus find that
for Vc�0, the SEG phase is only realized above a finite
Coulomb repulsion even in the limit of vanishing c-electron
concentration. For attractive interactions, however, the sys-
tem is unstable towards segregation for any c-electron filling
such that K−1=0.

2. f electrons

The nearest-neighbor interaction between the f electrons
is given in the pseudospin representation

H f f = Vf�
j

nj
fnj+1

f = Vf�
j

� j
z� j+1

z . �55�

This Ising interaction may be immediately incorporated into
our effective pseudospin model �28�.

Quite clearly, an attractive interaction potential Vf �0 will
make the system unstable towards the SEG phase even for
G=0. Crystallization may still occur, although only at finite
coupling strength. Furthermore, we expect that the SEG
phase will be realized even at half filling for sufficiently
large G. We consider a large-G expansion, where we project
the FKM into a truncated basis excluding simultaneous oc-
cupation of both the c and f orbitals. To first order in t /G we
find the effective strong-coupling Hamiltonian

HSC = �2t2

G
+ Vf��

j

�̃ j
z�̃ j+1

z , �56�

where �̃ j
z= 1

2 �nj
c−nj

f� and the magnetization is fixed at
mz= 1

2 �nc−nf�. The sign of the nearest-neighbor interaction is
ferromagnetic for G / t�−2t /Vf implying the formation of
the SEG phase. Of course, higher-order �at least O�t2 /G2�	

terms complicate this analysis, but by increasing G we can
make their contribution arbitrarily small. These conclusions
have previously been obtained for a half-filled 2D system in
Ref. 47.

More interesting is the case of a repulsive potential
Vf �0. Here Eq. �55� hinders segregation, and for suffi-
ciently strong Vf may suppress it entirely. This is dependent
upon the sign of the nearest-neighbor Ising interaction in the
HFKM+H f f effective pseudospin model: the SEG phase can-
not be realized unless the nearest-neighbor Ising interaction
is ferromagnetic. By equating Eqs. �31� and �55� we imme-
diately find a condition for the appearance of segregation:

G �
2	vFVf

a2
��a�
. �57�

Since for nc�1 we have 
��a���−1�O�kF�, the RHS of
Eq. �57� should be finite at low c-electron filling. The CHPS
states will nevertheless still occur as the range of the inter-
action �20� extends beyond nearest-neighbors, with these
higher-order terms in the pseudospin model remaining unaf-
fected by the addition of H f f. The most important of these
extra terms is the next-nearest-neighbor interaction: if the
condition �57� is not satisfied, this term is the dominant fer-
romagnetic coupling, and hence orders the f electrons into a
single cluster where only every second site is occupied. That
is, we may expect that a large portion of the SEG phase in
the phase diagram Fig. 4 will be replaced by a phase-
separation between the empty and period-2 crystalline con-
figurations.

Numerical results for the FKM with nearest-neighbor
f-electron repulsion confirm this scenario: Gajek and Lemań-
ski have studied the effect of Eq. �55� in the canonical en-
semble for Vf =0.1G.48 For a repulsive potential of this form,
the SEG phase was not realized at any coupling strength or
electron filling. For nc�1, the f electrons indeed phase
separate into the period-2 crystalline and empty configura-
tions. Interestingly, for the n0

c =n0
f case presented, phase sepa-

ration is realized only for n�0.4. This indicates a significant
truncation of the range of the segregating interaction with
increasing filling.

B. Spin

To use the FKM as a model of any realistic condensed-
matter system, we are required to relax the assumption of
spinless electrons. Simply adding a spin index to the fermi-
onic operators in Eq. �1� is, however, not enough: we must
take into account the orbital structure of the localized states.
Because of the small radius of the f orbitals, the intraionic
correlations are very strong, prompting us to introduce a
Coulomb repulsion U between the f electrons. We thus write

H = − t�
j

�
�

�cj,�
† cj+1,� + H . c . � + U�

j

nj,↑
f nj,↓

f

+ G�
j

�
�,��

nj,�
f nj,��

c . �58�

We consider here only the limit U=� where double occupa-
tion of an f orbital is excluded from the physical subspace.

CHARGE ORDER IN THE FALICOV-KIMBALL MODEL¼ PHYSICAL REVIEW B 73, 235120 �2006�

235120-13



This situation has been numerically studied by Farkašovský
for the fixed total electron concentration n=1 in both the CP
and VTP interpretations.44 Since double occupation is forbid-
den, we may represent the f operators in terms of spinless
fermion �holon� operators ej:

49

�
�

nj,�
f = �1 − ej

†ej� . �59�

That is, at any site without a f electron we find a spinless
hole. We hence rewrite Eq. �58�

H = − t�
j

�
�

�cj,�
† cj+1,� + H . c . � + G�

j
�
�

�1 − ej
†ej�nj,�

c .

�60�

The f-orbital occupation is thus described by spinless fermi-
ons as in the usual FKM; the condition for fixed total elec-
tron concentration is however written n= �1/N�� j�1− �ej

†ej�
+���nj,�

c �	. The spin modes of the c electrons cannot be re-
moved as for the f electrons.

The bosonization procedure outlined in Sec. II requires
little modification to include the spin degrees of freedom. We
define boson fields in terms of the density fluctuations 
�,��k�
in each spin channel

���xj� = − i�
�

�
k�0

	

kL

�,��k����k�e−ikxj , �61�

���xj� = i�
�

�
k�0

�
	

kL

�,��k����k�e−ikxj . �62�

Boson fields with different spin-indices commute; fields with
the same spin indices obey the commutation relations �7� and
�8�. It is convenient to split the bosonic representation into
charge and spin sectors, defined, respectively, by the linear
combinations

�c�xj� =
1

2

��↑�xj� + �↓�xj�	 , �63�

�s�xj� =
1

2

��↑�xj� − �↓�xj�	 �64�

and similarly for the � fields. After some algebra we find the
bosonic representation for the electron density operator

�
�

nj,�
c = n0

c −

2a

	
�x�c�xj�

+
4Aa

�
cos�
2�s�xj�	cos�
2�c�xj� − 2kFxj	 ,

�65�

where kF=	nc /2a. Note that the forwardscattering contribu-
tion �second term on the RHS� is very similar to the equiva-
lent term in the spinless case Eq. �11�; the backscattering
contribution �third term on RHS�, however, involves both the
spin- and charge-sector fields.

Again we adopt a pseudospin representation for the
f-orbital occupation: we define � j

z= 1
2 −ej

†ej, and so as before

spin-↑ corresponds to an occupied orbital and spin-↓ to an
empty site. Following the same basic manipulations as for
the spinless case, we obtain the bosonized Hamiltonian

H =
vFa

2	
�

�=c,s
�

j
����x���xj�	2 + ��x���xj�	2�

+ G�n0
c − 1

2��
j

� j
z −


2Ga

	
�

j

� j
z�x�c�xj�

+
4GAa

�
�

j

� j
zcos�
2�s�xj�	cos�
2�c�xj� − 2kFxj	 .

�66�

Excluding the last term, Eq. �66� is identical to its spinless
equivalent. Importantly, the forwardscattering interaction
�second last term� remains in the same form as in the spinless
case. It follows that we can remove this term by suitable
shifting of the charge-sector boson frequencies. We therefore
apply the canonical transform

Û = exp�i

2Ga

	vF
�
j�

� j�
z �c�xj��� . �67�

After some algebra, we obtain the transformed Hamiltonian

Û†HÛ =
vFa

2	
�

�=c,s
�

j

���x���xj�	2 + ��x���xj�	2�

+ G�n0
c − 1

2��
j

� j
z −

G2a2

	vF
�
j,j�

� j
z
��xj − xj��� j�

z

+
4GAa

�
�

j

� j
z

�cos�
2�s�xj�	cos�
2�c�xj� − 2K�j� − 2kFxj	 ,

�68�

where K�j� is defined as in Eq. �19�. Since the c-electron
spin modes do not contribute to the physics, we may replace
�s by its noninteracting expectation value, i.e., �s= ��s�=0.
Substituting this into Eq. �66� we obtain the same effective
Hamiltonian as for the spinless FKM. This allows us to draw
an important conclusion: for the spinful model �60� with f-
and c-electron concentrations nf and nc, respectively, the
configuration adopted by the f electrons is identical to that
adopted by the spinless f electrons in Eq. �1� with f- and
c-electron concentrations nf and 1

2nc, respectively. This ex-
plains the appearance of phase separation and segregation in
the numerical study of Eq. �60� at nf +nc=1.44

The obvious extension of Eq. �58� would be the inclusion
of a Kondo-like exchange between the c and f electrons on
each site j. This model may be useful for understanding the
properties of the manganites, which are known to display a
phase separated state.50 Such a model could display an inter-
esting coexistence of spin and charge order; this problem
remains to be fully addressed.45,51
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VII. CONCLUSIONS

In this paper we have presented a novel approach to the
study of charge order in the FKM below half filling. We used
a bosonization method that accounted for the nonbosonic
density fluctuations of the c electrons below a certain length-
scale ��a; we identified � as characterizing the delocaliza-
tion of the c electrons. This delocalization of the c electrons
over several lattice sites favors empty underlying f orbitals
in order to minimize the interorbital Coulomb repulsion. We
demonstrated in Sec. III A how this directly leads to effec-
tive attractive interactions between the f electrons, and hence
the SEG phase. Using a canonical transform, we obtained an
explicit form for the segregating interaction �20�. Since the
canonical transform was carried out to infinite order, this
expression is nonperturbative. The canonical transform is a
generalization of the transform used in Schotte and Schotte’s
solution of the XEP.28 We argued in Sec. III A 1 for a parallel
between Eq. �20� and the double-exchange interaction in the
KLM, based upon the similar orthogonality catastrophe
physics in the single-impurity limit of both models.

The canonical transform permitted a decoupling of the c
and f electrons, yielding an effective Ising model �Eq. �28�	
for the configuration of the f electrons. This utilizes a
pseudospin-1

2 representation for the occupation of the local-
ized orbitals. This effective model Heff clearly revealed the
competition between the backscattering crystallization and
the forwardscattering segregation. Heff correctly predicted
the structure of the CP phase diagram: we obtained an ex-
pression for the critical coupling required for segregation
which is in good agreement with the numerical results. We
also demonstrated that the effective model could successfully
account for the instability towards phase separation between
a crystalline and the empty phase in the weak-coupling
FKM. Our approach was not limited to the CP, and in Sec.
V B we considered the phase diagram of the VTP. We found
that the Coulomb repulsion shifted the bare f level, causing a
“classical” valence transition. The sign of the f-level shift is
highly dependent upon the band structure. Finally, we dis-
cussed the impact of intraorbital nearest-neighbor interac-
tions �Sec. VI A� and the introduction of spin �Sec. VI B� on

the charge order found in the spinless model.
Although the bosonization method is primarily relevant to

1D systems, our approach indicates an interesting route to
the study of the model in higher dimensions. Recall that we
explain the phase diagram in terms of a competition between
the forwardscattering �segregation� and the backscattering
�crystallization� of the itinerant electrons off the localized
orbitals. This completely captures the 1D FKM’s behavior
due to the unique features of the 1D particle-hole excitation
spectrum, viz. the restriction of the low-energy spectrum to
relative wave vector difference 
q 
 �0 �forward-scattering�
and 
q 
 �2kF �backscattering�. For D�1 the low-energy
spectrum is very different, with a continuum of values
0� 
q 
 �2kF possible. Nevertheless, dominant forwardscat-
tering and backscattering processes can still be identified
through divergences in the Lindhard function of the itinerant
electrons. It might therefore be possible to analyze the model
in higher dimensions using a similar decomposition into for-
wardscattering and backscattering processes. This is consis-
tent with the similarity between the phase diagrams in
D=1 and D�1.19,20

Prospects for future work in 1D are also promising. We
have already outlined an application of our method to the
nontrivial extension of Eq. �1� by the addition of an on-site
hybridization potential, the so-called quantum FKM
�QFKM�.24 The crystallization is heavily suppressed in the
QFKM, as the dominant feature of the c-electron behavior at
weak coupling is the resonant scattering off the f orbitals
�mixed valence�. In contrast, segregation occurs in the
QFKM, as the responsible orthogonality catastrophe physics
remains intact with the introduction of the hybridization
�Sec. III A 1�. We expect dynamic charge-screening pro-
cesses �in analogy to the spin-screening in the KLM�, with
important and interesting consequences that we will fully
explore in a forthcoming publication.37
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