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We investigate the role of disorder in the Mott-Hubbard transition based on the slave-rotor representation of
the Hubbard model, where an electron is decomposed into a fermionic spinon for a spin degree of freedom and
a bosonic rotor �chargon� for a charge degree of freedom. In the absence of disorder, the Mott-Hubbard
insulator is assumed to be the spin liquid Mott insulator in terms of gapless spinons near the Fermi surface and
gapped chargons interacting via U�1� gauge fields. We found that the Mott-Hubbard critical point becomes
unstable as soon as disorder is turned on. As a result, a disorder critical point appears to be identified with the
spin liquid glass insulator to the Fermi liquid metal transition, where the spin liquid glass consists of the U�1�
spin liquid and the chargon glass. We expect that glassy behaviors of charge fluctuations can be measured by
the optical spectra in the insulating phase of an organic material �− �BEDT-TTF�2Cu2�CN�3. Furthermore,
since the Mott-Anderson critical point depends on the spinon conductivity, universality in the critical exponents
may not be found.
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I. INTRODUCTION

The metal-insulator transition �MIT� is one of the most
studied subjects in condensed matter physics. However, even
the existence of the MIT is not convincingly proven at zero
temperature in two spatial dimensions ��2+1�D�, especially
when both interaction and disorder coexist.1 The Mott-
Hubbard MIT has been claimed to occur at the critical inter-
action strength in the Hubbard model without disorder.2 On
the other hand, it is believed that the Anderson MIT does not
arise in two spatial dimensions for the case of noninteracting
electrons.3 The common belief seems to be that the MIT in
the presence of both interaction and disorder would not ap-
pear in �2+1�D because both interaction and disorder in-
crease an insulating tendency. Recent experiments challenge
this belief.4 In a Si metal-oxide-semiconductor field-effect
transistor, and other high mobility semiconductor devices,
unexpected MITs have been reported although these transi-
tions are questioned to be truly quantum phase transitions
owing to the temperature ranges in these experiments.5

In the present paper, we investigate the role of disorder in
the Mott-Hubbard MIT based on the Hubbard model. The
main questions in this paper are �i� the nature of the insulat-
ing phase and �ii� the nature of the MIT, where the nonmag-
netic insulating phase is assumed to be a spin liquid state
with a Fermi surface in the absence of disorder. The core in
these questions is the fate of gapped charge fluctuations in
the Mott-Hubbard insulator when disorder is introduced.

Using the slave-rotor representation of the Hubbard
model,6 we obtain an effective field theory for the MIT in the
presence of disorder, given by a U�1� gauge theory in terms
of fermionic spinons and bosonic collective excitations inter-
acting via U�1� gauge fields.7,8 Disorder couples to charge
fluctuations, and affects their dynamics severely. Using a
renormalization-group �RG� analysis, we argue that the
Mott-Hubbard MIT turns into the Mott-Anderson MIT since
the pure MIT critical point becomes unstable as soon as dis-
order is turned on, resulting in a nontrivial stable fixed point
with a finite disorder. Accordingly, the resulting insulating

phase with disorder is expected to be a Bose glass state,
where gapped charge excitations in the Mott-Hubbard insu-
lator are gapless in the presence of disorder. As a result, the
U�1� spin liquid state would coexist with the Bose glass
phase of charge fluctuations, thus called the spin liquid
charge glass.

The present study is expected to apply to geometrically
frustrated lattices such as an organic material �-�BEDT-
TTF�2Cu2�CN�3 since the U�1� spin liquid Mott insulator is
believed to appear in this material.7 Our study implies that
although spin dynamics is little affected by weak disorder,
charge dynamics is severely modified from the Bose-Mott
insulator to the Bose glass. This will be measured by charge
spectra in optical conductivity experiments.

II. SLAVE-ROTOR THEORY WITH DISORDER

A. Formulation

We consider the Hubbard model with disorder

H = − t�
ij�

ci�
† cj� + u�

i
��

�

ci�
† ci��2

− �
i

vi��
�

ci�
† ci�� ,

�1�

where t is a hopping integral, u the strength of on-site Cou-
lomb interaction, and vi a random potential introduced by
disorder.

A usual methodology treating the Hubbard u term is a
Hubbard-Stratonovich �HS� transformation. Using the coher-
ent state representation, and performing the HS transforma-
tion, we obtain the partition function

Z =� D�ci�,�i�exp	−� d�
�
i�

ci�
* ��� − ��ci� − t�

ij�

ci�
* cj�	

+ �
i
� 1

4u
�i

2 − �i�i + vi��
�

ci�
* ci���� , �2�

where �i is an order parameter associated with a charge den-
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sity wave �CDW�, and � is the chemical potential of elec-
trons. Physically, the �i field corresponds to an effective
electric potential. In the usual mean-field manner, the CDW
order parameter is given by −i�̄i=2u��ci�

* ci��.
We consider the gauge transformation for an electron field

ci� = e−i�i f i�. �3�

Here e−i�i is assigned to be an annihilation operator of an
electron charge, and f i� is an annihilation operator of an
electron spin. In this paper, we call e−i�i and f i� chargon and
spinon, respectively. Inserting this decomposition into Eq.
�2�, we obtain

Z =� D�f i�,�i,�i�

�exp	−� d�
�
i�

f i�
* ��� − � − i���i�f i�

− t�
ij�

f i�
* ei��i−�j�f j�

+ �
i
� 1

4u
�i

2 − �i�i + vi��
�

f i�
* f i���� . �4�

Performing the HS transformation �1/4u��i
2→uLi

2+ iLi�i,
and shifting �i into �i→�i+ ivi−���i, we obtain the follow-
ing expression for the partition function:

Z =� D�f i�,�i,�i,Li�e−�d�L,

L = �
i�

f i�
* ��� − ��f i� − t�

ij�

f i�
* ei��i−�j�f j�

+ �
i
	uLi

2 − iLi����i − ivi� + i�i�Li − �
�

f i�
* f i��� .

�5�

In this expression, the CDW order parameter �i plays the
role of a Lagrange multiplier field to impose the rotor con-
straint Li=��f i�

† f i�. Interestingly, the �i field is canonically
conjugate to the charge density Li=��f i�

† f i� as shown by the
coupling term −iLi���i. This allows us to interpret the e−i�i

operator as an annihilation operator of an electron charge. It
should be noted that Eq. �5� is just another representation of
Eq. �1� via the transformation Eq. �3�. Integrating over the
potential field �i and the density field Li in Eq. �5�, and
performing the gauge transformation Eq. �3�, one can re-
cover the Hubbard model Eq. �1�.

Integrating out the density variable Li, Eq. �5� reads

Z =� D�f i�,�i,�i�e−�d�L,

L = �
i�

f i�
* ��� − � − i�i�f i� − t�

ij�

f i�
* ei��i−�j�f j�

+
1

4u
�

i

����i − �i − ivi�2. �6�

Note that the random potential vi couples to the charge den-
sity represented by ���i. Decomposing the hopping term by
using the HS transformation, one can obtain the effective
Lagrangian

L = L0 + Lf + L�,

L0 = t�
ij�

�	ij
ij
* + 
ij	ij

* � ,

Lf = �
i�

f i�
* ��� − � − i�i�f i� − t �

ij��
�f i�

* 
ij
* f j� + f j�

* 
ij f i�� ,

L� =
1

4u
�

i

����i − �i − ivi�2 − t�
ij�

�ei�i	ije
−i�j + ei�j	ij

* e−i�i� ,

�7�

where 	ij and 
ij are spinon and chargon hopping order pa-
rameters, respectively. A remark on notation: each nearest-
neighbor bond is counted only once in ij�, whereas ij im-
plies a sum over all i and all the nearest-neighbor sites j with
respect to i.

A saddle-point analysis results in the self-consistent equa-
tions

��
�

f i�
* f i�� = 1,

− i� = − i���i� + 2u��
�

f i�
* f i�� = 2u ,

	ij = ��
�

f i�
* f j��, 
ij = ei�je−i�i� . �8�

Considering low-energy fluctuations around this saddle
point,9 one can set

	ij = 	eiaij, 
ij = 
eiaij, �i = � + ai�, �9�

where 	= ���f i�
* f j��� and 
= �ei�je−i�i�� are amplitudes of

the hopping order parameters, and aij and ai� are spatial and
time components of U�1� gauge fields.

Inserting Eq. �9� into Eq. �7�, we find an effective U�1�
gauge theory for the Mott-Anderson transition,

Lf = �
i�

f i�
* ��� − iai��f i� − t
 �

ij��
�f i�

* e−iaij f j� + H.c.� ,

L� =
1

4u
�

i

����i − ai� − ivi�2 − 2t	�
ij�

cos�� j − �i − aij� ,

�10�

where the mean-field potential � cancels the chemical poten-
tial at half-filling in the fermion Lagrangian, and the Berry
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phase term SB=−i�i�0

d����i resulting from the mean-field

potential � has no physical effects at half-filling in the boson
Lagrangian, thus safely ignored.10

B. Discussion in the mean-field level

It is interesting to note that spinon dynamics is decoupled
to chargon dynamics in the mean-field scheme ignoring
gauge fluctuations, governed by

Lf = �
i�

f i�
* ��f i� − t
 �

ij��
�f i�

* f j� + H.c.� ,

L� =
1

4u
�

i

����i − ivi�2 − 2t	�
ij�

cos�� j − �i� . �11�

Since the chargon Lagrangian corresponds to the quantum
XY model in this level of approximation, the coherent-
incoherent transition of the phase fields occurs in the absence
of disorder, belonging to the XY universality class at zero
temperature. The incoherent phase with charge gap but no
spin gap is identified with the Mott-Hubbard insulator of a
spin liquid with a Fermi surface. In the spin liquid, there is
no coherent quasiparticle peak at zero energy, and only an
incoherent hump is observed near the correlation energy
±u /2.6 On the other hand, the coherent phase is understood
as a Fermi liquid with a coherent quasiparticle peak at zero
energy.6

Realizing that the quantum XY model L� in Eq. �11� is
equivalent to the boson Hubbard model for critical phenom-
ena, one can find its effective field theoretic action given by11

S =� d�d2r	�����2 + m�
2 ���2 +

u�

2
���4 + v�†��� + w���2� .

�12�

Here ��ei�� is the effective chargon field with its mass
m�

2 �u / t− �u / t�c, where �u / t�c is the critical strength of local
interactions, associated with the Mott transition in the mean
field level.6 u� is a phenomenologically introduced parameter
for local chargon interactions. v is a Gaussian random vari-
able resulting from the Berry phase contribution, and w is a
Gaussian random mass originating from the random chemi-
cal potential in the boson Hubbard model, where they satisfy
v�r��=0, v�r�v�r���=V��r−r�� and w�r��=0, w�r�w�r���
=W��r−r��, respectively.

To take into account the random variables, one can utilize
the standard replica method, then obtain

Z =� D�le
−S,

S = �
l
� d�d2r	����l�2 + m�

2 ��l�2 +
u�

2
��l�4�

− �
l,l�
� d�d��� d2r

V

2
��l�

† ���l����l���
† ����l����

− �
l,l�
� d�d��� d2r

W

2
��l��2��l����

2, �13�

where l , l�=1, . . . ,N are replica indices, and the limit of N
→0 is performed in the final stage of calculations.

The pure Mott critical point �m�
2*=0, u�

* �0, V*=0, and
W*=0� can be easily checked to be unstable against the pres-
ence of disorder �W�0�. In Eq. �13�, the bare scaling dimen-
sion of � is given by ���=L1/2 owing to the quadratic deriva-
tive in the kinetic energy term, where L is a length scale.
Thus, we obtain �W�=L2, indicating that disorder is relevant
at the pure Mott critical point. �V�=L0 is obtained, thus mar-
ginal. In the 1/N� approximation where N� is the flavor
number of boson fields, it was shown that V is irrelevant and
W is relevant so that the RG flow goes to a strong disorder
regime.12 But, recent RG calculations exhibit a weak disor-
der fixed point in the case of V=0, identified with the Bose
glass to superfluid transition instead of the Bose-Mott insu-
lator to superfluid transition.13 The weak disorder fixed point
can also be shown to exist in the dual vortex formulation,
where the quantum XY model is mapped into the scalar
quantum electrodynamics in �2+1�D �QED3� in terms of
vortices interacting via vortex gauge fields. A random mass
term for the vortices is also induced by disorder, making
unstable the pure Mott critical point associated with the
Bose-Mott insulator to superfluid transition. A stable disorder
fixed point appears to be identified with the Bose glass to
superfluid transition in the dual formulation.14 In this respect,
the spin liquid Mott insulator turns into the spin liquid Bose
glass in the mean-field level.

Beyond the mean-field level, dynamics of spinons and
chargons is coupled via U�1� gauge fluctuations. In this case,
several important issues arise even in the absence of disorder.
One can doubt the stability of the spin liquid phase against
U�1� gauge fluctuations, especially instanton excitations al-
lowed by the compactness of the U�1� gauge field. Recently,
the present author revisited the confinement-deconfinement
problem in the presence of the Fermi surface, and proposed
the stability of the spin liquid phase when the spinon con-
ductivity is sufficiently large.15 In addition, the XY transition
nature in the mean-field level without disorder should be
modified by spinon excitations. Especially, gapless spinon
excitations result in dissipative dynamics of the U�1� gauge
field. These damped gauge fluctuations are expected to turn
the XY transition into the other. Furthermore, the presence of
disorder makes the MIT much more complex.

III. RENORMALIZATION-GROUP ANALYSIS

A. Boson-only effective action

To investigate the role of spinon excitations in the
coherent-incoherent transition of chargon fields, we obtain
the effective chargon-gauge action in the continuum limit by
integrating out spinons in Eq. �10�,

Seff =� d�d2r	 1

4u
���� − a� − iv�2 − 2t	 cos��� − a��

+
1



�
n

� dqr
1

2
a��qr,in�D��

−1�qr,in�a��− qr,− in� ,

�14�

where D���qr , in� is the renormalized gauge propagator,
given by
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D���qr,in� = ���� −
q�q�

q2 �D�qr,in� ,

D−1�qr,in� = D0
−1�qr,in� + ��qr,in� . �15�

Here D0
−1�qr , in�= �qr

2+n
2� /g2 is the bare gauge propagator

given by the Maxwell gauge action, resulting from integra-
tion of high-energy fluctuations of spinons and chargons. g is
an internal gauge charge of the spinon and chargon.
��qr , in� is the self-energy of the gauge field, given by the
correlation function of spinon charge �number� currents.
Since the current-current correlation function is calculated in
the noninteracting fermion ensemble, its structure is well
known,16,17

��qr,in� = ��qr��n� + �qr
2. �16�

Here the spinon conductivity ��qr� is given by ��qr�
�k0 /qr in the clean limit while it is ��qr���0=k0l in the
dirty limit, where k0 is of order kF �Fermi momentum�, and l
the spinon mean free path determined by disorder scattering.
The diamagnetic susceptibility � is given by ��mf

−1, where
mf ��t
�−1 is the band mass of spinons. The frequency part
of the kernel ��q , in� shows the dissipative propagation of
the gauge field owing to particle-hole excitations of spinons
near the Fermi surface.

Recently, the present author reinvestigated the Mott-
Hubbard MIT based on the effective chargon-gauge action
Eq. �14� without disorder.8 In this study, we found that dis-
sipative gauge fluctuations result in a dissipative critical
point, depending on the spinon conductivity �0 that deter-
mines the strength of dissipation. In the limit of �0→� iden-
tified with a perfect metal of spinons, gauge fluctuations are
completely screened by spinon excitations, thus safely ig-
nored. The resulting chargon action is nothing but the XY
Lagrangian, yielding the XY transition. On the other hand, in
the limit of �0→0 considered as an insulator of spinons,
only the Maxwell gauge action is expected to appear from
high-energy contributions of spinons and chargons. The re-
sulting chargon-gauge action coincides with the scalar
QED3, yielding the inverted XY �IXY� transition18 owing to
gauge excitations. Varying the spinon conductivity, these two
limits would be connected.

Emergence of the dissipative charged fixed point can be
easily understood from the effective gauge-only action at the
critical point. Integrating over critical chargon fluctuations in
Eq. �14�, the critical gauge action can be obtained in a highly
schematic form at the critical point

Sg =
1



�
n

� d2qr
1

2
aT�qr,in���qr,in�aT�− qr,− in� ,

where aT�qr , in� represent the transverse components of the
gauge fields. The gauge kernel ��qr , in� is given by

��qr,in� =
N�

8
�qr

2 + n
2 + �0�n� ,

where N� is the flavor number of the chargon field, here N�

=1. The first term results from critical chargon fluctuations
while the second originates from gapless spinon excitations
near the Fermi surface. This gauge action can be easily
checked to be scale-invariant at the tree level, giving the IXY
fixed point in the �0→0 limit and the XY one in the �0
→� limit. It is important to notice that the critical gauge
action is well defined for any values of the spinon conduc-
tivity, and regularly linked as a function of �0. Thus, the
spinon contribution characterized by the spinon conductivity
�0 connects these two fixed points smoothly. A finite conduc-
tivity causes a dissipative critical point between the XY and
IXY fixed points. In the present paper, we examine the role
of disorder in the dissipative fixed point.

Before closing this section, we summarize the effective
boson-only action depending on the spinon conductivity �0
in Table I.

B. Dual vortex action with disorder

Disorder effects produce random Berry phase to chargon
fields. Because the Berry phase term leads to a complex
phase factor to the partition function of Eq. �14�, it is not
easy to handle the partition function in the chargon represen-
tation. Duality transformation is generally performed to treat
the Berry phase term.19 The dual vortex action of Eq. �14� is
obtained to be

Sv =� d�d2r	���� − ic����2 + mv
2���2 +

uv

2
���4+ u�� � c��

2

+
1

4t	
�� � c�r

2 − v�� � c�� − ia��� � c���
+

1



�
n

� dqr
1

2
a��qr,in�D��

−1�qr,in�a��− qr,− in� .

�17�

Here � is a vortex field and c� is a vortex gauge field. mv is
a vortex mass, given by mv

2 ��u / t�c−u / t with the mean-field

TABLE I. Effective action depending on the spinon conductivity.

�0→� 0��0�� �0→0

Spinon perfect metal Spinon metal Spinon insulator

Effective chargon action XY QED3+spinon-gauge correction QED3

Dual vortex action QED3 QED3+spinon-gauge correction XY
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MIT critical point �u / t�c, and uv a phenomenologically intro-
duced parameter for local interactions between vortices. The
random potential v plays the role of random magnetic fields
in vortices.

Since Eq. �17� is quadratic in gauge fluctuations a�, one
finds the effective vortex-gauge action by performing the
Gaussian integration for the gauge fields a�,

Zv =� D��,c��e−Sv,

Sv =� d�d2r	���� − ic����2 + mv
2���2 +

uv

2
���4

+ u�� � c��
2 +

1

4t	
�� � c�r

2 − v�� � c���
+� d�d�1d2rd2r1

�
1

2
c��r,��K���r − r1,� − �1�c��r1,�1� , �18�

where the renormalized gauge propagator K���r−r1 ,�−�1� is
given by an energy-momentum space

K���qr,in� = ���� −
q�q�

q2 �K�qr,in� ,

K�qr,in� =
qr

2 + n
2

�qr
2 + n

2�/g2 + ��qr��n� + �qr
2

�
qr

2 + n
2

�qr
2 + n

2�/ḡ2 + ��qr��n�
. �19�

Here ḡ is a redefined variable including the susceptibility. In
the following, we consider dirty cases characterized by
��qr�=�0.

In order to take into account the random potential by dis-
order, we use the replica trick to average over disorder. The
random magnetic field v in the vortex action Eq. �18� would
cause

− �
l,l�
� d�d�1� d2r

I

2
�� � cl���� � cl���1

for the Gaussian random potential satisfying v�r��=0 and
v�r�v�r1��=I��r−r1� with the strength I of the random po-
tential. However, inclusion of only this correlation term is
argued to be not enough for disorder effects. Because the
gauge-field propagator has off-diagonal components in rep-
lica indices, the vortex-gauge interaction of the order I2ev

4

generates a quartic term including the couplings of different
replicas of vortices even if this term is absent initially.14 Here
ev is a vortex charge. The resulting disordered vortex action
is obtained to be

Zv =� D��l,c�l�e−Sv,

Sv = �
l
� d�d2r	���� − ic�l��l�2 + mv

2��l�2 +
uv

2
��l�4

+ u�� � cl��
2 +

1

4t	
�� � cl�r

2�
+ �

l
�
n

� dqr

�
1

2
c�l�qr,in�K���qr,in�c�l�− qr,− in�

− �
l,l�
� d�d�1� d2r

W

2
��l��2��l��1

�2

− �
l,l�
� d�d�1� d2r

I

2
�� � cl���� � cl���1

�20�

with W�0. The correlation term induced by disorder

− �
l,l�
� d�d�1� d2r

W

2
��l��2��l��1

�2

has the same form as the term resulting from a random mass
term. Equation �20� is our starting action for studying the
role of disorder in the Mott-Hubbard MIT.

C. Renormalization-group analysis

We perform an RG analysis for Eq. �20�. Anisotropy in
the Maxwell gauge action for the vortex gauge field is as-
sumed to be irrelevant, and only the isotropic Maxwell gauge
action is considered by replacing u ,1 /4t	 with 1/ �2ev

2�,
where ev is a vortex charge. In the limit of small anisotropy,
the anisotropy was shown to be irrelevant at the one-loop
level.14 Furthermore, the correlation term between random
magnetic fluxes is also ignored. In the small I limit, this term
was shown to be exactly marginal at the one-loop level.14 To
address the quantum critical behavior at the Mott transition,
we introduce the scaling r=elr� and �=el��, and consider the
renormalized theory at the transition point mv

2 =0,

Sv = �
l
� d��d2r�	Z������ − ievc�l��l�2 + Zu

uv

2
��l�4

+
Zc

2
��� � cl�2�

− �
l,l�
� d��d�1�� d2r�ZW

W

2
��l��2��l��1

�2, �21�

where Z�, Zu, Zc, and ZW are the renormalization factors
defined by

� = e−�1/2�lZ�
1/2�r, c� = e−�1/2�lZc

1/2c�r,

ev
2 = e−lZc

−1evr
2 , uv = e−lZuZ�

−2uvr,
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W = e−2lZWZ�
−2Wr. �22�

In the renormalized action Eq. �21�, the subscript r implying
“renormalized” is omitted for a simple notation.

Evaluating the renormalization factors at the one-loop
level, the RG equations are expected to be13,14,18,20,21

dev
2

dl
= ev

2 − �� +
�

�0
�ev

4,

duv

dl
= uv + �h��0,ev

2�ev
2 + �W�uv − �uv

2 − g��0,ev
2�ev

4,

dW

dl
= 2W + �h��0,ev

2�ev
2 − �uv�W + �W2. �23�

Here � ,� ,� ,� ,� ,� are positive numerical constants, and
h��0 ,ev

2� ,g��0 ,ev
2� are analytic and monotonically increasing

functions of �0, as will be explained below.
The first RG equation for the vortex charge can be under-

stood in the following way. Integrating out critical vortex
fluctuations, we obtain the singular contribution for the ef-
fective gauge action,

Sc =
1



�
n

� d2qr
1

2
c��qr,in�����qr,in�c��− q,− in� ,

����qr,in� = ���� −
q�q�

q2 ���qr,in� ,

��qr,in� =
Nv

8
�qr

2 + n
2 + K�qr,in�

�
Nv

8
�qr

2 + n
2 +

qr
2 + n

2

�0�n�
,

where Nv is the flavor number of the vortex field, here Nv
=1. The first term in the kernel ��qr , in� results from the
screening effect of the vortex charge via vortex polarization,
causing the −�ev

4 term in the RG equation, while the second
originates from that via spinon excitations, yielding the
−�� /�0�ev

4 term. The first ev
2 term in the RG equation denotes

the bare scaling dimension of the vortex charge in �2+1�D.
We note that the above critical gauge action results in the
relativistic dispersion �qr.

For the second and third RG equations, unfortunately, we
do not know the exact functional forms of h��0 ,ev

2� and
g��0 ,ev

2� owing to the complexity of the gauge kernel. Ow-
ing to the spinon contribution K�qr , in� �Eq. �19��, the ker-
nel of the gauge propagator �c��,

Dc�qr,in� =
1

qr
2 + n

2 + ev
2K�qr,in�

�
�0�n�

�qr
2 + n

2��ev
2 + �0�n��

,

should be utilized instead of the Maxwell propagator in cal-
culating one-loop diagrams. Note the dependence of the vor-
tex charge ev

2 in the effective gauge propagator. This gives
the dependence of the vortex charge to the analytic functions
h��0 ,ev

2� and g��0 ,ev
2�. Although the exact functional forms

are not known, the limiting values of these functions can be
found.

1. �0\�

In the limit of �0→�, the gauge kernel is reduced to the
Maxwell propagator

Dc�qr,in� =
1

�qr
2 + n

2�

because gauge fluctuations a� are completely screened via
spinon excitations in the perfect spinon metal ignored, and
the resulting chargon action is nothing but the quantum XY
model, causing the scalar QED3 as an effective vortex-gauge
action. See Table I. Thus, h��0→ � ,ev

2�→c1 and g��0

→ � ,ev
2�→c2 are obtained, where c1 and c2 are positive nu-

merical constants. Then, Eqs. �23� become the RG equations
of the scalar QED3 with a random mass term

dev
2

dl
= ev

2 − �ev
4,

duv

dl
= �1 + c1ev

2 + �W�uv − �uv
2 − c2ev

4,

dW

dl
= �2 + c1ev

2 − �uv�W + �W2. �24�

These are formally the same as the RG equations studied in
Ref. 14, where the existence of the weak disorder fixed point
was nicely discussed, guaranteeing the presence of the Mott-
Anderson MIT.

In the absence of disorder �W*=0�, a stable charged criti-
cal point �ev

*2�0� is expected to appear, associated with the
Mott insulator to superfluid transition, although there is a
delicate issue about the existence of the charged fixed point
when the flavor number of complex matter fields is one,
corresponding to the superconducting transition. This issue is
well discussed in Ref. 18. In this paper, we assume the exis-
tence of the charged Mott critical point. This fixed point
becomes unstable as soon as disorder is turned on, as shown
in the third RG equation for W. A nontrivial stable fixed
point is found with a finite disorder �W*�0�, identified with
the Bose glass to superfluid critical point.14

2. �0\0

In the spinon insulator of �0→0, the chargon-gauge ac-
tion is given by the scalar QED3 with disorder, as discussed
before. The resulting vortex action becomes the �4 model
with a random mass term since vortex gauge fluctuations c�

are gapped owing to the presence of long-range interactions
mediated by the U�1� gauge fields a�, thus ignored in the low
energy limit. This coincides with the fact that the gauge ker-
nel Dc�qr , i� vanishes. As a result, h��0→0,ev

2�→0 and
g��0→0,ev

2�→0 are obtained. Accordingly, Eqs. �23� are
reduced to the RG equations of the �4 theory with a random
mass term
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duv

dl
= �1 + �W�uv − �uv

2,

dW

dl
= �2 − �uv�W + �W2. �25�

The existence of the weak disorder fixed point can be
shown in Eq. �25�,13,22 although there are some papers claim-
ing that there is no weak disorder fixed point in this
model.11,12 If only the two parameters corresponding to uv
and W are considered in the RG equations of Ref. 14, one
finds that there indeed exists the weak disorder fixed point,
describing the Mott-Anderson transition. One can perform
the RG analysis based on the chargon-gauge QED3 action
instead of the vortex �4 action. The chargon QED3 with a
random mass term is formally equivalent to the vortex QED3
with a random mass term if we correspond chargons, char-
gon gauge fields, and chargon random mass to vortices, vor-
tex gauge fields, and vortex random mass. According to the
previous discussion in the vortex QED3, a disorder critical
point would be found in the chargon QED3, implying that the
Bose glass to superfluid transition also appears in this case.

3. 0��0��

In the small �0 limit ��0 �n � �ev
2�, the gauge kernel is

given by

Dc�qr,in� �
�0

ev
2

�n�
qr

2 + n
2 ,

thus resulting in h��0 ,ev
2�=ch�0 /ev

2 and g��0 ,ev
2�=cg�0

2 /ev
4,

where ch and cg are positive numerical constants. The corre-
sponding RG equations are obtained to be

dev
2

dl
= ev

2 − �� +
�

�0
�ev

4,

duv

dl
= �1 + ch�0 + �W�uv − �uv

2 − cg�0
2,

dW

dl
= �2 + ch�0 − �uv�W + �W2, �26�

where the RG flows of ev
2 and uv ,W are decoupled in this

limit. If �0 is replaced with ev
2 in the �0→� limit, Eq. �26�

coincides with Eq. �24�. The replacement of �0 with ev
2 is

justified by the fact that the above gauge kernel should be
reduced to that in the �0→� limit. In this respect, Eq. �26�
can be considered to be a bridge between Eqs. �24� and �25�.

Ignoring the �0
2 term in the second RG equation, one finds

the weak disorder fixed point depending on the spinon
conductivity.23 This fixed point coincides with that of Eq.
�25� in the �0→0 limit. With increasing �0, we expect that
the fixed point of Eq. �26� gets close to that of Eq. �24�
because Eq. �26� should correspond to Eq. �24�, as discussed
above. In other words, the Mott-Anderson critical point is
expected to move from the disorder fixed point of the �0
→0 limit to that of the �0→� limit, depending on the

spinon conductivity. This can be understood in the following
way. The pure Mott critical points between the �0→� and
�0→0 limits are smoothly connected by controlling the
spinon conductivity, as discussed before. The presence of
disorder makes the pure Mott critical points unstable, result-
ing in disorder fixed points. Thus, it is natural that these
disorder fixed points are also connected smoothly through
varying the spinon conductivity, as clearly shown in the
small23 and large �0 limits.24 Since the critical points depend
on the spinon conductivity, the concept of universality is not
applied to the Mott-Anderson transition from the spin liquid
charge glass to the Fermi liquid metal.

D. Phase diagram and discussion

We summarize our results in the schematic phase diagram
Fig. 1, where SLBG is the spin liquid Bose glass, SLMI the
spin liquid Mott insulator, FL the Fermi liquid metal, and AI
the Anderson insulator. It should be noted that our approach
cannot cover the whole range of the phase diagram. The
regions indicated by question marks in Fig. 1 are beyond the
scope of this theory. Strictly speaking, although the slave-
rotor theory can produce meaningful physics in the Fermi
liquid regime �u / t� �u / t�c�,6 the RG equations in this paper
would not be applied because chargon condensation ei�i�
�0 allows only electron excitations owing to confinement
between condensed chargons and spinons. When the strength
of disorder becomes large, the RG equations would not work
because the present analysis is based on the perturbation
theory for weak disorder. Furthermore, strong disorder de-
creases the spinon conductivity, making the spin liquid phase
unstable against instanton excitations, as discussed before.15

Remember that the spin liquid state can be stable in the
sufficiently good spinon metal. Thus, our RG analysis can be
applied to a limited range of the phase diagram near the MIT
in the presence of weak disorder, marked by dotted arrow
lines. In the clean limit �W→0�, the Mott-Hubbard MIT is
obtained between SLMI and FL.6 On the other hand, in the
small disorder limit the Mott-Hubbard MIT is shown to turn
into the Mott-Anderson MIT between SLBG and FL. The
chargon Mott insulator is expected to evolve into the chargon
Bose glass as soon as disorder is turned on, as discussed
earlier. Since the chargon superfluidity appears in the pres-
ence of disorder, the resulting electronic phase may be iden-

FIG. 1. A schematic phase diagram in the slave-rotor represen-
tation of the Hubbard model with disorder: Here SLBG is the spin
liquid Bose glass, SLMI the spin liquid Mott insulator, FL the Fermi
liquid metal, and AI the Anderson insulator. U is the strength of
local interactions, and W that of disorder. t is a hopping integral of
electrons. The regions indicated by question marks and dashed lines
are beyond the scope of this theory. See the text.
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tified with the Fermi liquid metal. We note that in the weak
interaction limit u / t� �u / t�c the Anderson transition from
FL to AI is expected to occur by increasing disorder, al-
though this is beyond the scope of the slave-rotor theory.

A recent dynamical mean-field theory �DMFT� study
shows that the nonmagnetic phase with weak disorder is still
a Mott insulator.25 The Mott insulating phase in the DMFT
study seems to be in contrast to our claim that the paramag-
netic phase is a gapless insulator of the Anderson type in-
stead of the Mott one. We argue that this difference is not a
contradiction because the physics of the DMFT approach
differs from that of our approach. The paramagnetic Mott
insulator in the DMFT study is different from the spin liquid
Mott insulator in the slave-rotor theory in that �i� elementary
spin excitations carry the spin quantum number 1 instead of
the fractionalized spin 1/2, and �ii� there is no spin-charge
separation physics. As mentioned in the Introduction, the
spin liquid Mott insulator is possible to appear in the trian-
gular lattice such as an organic material �-�BEDT-
TTF�2Cu2�CN�3.7 The present slave-rotor theory is expected
to apply to the triangular lattice while the DMFT study
would explain the square lattice. In this respect, these two
approaches see different systems, thus the resulting disor-
dered insulators can be different.

We should point out an important issue that the nature of
the insulating phase in the boson Hubbard model with weak
disorder is not completely understood. The Bose-Mott insu-
lator was claimed at commensurate filling instead of the
Bose glass insulator.26 One different thing from our vortex
formulation is that the present vortex action includes anoma-
lous gauge interactions resulting from the spinon contribu-
tion.

IV. FERMION-ONLY EFFECTIVE THEORY
WITH DISORDER

There is an alternative way to treat disorder in the slave-
rotor representation of the Hubbard model. In the effective
gauge Lagrangian Eq. �10�, the gauge shift ai�→ai�− ivi re-
sults in

Lf = �
i�

f i�
* ��� − iai��f i� − �

i�
vi f i�

† f i�

− t
 �
ij��

�f i�
* e−iaij f j� + H.c.� ,

L� =
1

4u
�

i

����i − ai��2 − 2t	�
ij�

cos�� j − �i − aij� . �27�

Interestingly, the effect of disorder appears as the random
chemical potential of spinons instead of the random Berry
phase of chargons. Since the chargon dynamics does not
couple to disorder directly, the glass phase is not likely to
appear in this approach. Only the Mott insulator to superfluid
transition is expected to occur in the chargon Lagrangian.

Integrating out the gapped chargon excitations in the Mott
insulating phase, we obtain an effective spinon-gauge action
in the continuum limit,

Sf =� d�d2r	�
�
� f�

†��� − ia��f�

+
1

2mf
���r − iar�f��2 − vf�

† f�� +
1

2g2 �� � a�2� , �28�

where mf ��t
�−1 is a spinon band mass. The main question
in this effective spinon action is about the role of the random
chemical potential in the spinon dynamics.

The role of nonmagnetic disorder in the QED3 without the
Fermi surface was investigated.27,28 In contrast to the �2
+1�D free Dirac theory, long-range gauge interactions are
shown to reduce the strength of disorder, and induce a delo-
calized state in the QED3. The presence of disorder destabi-
lizes the free Dirac fixed point. The RG flow goes away from
the fixed point, indicating localization.29,30 On the other
hand, the charged fixed point in the QED3 remains stable at
least against weak randomness. An unstable fixed point sepa-
rating delocalized and localized phases is found.27,28 The RG
flow shows that the effects of random potentials vanish if we
start from sufficiently weak disorder. The stability of the
charged critical point against weak disorder in the QED3,
physically, results from the fact that the fermionic spinons
feel the effective dimensionality higher than 2 because of the
long-range gauge interactions at the charged critical point,
thus killing the effects of weak disorder.28

In the spinon-gauge critical theory Eq. �28�,15 a similar
result is expected. Deconfined spinons near the Fermi surface
would remain delocalized at least against weak randomness
owing to long-range gauge interactions while noninteracting
spinons without gauge interactions are localized by random
potentials according to the scaling theory.3 However, it
should be considered that the presence of nonmagnetic dis-
order reduces the spinon conductivity �0. Thus, even if the
charged fixed point can be stable against weak disorder in the
case of noncompact U�1� gauge fields, the fixed point can be
unstable against instanton excitations owing to the reduction
of the conductivity.15 As mentioned earlier, the spin liquid
phase can be stable when the spinon conductivity is suffi-
ciently large. In the spinon bad metal, the spinons would be
confined owing to the presence of disorder. This is the main
reason why the application of the present slave-rotor formu-
lation should be limited within weak disorder.

The above discussion suggests that the spin liquid Mott
insulator remains stable against weak randomness in contrast
to the emergence of the spin liquid Bose glass in the prior
treatment.31 To interpret this inconsistency between the two
approaches in a consistent manner, we claim that the U�1�
spin liquid of spinons is stable against weak randomness, but
the Bose-Mott insulator of chargons is not. The resulting
insulator is identified with the spin liquid charge glass.

V. SUMMARY

In the present paper, we examined the role of disorder in
the Mott-Hubbard metal-insulator transition based on the
slave-rotor formulation of the Hubbard model. In this repre-
sentation, the Mott-Hubbard insulator is understood as the
spin liquid Mott insulator in terms of gapless spinons and
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gapped chargons interacting via U�1� gauge fields. We found
that the Mott-Hubbard critical point becomes unstable as
soon as disorder is turned on, resulting in a disorder critical
point interpreted as the spin liquid glass insulator to the
Fermi liquid metal transition. The glassy behaviors of charge
fluctuations11 can be measured by the optical spectra in
the insulating phase of an organic material �-�BEDT-
TTF�2Cu2�CN�3. Furthermore, since the Mott-Anderson
critical points depend on the spinon conductivity, universal-

ity in the critical exponents may not be found.
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