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According to a recent proposal �S. Takayama et al., Appl. Phys. Lett. 87, 061107 �2005��, the triangular
lattice of triangular air holes may allow us to achieve a complete photonic band gap in two-dimensional
photonic crystal slabs. In this work we present a systematic theoretical study of this photonic lattice in a
high-index membrane, and a comparison with the conventional triangular lattice of circular holes, by means of
the guided-mode expansion method whose detailed formulation is described here. Photonic mode dispersion
below and above the light line, gap maps, and intrinsic diffraction losses of quasiguided modes are calculated
for the periodic lattice as well as for line and point defects defined therein. The main results are summarized
as follows: �i� The triangular lattice of triangular holes does indeed have a complete photonic band gap for the
fundamental guided mode, but the useful region is generally limited by the presence of second-order wave-
guide modes; �ii� the lattice may support the usual photonic band gap for even modes �quasi-TE polarization�
and several band gaps for odd modes �quasi-TM polarization�, which could be tuned in order to achieve doubly
resonant frequency conversion between an even mode at the fundamental frequency and an odd mode at the
second-harmonic frequency; �iii� diffraction losses of quasiguided modes in the triangular lattices with circular
and triangular holes, and in line-defect waveguides or point-defect cavities based on these geometries, are
comparable. The results point to the interest of the triangular lattice of triangular holes for nonlinear optics, and
show the usefulness of the guided-mode expansion method for calculating photonic band dispersion and
diffraction losses, especially for higher-lying photonic modes.
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I. INTRODUCTION

Photonic crystals �PhC� embedded in planar waveguides,
also called PhC slabs, are at the heart of current research on
photonic crystals1–6 because of the possibility of confining
light in all spatial directions combined with the advantage of
a lithographic definition of the pattern. The propagation of
light in these systems can be controlled by a two-
dimensional �2D� photonic lattice in the waveguide plane,
and by total internal reflection in the perpendicular direction.
Waveguides with strong refractive index contrast �like the
suspended membrane, or air bridge� support truly guided
modes lying below the light line dispersion in the cladding
materials.7–14 However, most of the photonic modes �or all of
them, in the case of waveguides with weak refractive index
contrast� lie above the light line and are only quasiguided, as
they are subject to intrinsic losses due to out-of-plane
diffraction.15–25

The physical properties of PhC slabs can be significantly
different from those of the corresponding 2D system, for
several reasons. First, the 2D photonic modes are subject to
confinement in the vertical waveguide and the resulting blue-
shift is strongly polarization dependent. Second, the presence
of second- and higher-order waveguide modes can produce a
complicated pattern of photonic bands, especially for higher-
lying states. Third, diffraction losses of quasiguided modes
are an inherent feature of PhC slabs which is absent in the
ideal two-dimensional �2D� case. For all of these reasons,
some basic and well-known properties of 2D photonic crys-
tals cannot be easily translated to PhC slabs. For example, it
is well known that the triangular lattice of circular air holes
in 2D supports a complete photonic band gap for all propa-
gation directions and light polarizations at sufficiently large

air fractions.1,26–28 Nevertheless, the same lattice realized in
a high-index membrane does not possess a complete band
gap, as the odd modes with respect to a horizontal mirror
plane �often called quasi-TM modes� are subject to a strong
and nonuniform blueshift which eliminates the gap.9,29 In-
deed, most applications of PhC slabs employ the even modes
�often called quasi-TE�, which do possess a band gap for all
propagation directions.

It was recently suggested30 that the triangular lattice of
triangular air holes in a high-index membrane gives rise to a
complete photonic gap for both even and odd modes. The
physical mechanism is the reduction of symmetry of the ba-
sis in the unit cell, as compared to the hexagonal symmetry
of the 2D lattice, giving rise to a splitting between the first
and the second odd bands at the K point of the Brillouin
zone: When realized in a high-index membrane, this gap
overlaps the usual gap between the first and the second even
bands, giving rise to a complete gap for all directions and
polarizations. The experimental results reported in Ref. 30
support the existence of a complete photonic gap.

The main purpose of this paper is to perform a systematic
study of the triangular lattice of triangular holes, as com-
pared to the triangular lattice of circular holes, both being
realized in a high-index dielectric membrane. We calculate
the photonic band dispersion, gap maps, and intrinsic losses
of quasiguided modes for the 2D lattice. We also treat line-
defect waveguides obtained by removing a full row of holes,
and point cavities consisting of three missing holes. In addi-
tion to a determination of photonic gaps for even and odd
modes as a function of membrane thickness and air fraction,
we compare diffraction losses for the lattices with conven-
tional �circular� and reduced symmetry �triangular� holes:
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This comparison is important in order to assess the possible
usefulness of the reduced-symmetry lattice. Among the re-
sults, we find interesting prospects of the triangular lattice of
triangular holes for nonlinear optics, as it may allow to
achieve doubly resonant second-harmonic generation �SHG�
with an even �quasi-TE� fundamental wave and an odd
�quasi-TM� harmonic wave when line-defect waveguides or
photonic cavities are introduced.

The calculations reported in this paper are performed with
an approach which we name the guided-mode expansion
�GME� method. Maxwell equations are treated by expanding
the magnetic field into the basis of guided modes of an ef-
fective homogeneous waveguide, and by solving the result-
ing eigenvalue equation numerically. Intrinsic losses of
quasiguided modes are obtained by calculating the coupling
to leaky modes of the effective waveguide within perturba-
tion theory �i.e., the photonic analog of Fermi’s golden rule
for quantum-mechanical problems�. The GME method, al-
though being an approximate one �since the basis of guided
modes is not a complete basis set�, has been applied to a
variety of photonic lattices and has proven to be useful es-
pecially for obtaining quasiguided modes and their diffrac-
tion losses.29,31–36 It has also been successfully employed for
the interpretation of optical experiments on PhC slabs.37–43

Another purpose of this paper is to provide a detailed de-
scription of the GME method, together with convergence
tests and exemplifying applications.

The rest of this work is organized as follows. In Sec. II we
outline the GME method and discuss a few convergence
tests. Section III contains the results for the 2D triangular
lattice of triangular holes in a high-index membrane, namely
photonic dispersion, gap maps, and intrinsic losses. In Sec.
IV we present a few results for line-defect waveguides and
point cavities in the triangular lattice of triangular holes. Sec-
tion V contains a discussion of the results and of prospective
applications of the investigated lattice. Technical details,
which are needed by the reader in order to implement the
GME method, are given in the Appendixes.

II. GUIDED-MODE EXPANSION METHOD

As PhC slabs are intermediate between 2D photonic crys-
tals and dielectric slab waveguides, it is reasonable to de-
scribe photonic modes in these systems starting from slab
waveguide modes and introducing the effect of a dielectric
modulation in the core and cladding layers. This is the cen-
tral idea of the guided-mode expansion method, in which
PhC slab modes are expanded in the basis of guided modes
of an effective homogeneous waveguide and coupling to ra-
diative modes is taken into account by perturbation theory. In
this section we describe the formalism for calculating mode
dispersion and intrinsic losses, for the general case of an
asymmetric PhC slab, and discuss convergence of the
method.

A. Formalism for photonic dispersion

The system we are considering is shown in Fig. 1�a�. It
consists of a PhC slab made of three layers �layers 1–3�, each

of which is homogeneous in the vertical �z� direction and is
patterned with a 2D photonic lattice in the xy plane. The core
layer has a thickness d, while the lower and upper claddings
are taken to be semi-infinite.44 Patterning of each layer is
characterized by the same 2D Bravais lattice, while the basis
in the unit cell can be different—a typical situation is that the
core layer 2 is patterned, while layers 1 and 3 are not �i.e.,
they can be described by the same Bravais lattice as layer 2,
but with a vanishing filling fraction�. Writing r= �� ,z�, the
dielectric constant ��� ,z� is piecewise constant in the z di-
rection and takes the form � j���, j=1,2 ,3 in each layer j. We
assume a magnetic permeability �=1.

As is well known, Maxwell equations for the electric and
magnetic fields E,H with harmonic time dependence can be
transformed into the second-order equation for the magnetic
field

� � � 1

��r�
� � H� =

�2

c2 H , �1�

with the condition � ·H=0. By expanding the magnetic field
in an orthonormal set of basis states as

H�r� = �
�

c�H��r� , �2�

the orthonormality condition being expressed by

� H�
* �r� · H��r�dr = ���, �3�

Eq. �1� becomes equivalent to a linear eigenvalue problem

�
�

H��c� =
�2

c2 c�, �4�

where the matrix H�� is given by

H�� =� 1

��r�
„� � H�

* �r�… · „� � H��r�…dr . �5�

This formulation of the electromagnetic problem bears
strong analogies to the quantum-mechanical treatment of
electrons, with the Hermitian matrix H�� playing the role of

FIG. 1. Schematic picture of the vertical waveguide structure for
�a� the photonic crystal slab and �b� the effective waveguide. The
lower and upper claddings �layers 1 and 3� are taken to be semi-
infinite. Photonic patterning in the plane xy must have the same 2D
Bravais lattice for the three layers in �a�, but it can have different
bases in the unit cell. The change in gray scales in going from �a� to
�b� suggests that the effective waveguide is characterized by an
average dielectric constant in each layer.
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a quantum Hamiltonian. Once the magnetic field of a pho-
tonic mode is known, the electric field can be obtained from

E�r� =
ic

���r�
� � H�r� �6�

and the electric field eigenmodes are orthonormal according
to

� ��r�E�
* �r� · E��r�dr = ���, �7�

as is well known45 and easily verified.
In order to define an appropriate basis set H��r� for the

expansion �2�, we introduce an effective slab waveguide
made of three homogeneous layers with dielectric constants
�̄1,�̄2,�̄3, as illustrated in Fig. 1�b�. We take �̄ j as the spatial
average of � j��� in each layer

�̄ j =
1

A
�

cell
� j���d� , �8�

where the integral extends over a unit cell of area A. This
choice for the average dielectric constants is convenient, but
by no means unique—numerical tests and other issues re-
lated to the choice of �̄ j are discussed in Sec. II C. In any
case, we assume that the average dielectric constants fulfill
the inequalities

�̄2 � �̄1, �̄3, �9�

in order for the effective slab to support a set of guided
modes. Their explicit form is well known46 and it will be
summarized here in order to specify our notation, as well as
for the paper to be self-contained. Let us denote by g=gĝ the
2D wave vector in the xy plane with modulus g and unit
vector ĝ, by �̂g= ẑ� ĝ a unit vector perpendicular to both g
and ẑ, and by �g the frequency of a guided mode which
satisfies cg /n2��g�cg /max�n1 ,n3�. Moreover, we define
the following quantities:

	1g = 	g2 − �̄1

�g
2

c2 
1/2

, �10�

qg = 	�̄2

�g
2

c2 − g2
1/2

, �11�

	3g = 	g2 − �̄3

�g
2

c2 
1/2

, �12�

which represent the real �imaginary� parts of the wave vector
in the core �upper and lower cladding�, respectively. The
guided mode frequencies are found by solving the following
implicit equations �with the suffix g being understood for
simplicity�:

q�	1 + 	3�cos�qd� + �	1	3 − q2�sin�qd� = 0 �13�

for transverse electric �TE� polarization, and

q

�̄2
		1

�̄1

+
	3

�̄3

cos�qd� + 		1	3

�̄1�̄3

−
q2

�̄2
2
sin�qd� = 0 �14�

for transverse magnetic �TM� polarization. The guided
modes at a given wave vector g are labeled by the index 

=1,2 , . . . and the eigenfrequencies are denoted by �g
. Ex-
plicit forms for the electric and magnetic fields of the guided
modes are given in Appendix A, as they are needed for the
calculation of the matrix elements �5�.

The guided modes of the effective waveguide in Fig. 1�b�
depend on a wave vector g which can take any value in the
2D plane. However, photonic modes in the PhC slab of Fig.
1�a� have the form dictated by Bloch-Floquet theorem and
they depend on a wave vector k which is usually restricted to
the first Brillouin zone of the 2D lattice: Indeed, the effect of
the dielectric modulation ��r� is to fold the guided modes of
the effective waveguide to the first Brillouin zone and to
produce photonic bands and band gaps. We, therefore, write
g=k+G, where the Bloch vector k lies in the first Brillouin
zone and G is a reciprocal lattice vector. As the basis states
for the expansion �2� of the magnetic field, we choose the
guided modes Hk+G,


guided�r� of the effective waveguide given in
Appendix A. The guided-mode expansion of the magnetic
field, therefore, reads47

Hk�r� = �
G,


c�k + G,
�Hk+G,

guided�r� . �15�

The basis set is orthonormal according to Eq. �3�, but not
complete, since the radiative modes of the effective wave-
guide are not included in the basis set. This approximation
will be partially lifted in Sec. II B, where the effect of radia-
tive modes in determining diffraction losses will be taken
into account.

With this choice for the basis set, the general index � can
be written as ���k+G ,
�. The matrix elements H�� of Eq.
�5� can be calculated in a straightforward way from the field
profiles of the guided modes: The resulting analytic expres-
sions are somewhat lengthy and are given in Appendix B.
They depend on the inverse dielectric matrices

� j�G,G�� =
1

A
�

cell
� j���−1ei�G�−G�·�d� �16�

in the various layers. Like in usual 2D plane wave calcula-
tions, a numerically convenient approach to calculate these
matrix elements is to define the dielectric matrix

� j�G,G�� =
1

A
�

cell
� j���ei�G�−G�·�d� �17�

and to find � j�G ,G�� by numerical matrix inversion as
� j�G ,G��=� j

−1�G ,G��: This procedure is known to have
much better convergence properties as a function of the num-
ber of plane waves,48,49 since the truncation rules for Fourier
series in the presence of discontinuous functions are better
represented.50 If the photonic lattices in layers 1–3 have a
center of inversion �the same for all layers�, the dielectric
matrices � j�G ,G��,� j�G ,G�� are symmetric in G ,G�, and
H�� turns out to be a real, symmetric matrix when the phases
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of the fields are chosen as in Appendix A. In the most gen-
eral case of a photonic lattice without a center of inversion
�like the triangular lattice with triangular holes investigated
in this work�, the matrix H�� is complex Hermitian. Line and
point defects can be treated by introducing a supercell in one
or two directions, respectively, like in 2D plane-wave calcu-
lations.

The formalism presented here refers to the most general
case of an asymmetric PhC slab. If the structure is symmetric
under reflection by a horizontal mirror plane z=0 �i.e., if the
upper and lower claddings have the same photonic pattern
and are made of the same dielectric materials, �1�����3����,
the basis states as well as the photonic eigenmodes can be
classified as even or odd with respect to the mirror plane. We
denote by �̂xy the corresponding specular reflection operator
and we shall refer to even �odd� states with respect to this
operator as �xy = +1 ��xy =−1� modes. The simplest way to
exploit this mirror symmetry is to solve the eigenvalue prob-
lem �4� separately for �xy = +1 and �xy =−1 states by keeping
only the appropriate solutions of Eqs. �13� and �14�, as de-
tailed in Appendix C. There we also discuss the issue of
polarization mixing in the framework of the GME method:
In general, a photonic mode of a PhC slab is a superposition
of TE-polarized and TM-polarized basis states and all six
components of the electric and magnetic fields are usually
nonvanishing. Another useful symmetry property holds when
the Bloch vector k lies along special symmetry directions,
for which mirror reflection �̂kz with respect to a vertical

plane �k̂ , ẑ� is a symmetry operation of the PhC slab: In this
case the eigenmodes can be classified as even or odd with
respect to this mirror symmetry, i.e., they have �kz= +1 or
�kz=−1, respectively. Vertical mirror symmetry can be ex-
ploited by transforming the matrix H�� with a unitary trans-
formation which decouples the blocks corresponding to �kz
= ±1 states.

B. Formalism for intrinsic losses

When a photonic mode in the PhC slab falls above the
cladding light line �or light lines, if the waveguide is asym-
metric�, it is coupled to leaky modes of the slab by the di-
electric modulation and it becomes quasiguided, i.e., it is
subject to intrinsic losses due to scattering out of the plane.
The losses can be represented by an imaginary part of the
frequency Im���, which is related to the Q factor of a reso-
nance by Q=� / �2 Im����.

Within the GME method, the imaginary part of frequency
can be calculated by time-dependent perturbation theory, like
in Fermi’s golden rule for quantum mechanics. The imagi-
nary part of the squared frequency of a PhC mode with
Bloch vector k, whose frequency lies above the cladding
light lines �or at least above one of them�, is given by

− Im	�k
2

c2 
 = 
�
G�

�
�=TE,TM

�
j=1,3

�Hk,rad�2� j	k + G�;
�k

2

c2 
 ,

�18�

where the matrix element between a guided and a leaky PhC
slab mode is

Hk,rad =� 1

��r�
„� � Hk

*�r�… · „� � Hk+G�,�,j
rad �r�…dr

�19�

and � j�k+G� ;�k
2 /c2� is the 1D photonic density of states

�DOS� at fixed in-plane wave vector for radiation states that
are outgoing in medium j

� j	g;
�2

c2 
 � �
0

� dkz

2

�	�2

c2 −
g2 + kz

2

�̄ j



=
�̄ j

1/2c

4


�	�2 −
c2g2

�̄ j

1/2

	�2 −
c2g2

�̄ j

1/2 . �20�

Notice the sum over reciprocal lattice vectors and polariza-
tions in Eq. �18�, as all diffraction processes contribute to
Im��2 /c2�. Equations �18�–�20� generalize the expressions
given in Ref. 18 to the case of an asymmetric PhC slab and
to situations in which processes with G��0 contribute to
diffraction losses. Once Im��2 /c2� is found, the imaginary
part of frequency is easily obtained as Im���
 Im��2� /
�2��.

For a given wave vector g and polarization � of the ra-
diative modes, there are two scattering channels, correspond-
ing to states with an outgoing component in the lower clad-
ding �medium 1� or in the upper cladding �medium 3�.45,51

The radiation modes are schematically shown in Fig. 2. The
state which is outgoing in medium 1 corresponds to a pho-
tonic DOS with j=1 in Eq. �20�, while the outgoing state in
medium 3 corresponds to a DOS with j=3. Radiation states
are normalized according to Eq. �3�, and only the field com-
ponents in the cladding regions are relevant in determining
the normalization.52 Since the field profile of a scattering
state tends to a plane-wave form in the far field, the photonic
density of states �20� is appropriate whatever the explicit
field profile of radiative PhC slab modes. In the present GME
method, we evaluate the matrix element by approximating
the radiation modes of the PhC slab with those of the effec-
tive waveguide. This approximation is consistent with the
treatment of the previous subsection, as the set of guided

FIG. 2. Schematic picture of radiative �scattering� states for the
effective waveguide with a single outgoing component. States in �a�
are outgoing in the lower cladding �layer 1�, while states in �b� are
outgoing in the upper cladding �layer 3�, as indicated by the thick
arrow. The notation for the coefficients is appropriate for TE polar-
ization, while for TM polarization the replacements W→Y, X→Z
have to be made.
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+radiation modes of the effective waveguide is orthonormal
according to Eq. �3�. In Appendix D we give the explicit
form of radiation states of the effective waveguide which are
outgoing in either the lower cladding �Fig. 2�a�� or in the
upper cladding �Fig. 2�b��, for both TE and TM polariza-
tions. Using expansion �15� for the magnetic field of a PhC
slab mode, the matrix element �19� becomes

Hk,rad = �
G,


c�k + G,
�*Hguided,rad, �21�

where

Hguided,rad

=� 1

��r�
„� � �Hk+G,


guided�r�*�… · „� � Hk+G�,�,j
rad �r�…dr

�22�

are matrix elements between guided and radiation modes of
the effective waveguide, which can be calculated analyti-
cally. In Appendix E we collect the matrix elements �22�, for
all possible combinations of polarizations. Those expressions
are implemented together with Eqs. �18�–�22�, in order to
evaluate the imaginary part of frequency and hence the in-
trinsic diffraction losses of quasiguided modes.

The calculation of losses is computationally more de-
manding than the photonic dispersion alone, as the eigenvec-
tors of the linear problem �4� are also needed. The formalism
for intrinsic diffraction losses presented in this subsection
and in Appendixes D and E refers to the general case of an
asymmetric PhC slab. If the slab is symmetric, and if the
PhC slab modes are found as �xy = ±1 states as outlined in
Appendix C, it is possible to define and use symmetric or
antisymmetric outgoing states instead of the scattering states
illustrated in Fig. 2. If this is done, �xy = +1 ��xy =−1�
quasiguided modes are coupled only to symmetric �antisym-
metric� radiative states. From a computational point of view
there is no special advantage in using symmetry-adapted ra-
diative states, as the computing time needed to implement
the perturbative formula Eq. �18� is usually small. Thus even
in the case of a symmetric PhC slab it is convenient to use
the general loss formalism, and simply obtain �xy = +1 or
�xy =−1 PhC slab states by selecting the basis states of the
effective waveguide, as explained in Appendix C.

C. Discussion of the method

In this subsection we discuss the convergence properties
of the GME as a function of numerical parameters and give a
brief overview of previously published results and compari-
son with other approaches. Truncation parameters in the
GME method are the choice and number NPW of plane waves
and the number N
 of guided modes of the effective wave-
guide kept in the expansion. The dimension of the eigenvalue
problem �4� is NPWN
, or about half of this value when ver-
tical parity �̂kz is used. The choice of plane waves can be
made in analogy to the usual 2D plane-wave expansion: The
important point is how to calculate the inverse dielectric ma-
trix � j�G ,G�� properly, as already noticed in Sec. II A. In
the present implementation we take an isotropic cutoff for

reciprocal lattice vectors and adopt the common procedure of
inverting the dielectric matrix numerically:48 While this is
adequate for many purposes, improved implementations of
the plane-wave expansion54,55 could also be introduced in the
GME method in order to speed up convergence.

The optimal N
 depends on waveguide parameters and on
the frequency region considered: Typically, for PhC slabs
defined in a thin high-index membrane, N
=4 in each parity
sector �i.e., for both �xy = +1 and �xy =−1 modes� yields very
accurate results for the lower-lying modes. As an example, in
Fig. 3 we show the real and imaginary parts of the frequency
for a few photonic modes as a function of the number of
guided modes N
, for �xy = +1 modes in the triangular lattice
of circular air holes. Structure parameters are similar to those
used later in the paper. The number of plane waves is trun-
cated to NPW=109, which is sufficient for convergence in the
present lattice. It can be seen that both the mode energies and
the imaginary parts are stable for N
�3, while a good ap-
proximation is obtained already for N
=2 or even N
=1.
This is very convenient for the purpose of design and search
of parameters, as a photonic structure in a high-index con-
trast PhC slab can be optimized within a fully 3D approach,
with the same computing time of a conventional 2D plane-
wave expansion. The precise calculation �e.g., with N
�4�
can be performed a posteriori once the structure parameters
are optimized.

It is also important to discuss the choice of the dielectric
constants of the effective waveguide, which are usually taken
to be the spatial average �8� in each layer. While this choice

FIG. 3. �a� Real part and �b� imaginary part of frequency as a
function of number of guided modes N
 in the expansion, for �xy

= +1 modes in the triangular lattice of circular air holes defined in a
high-index suspended membrane. The frequencies in �a� are calcu-
lated at the symmetry points �, K, M, while the imaginary parts in
�b� are calculated at k=
a /3 along the �-K direction. Parameters
are r /a=0.3, d /a=0.5, �=12.11. The effective core dielectric con-
stant is fixed to �̄2=8.4827, as given by Eq. �8�.
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is a natural one, it might be asked whether the results depend
on the assumed values of �̄ j. In Fig. 4 we show the real and
imaginary parts of frequency for a few modes, with the same
parameters of the previous figure, as a function of the effec-
tive dielectric constant in the core region. It can be seen that
the results are rather insensitive to the assumed value of �̄2,
except when it becomes smaller than about five. All curves
are flat around the value �̄2=8.4827 which corresponds to the
spatial average. This satisfactory behavior arises because the
GME method employs the set of all guided modes of the
effective waveguide �although in practice they are truncated
to a finite number for numerical convenience�, thereby com-
pensating for different choices of the effective waveguide
used to define the basis set. Thus the choice of the dielectric
constant of the effective waveguide as the spatial average of
�̄ j�r� is justified, at least for the low air fractions that are
commonly employed. Although one might consider extend-
ing the method by introducing an anisotropic dielectric ten-
sor for each layer of the effective waveguide, Fig. 4 strongly
suggests that the results of the GME method would not be
changed by such a complicated extension which is, therefore,
unnecessary.

The approximations of the GME method are: �i� For pho-
tonic dispersion, the shift of guided and quasiguided modes
due to second-order coupling to leaky modes of the effective
waveguide is neglected; �ii� for diffraction losses, the density
of radiative modes of the PhC slab is approximated with that

of the effective waveguide. The effect of these approxima-
tions can be judged by comparing the results with those of
other methods that are known to be exact within numerical
accuracy. A full analysis of this issue is outside the scope of
this paper; however, comparisons between the results of
GME and those obtained by other methods have already
been published and are shortly summarized here. The disper-
sion of quasiguided modes was found to be in very good
agreement with the resonance positions in reflectance or
transmittance spectra found from a scattering-matrix
treatment.29 In fact, the complex frequencies of photonic
modes can be obtained from the poles of a scattering
matrix.19,22,23 The intrinsic propagation losses of line-defect
waveguides in the triangular lattice obtained with different
methods �GME,32 finite-difference time domain25 �FDTD�,
and from the poles of a scattering matrix19,56� were compared
for the same waveguide parameters and were found to agree
very well with each other: A detailed comparison is pre-
sented in Ref. 56. A comparative study of the GME and
Fourier modal methods applied to cavity modes in one-
dimensional PhC slabs has been reported in Ref. 36, and
very good agreement was found for the photonic dispersion
as well as the intrinsic losses. Finally, the Q factors of cavity
modes in L1, L2, and L3 nanocavities �one, two, or three
missing holes in the triangular lattice� as a function of nearby
hole displacement are found to be almost identical when cal-
culated with either the GME method35 or the poles of a scat-
tering matrix.57 Agreement with experiments performed
on PhC slabs made of silicon-on-insulator,37,40,41 Si
membranes,42 GaAs/AlGaAs,38,39 and silicon nitride43 is
also very satisfactory. The set of these comparisons indicates
that the GME is a reliable method for both photonic mode
dispersion and intrinsic losses, whose main advantages are
computational efficiency and ease of application to various
kinds of vertical waveguides and of photonic lattices, both
periodic in 2D and containing line and point defects.

III. TRIANGULAR LATTICE
WITH TRIANGULAR HOLES

We report in this section a systematic study of the trian-
gular lattice of triangular air holes patterned on a free-
standing high-index slab of thickness d, as schematically
shown in Fig. 5. The relevant dimensions of this lattice are
the triangular basis side, L /a, and the slab thickness.
Throughout this section we assume �unless otherwise speci-
fied� that the lattice is patterned in a material with dielectric
constant �=12.11, which is appropriate for silicon at the
usual telecom wavelength �=1.55 �m but also to other ma-
terials with similar dielectric constants �e.g., GaAs�. For the
calculations shown in the present section, we employed up to
109 plane waves and four guided modes per parity sector in
the basis set of the GME method. All the calculations have
been done on an ordinary Pentium computer with low com-
putational effort. The complex Fourier transform of the di-
electric constant for the triangular lattice of triangular holes
is given in Appendix F. Notice that the lattice is invariant
under rotations by 120° and is not centrosymmetric, but
since ��−k�=��k� by time-reversal symmetry, the same

FIG. 4. �a� Real part and �b� imaginary part of frequency as a
function of core dielectric constant in the effective waveguide, for
�xy = +1 modes in the triangular lattice of circular air holes defined
in a high-index suspended membrane. The frequencies in �a� are
calculated at the symmetry points �,K,M, while the imaginary parts
in �b� are calculated at k=
a /3 along the �-K direction. Parameters
are r /a=0.3, d /a=0.5, �=12.11. The number of guided modes in
the expansion is fixed to N
=4. The vertical bar indicates the aver-
age dielectric constant, Eq. �8�, usually employed in the GME
method �in the present case, �̄2=8.4827�.
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symmetry directions of the usual triangular lattice of circular
air holes do apply.

The first realization of such a lattice has been reported in
Ref. 30, with the purpose of measuring a complete photonic
band gap in a waveguide-embedded 2D PhC thanks to a
reduction of symmetry for the basis in the unit cell of the
triangular lattice, as already pointed out in the Introduction.
The importance of finding a complete photonic band gap in a
waveguide-embedded photonic structure is related to the
practical realization of linear waveguides or cavities with
reduced losses or higher Q factors, as scattering into quasi-
guided modes of opposite parity would be avoided. In Fig. 6
we present the photonic band dispersion calculated with the
GME method for structure parameters as in Ref. 30. Even
�TE-like� and odd �TM-like� modes are reported in Figs. 6�a�
and 6�b�, respectively. It is worth noticing that in the absence
of second-order waveguide modes, the fundamental gaps of
both parities would overlap in the dimensionless frequency
range 0.31–0.32, as it can be seen from the figure. However,

the presence of a second-order mode with a cutoff of around
�a / �2
c��0.28 for both polarizations, as shown in Fig. 6,
prevents the opening of a true photonic band gap. Such
second-order modes �which do not appear in a 2D treatment
with an effective index� are unavoidable in the present struc-
ture, due to the relatively large slab thickness, d /a�0.7.

We believe that our result is not in contrast with the ex-
perimental findings reported in Ref. 30, in which a strong
reduction of the transmission intensity was measured along
the �K and �M directions. Since the dispersion of the
second-order waveguide mode is very close to the air light
line in the relevant frequency region, such modes are barely
coupled to the external beam focused on the sample side and
also they are subject to large disorder-induced losses; thus, it
is likely that transmission into such modes is attenuated in a
few lattice periods, which would explain the apparent pho-
tonic band gap observed experimentally. On the other hand,
when line or point defects are introduced, such second-order
modes are necessarily present within the gap, thus limiting

FIG. 5. Schematic picture of the triangular lattice of triangular
air holes with lattice constant a and triangle side L; the unit cell in
real space is indicated. The lattice is patterned in a high index
suspended membrane of thickness d. The Brillouin zone with main
symmetry directions in reciprocal space is also drawn.

FIG. 6. Photonic band dispersion for �a� even ��xy = +1� and �b�
odd ��xy =−1� modes of the PhC slab with a triangular lattice of
triangular holes, parameters as in Ref. 30: L /a=0.85, d /a=0.68,
�=12.2. Light dispersion in air is represented by dotted lines.

FIG. 7. �Color online� Upper panels: Photonic band dispersion for L /a=0.8 in �a� PhC slab of thickness d /a=0.3, �b� d /a=0.5, and �c�
ideal 2D photonic crystal. Lower panels: Gap maps as a function of the holes’ side for �d� d /a=0.3, �e� d /a=0.5, and �f� ideal 2D system.
The high index material is assumed in all of these calculations to have a dielectric constant �=12.11. Light gray regions represent the modes
above the light line for the waveguide-embedded systems.
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the usefulness of this design for applications. In the follow-
ing, we will consider a photonic band gap for the waveguide-
embedded structure only when no higher-order modes are
present within the apparent gaps formed by the fundamental
modes, i.e., when the PhC slab is truly single mode.

With the aim of optimizing the design proposed by
Takayama et al., we performed a systematic study of the
present photonic lattice at varying structure parameters. In
Fig. 7 we show the photonic band dispersion and gap maps
for the triangular lattice of triangular air holes with slab
thickness d /a=0.3 �Figs. 7�a� and 7�d��, d /a=0.5 �Figs. 7�b�
and 7�e��, and for the reference 2D system of infinite thick-
ness �Figs. 7�c� and 7�f��, respectively. As is well known for
more conventional lattices,9,29 the blueshift of photonic
modes with respect to the ideal 2D system due to the dielec-
tric confinement is strongly polarization dependent; in par-
ticular, it is more pronounced for odd �TM-like� modes. This
physical behavior is seen by comparing Figs. 7�a�–7�c�, in
which the dispersion of photonic modes is calculated for the
same 2D photonic lattice in which triangular air holes have
side L /a=0.8. For d /a=0.3 the second-order cutoff is rather
high in energy, thus the system can be considered as single
mode below the light line. On increasing the slab thickness,
the second-order cutoff redshifts. For d /a=0.5, both even
and odd modes open their fundamental band gaps, but they
do not overlap to give a complete photonic band gap for all
symmetry directions. In order to span a wider range of struc-
ture parameters, important information can be inferred by the
gap width as a function of the holes’ side. As it can be seen
in Figs. 7�d�–7�f�, the gap maps depend strongly on the
waveguide thickness and differ substantially from those of
the 2D system. For d /a=0.3, the fundamental odd gap is
closed for all values of L /a, due to the larger blueshift of
band edges at the K point than at the M point. Even if both
fundamental band gaps are present for d /a=0.5, no complete
gap opens due to the stronger blueshift of odd modes. For
d /a�0.5, the presence of higher-order modes prevents the
opening of complete gaps as well. The gap map for the ideal
2D system presents a great variety of photonic gaps for both
polarizations, and also some complete gaps at high frequen-
cies. It is worth noting that the fundamental TE and TM band
gaps do not overlap in frequency, unlike in the ordinary tri-
angular lattice of circular air holes.1 Furthermore, the funda-
mental TE gap turns out to be narrower than the usual gap
for circular holes.

Even if no truly complete band gaps appear to be present
for this waveguide-embedded lattice, it is interesting to in-
vestigate the formation of resonant gaps at � and 2�, to be
exploited in nonlinear optical applications like second-
harmonic generation �SHG�. While doubly resonant SHG has
been widely studied in one-dimensional systems with band-
edge and cavity effects,58–65 no 2D photonic lattice giving
such an interesting result has been reported in the literature.
In particular, it can be seen from Fig. 7�e� that many odd
gaps are present for a slab thickness d /a=0.5. In this case, it
is easy to find a condition for which the fundamental �xy =
+1 gap at pump frequency � is resonant with a �xy =−1 gap
at 2�. One of the possibilities is indeed shown in Fig. 8. It is
substantially the same result reported in Fig. 7�b�, but here
the odd modes �Fig. 8�b�� are plotted in a doubled frequency

range with respect to the even modes �Fig. 8�a��. As it can be
seen, there is a good overlap in frequency between the large
band gap of Fig. 8�a� and the rather narrow but robust gap of
Fig. 8�b�. This could be interesting, e.g., for applications to
nonlinear optical converters based on GaAs, in which the
pump s-polarized field would be converted into a p-polarized
second-harmonic field.66 In this respect, the usefulness of the
present lattice would be enhanced with ad hoc fabricated line
or point defects. It should be reminded that these results have
been obtained by using the same dielectric constant for both
pump and second-harmonic modes, but it is easy to extend
the present calculations to nonlinear materials with optical
constants of known frequency dispersion.

One of the issues when dealing with the triangular lattice
of triangular holes would be given by intrinsic losses. In
order to show the general interest of the triangular hole-
based lattice, and also to show an application of the GME
method, we compare intrinsic losses of the present system to
the ones of an ordinary circular hole-based PhC slab. In this
case, we restrict our discussion to �xy = +1 modes along the
�K symmetry direction. Intrinsic losses are quantified by cal-
culating the imaginary part of frequency, as detailed in the
previous section. In Figs. 9�a� and 9�c� we show the photonic
dispersion and intrinsic losses for the first few bands of an
ordinary PhC slab with a triangular lattice of circular holes.
It can be noticed that the modes along the chosen symmetry
direction are separated according to their mirror symmetry
with respect to the vertical plane, which can be either even
��kz= +1� or odd ��kz=−1�.67 On the right hand side, in Figs.
9�b� and 9�d�, we plot dispersion and losses for the case of
triangular holes. In this case no symmetry operation �̂kz
holds, so the modes are mixed. The choice of r /a=0.3 for
the circular holes and L /a=0.8 for triangular ones, respec-
tively, allows to obtain roughly the same air fraction f
�0.32 for the two lattices. This can be also verified by the
roughly equal second-order cutoffs. The dispersion is only
slightly modified when changing the hole shape from circu-
lar to triangular, and in particular it appears that a general
blueshift occurs for the modes in Fig. 9�b� with respect to the

FIG. 8. Photonic band dispersion for �a� �xy = +1 modes at
pump and �b� �xy =−1 modes at second-harmonic frequencies, re-
spectively, showing resonant band gaps at � and 2� useful for
nonlinear applications. Parameters are as in Fig. 7�b�: L /a=0.8,
d /a=0.5, �=12.11. Light dispersion in air is represented by dotted
lines.
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ones in Fig. 9�a�. For what concerns intrinsic losses, we can
see that they remain almost of the same order on going from
circular to triangular holes, at least for the lower frequency
bands. This means that �in the absence of disorder� no par-
ticular differences are introduced by changing the basis of
the lattice, apart from the loss of symmetry �̂kz. As the band
labeled with 1 is almost unchanged on going from the circu-
lar to the triangular hole shape, also the intrinsic losses are
quite similar between the two lattices. For higher lying
bands, in particular for the band labeled with 2, such simi-
larity becomes less evident on approaching the light line,
owing to the blueshift of modes for the triangular hole-based
lattice and to the mixing with other modes which does not
occur in the conventional lattice. In particular, owing to the
lack of �̂kz symmetry, there is an anticrossing between mode
2 and the second-order waveguide mode occurring very
close to the light line, which correspondingly affects the
imaginary part of frequency �see Figs. 9�b�–9�d��. The mode
labeled with a 3 has larger losses for triangular holes than for
circular ones, but it is quite high in energy.

As a conclusion to this section, we have shown that the
triangular lattice of triangular air holes does indeed have a
complete photonic band gap between the fundamental wave-
guide modes, but the gap is actually eliminated by the pres-
ence of second-order modes. The lattice can be designed for
nonlinear optical applications in order to have a gap for even
modes at the pump frequency which is resonant with a gap
for odd modes at the SH frequency. Intrinsic losses are of the

same order as in the circular hole-based triangular lattice.
The GME method is useful for a comparison of the two
lattices and for the design of structures with desired charac-
teristics.

IV. LINE-DEFECT WAVEGUIDES AND POINT CAVITIES

We show in the present section that line and point defects
can be introduced into the triangular-hole lattice without any
loss of performance with respect to the circular-hole one. It
is well known that removing a row of holes in a 2D photonic
lattice introduces a linear defect supporting guided modes
within the photonic band gap. In a triangular lattice such a
waveguide is usually called W1, and its channel width
�namely the distance between the holes surrounding the
waveguide� is w=w0=�3a. These guided modes exploit the
usual index confinement along the vertical direction added to
the gap confinement in the waveguide plane, and they are
studied with great interest by the scientific community owing
to prospective applications in photonic integrated circuits.

In Fig. 10 we report a comparison between the W1 wave-
guide realized in the triangular lattice with circular �Figs.
10�a�–10�c�� and triangular holes �Figs. 10�b�–10�d��, respec-
tively. For the circular hole-lattice the guided modes are clas-
sified according to their mirror symmetry with respect to the

FIG. 9. �a� Photonic band dispersion and �c� intrinsic losses for
�xy = +1 modes in the triangular lattice of circular air holes with
r /a=0.3, d /a=0.5, �=12.11, along the �-K symmetry direction;
modes are classified according to their �̂kz parity. �b� Dispersion
and �d� intrinsic losses for the same lattice of triangular air holes
with L /a=0.8, d /a=0.5, �=12.11. Light dispersion in air is given
by dotted lines.

FIG. 10. �a� Photonic band dispersion and �c� intrinsic losses for
�xy = +1 modes in W1 waveguides in triangular lattice of circular
air holes with r /a=0.3, d /a=0.5, �=12.11; modes are classified
according to their �̂kz parity. �b� Dispersion and �d� intrinsic losses
for the same waveguide in the triangular lattice of triangular air
holes with L /a=0.8, d /a=0.5, �=12.11. Light dispersion in air is
given by dotted lines. The shaded regions represent the bulk modes
of the respective lattices projected onto the line-defect Brillouin
zone.
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vertical plane kz. For such calculations, we used supercells
along the �M direction of widths ranging from 4w0 to 9w0,
with 181–323 plane waves and four guided modes in the
basis set for the expansion. Then, an average was taken to
get final results for losses, in order to smooth out finite su-
percell effects.32 As it is seen from the figure, the dispersion
of the guided modes is very similar between the two systems,
apart in the region of mixing. In fact, as �̂kz is a symmetry
operation for the system in Fig. 10�a�, the two guided modes
are completely decoupled, while in Fig. 10�b� they mix pro-
ducing a consistent anticrossing and a minigap. Looking at
the imaginary part of the frequency, we see by comparing
Figs. 10�c� and 10�d� that they are almost identical away
from the mixing region, which means that W1 waveguides in
the triangular lattice of the triangular holes may behave as
standard W1 waveguides.68 Such a result is quite surprising,
as the asymmetry of such a waveguide could be expected to
lead to higher scattering of propagating light states. On the
contrary, the reduction of symmetry does not increase losses
in the perfect photonic lattice—of course, the role of fabri-
cation imperfections may affect differently the two structures
in real lattices.

The final goal of this paper is to exploit the potential of
the triangular lattice of triangular holes for nonlinear optical
applications. In this respect, the ultimate system for fre-
quency conversion at the nanoscale is a photonic cavity with
double resonance for pump and harmonic waves. Doubly
resonant microcavities for second-harmonic generation have
been studied in the context of Fabry-Perot cavities.58,59,63–65

According to a recent proposal, double resonance in photonic
crystal cavities may allow to achieve strong coupling be-
tween single photons.69 It has been shown that full 3D con-
finement of light with a very high figure of merit �quality
factor, Q� can be achieved by properly designed point defects
in 2D PhC slabs.70 In particular, removing three holes along
the �K direction �L3 cavity� and optimizing the positions of
the holes surrounding the cavity allows to achieve Q factors
of the order of 105.71 We compare here the L3 cavity struc-
ture made in a triangular lattice of triangular air holes to the
usual L3 cavity with circular holes and the results are shown

in Fig. 11. For such calculations, a square supercell of di-
mensions 10a�5w0 has been taken. Up to 1551 plane waves
and two guided modes were used in the GME. As it can be
seen from Fig. 11�a�, many dispersionless �xy = +1 defect
modes appear in the photonic band gap, due to the tight
confinement provided by the cavity. We can evaluate the ver-
tical Q-factor of such modes �i.e., the one determined by
intrinsic out-of-plane losses� by the definition Q
=� / �2 Im����, where both � and Im��� have been averaged
over the folded Brillouin zone in order to reduce the effects
of a finite supercell size. Very good agreement with mea-
sured Q factors and defect mode energies has been already
found with this GME-based procedure.35 The Q factor of the
unoptimized L3 cavity in the lattice of circular holes is theo-
retically estimated to be Q�5400. When the same cavity is
realized in the triangular lattice of triangular holes �Fig.
11�b��, we see that the fundamental mode is almost un-
changed, and its Q factor is comparable to the one of Fig.
11�a�. The slight blueshift of the defect mode and of the
lower band edge in Fig. 11�b� with respect to Fig. 11�a� is
due to the slightly different air fractions of the two lattices.
As we have already shown in Fig. 8, we can design a trian-
gular lattice with triangular holes having a doubly resonant
band gap. Thus, we plot in Fig. 11�c� the dispersion of �xy
=−1 modes within the doubled frequency range with respect
to Fig. 11�b�, in analogy with Fig. 8. Many defect modes
appear within the 2� band gap, and the lowest mode has a
Q-factor of almost 103, which is a very promising value con-
sidering that the structure has not been optimized in any way.
There is, in fact, much room for improving the Q factors at
both � and 2� by means of geometry optimization of the
nearby holes. The present result makes us confident that
high-Q, doubly resonant nanocavities may be realized in PhC
slabs made of nonlinear materials, bringing exciting results
in integrated optics at the nanoscale level.

V. CONCLUSIONS

The triangular lattice of triangular holes in a high-index
dielectric slab has been thoroughly investigated by means of

FIG. 11. Cavity modes for �a� L3 cavity in triangular lattice of circular holes, �xy = +1 modes, with r /a=0.3, d /a=0.5, �=12.11; �b� L3
cavity in triangular lattice of triangular holes, �xy = +1 modes at pump frequency, with L /a=0.8, d /a=0.5, �=12.11; �c� L3 cavity in
triangular lattice of triangular holes, �xy =−1 modes at second harmonic frequency. Shaded regions represent the bulk modes of the respective
lattices projected onto the point-defect Brillouin zone.
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the guided-mode expansion method, whose detailed formu-
lation and examples of applications have been given in the
paper. The investigated lattice does have a complete band
gap for both polarizations when the fundamental waveguide
mode is considered, consistently with the results of Ref. 30,
but the gap is actually eliminated by the presence of second-
order waveguide modes. The intrinsic losses of quasiguided
modes in the triangular lattice with triangular and circular
holes, and in line-defect waveguides as well as nanocavities
defined therein, are comparable.

An interesting application of the triangular lattice of tri-
angular holes for nonlinear optics follows from the fact that
a gap for �xy = +1 �TE-like� modes at the pump frequency
can be designed to be in resonance with a gap for �xy =−1
�TM-like� modes at the harmonic frequency: Thus, resonant
second-harmonic generation exploiting band-edge effects
may be realized. Promising results are also found for point
cavities: The L3 cavity in the triangular lattice of triangular
holes supports a �xy = +1 cavity mode at � which can be
resonant with a �xy =−1 cavity mode at 2�. There is much
room for improving the design of doubly resonant, high-Q
nanocavities by geometry optimization. These results are in-
teresting in view of application of the triangular lattice of
triangular holes for nanoscale nonlinear optical processes.
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APPENDIX A: GUIDED MODES
OF THE EFFECTIVE WAVEGUIDE

The frequencies of the guided modes of the effective
waveguide are found from the implicit equations �13� for TE
polarization, and �14� for TM polarization. The guided
modes are labeled by the wave vector g and the mode index

,47 which can be combined into a single index �= �g ,
�.
The mode profiles for TE polarization can be written as fol-
lows �with the time dependence e−i��t being understood�,
with reference to the geometry of Fig. 1:

E�
guided��,z� =

eig·�

�S
i
��

c
�̂g�

A3�e−	3��z−d/2�, z �
d

2

A2�eiq�z + B2�e−iq�z, �z� �
d

2

B1�e	1��z+d/2�, z � −
d

2

�A1�

H�
guided��,z� =

eig·�

�S �
A3��	3�ĝ + igẑ�e−	3��z−d/2�, z �

d

2

A2�i�− q�ĝ + gẑ�eiq�z + B2�i�q�ĝ + gẑ�e−iq�z, �z� �
d

2

B1��− 	1�ĝ + igẑ�e	1��z+d/2�, z � −
d

2
.

�A2�

In the above expressions, S is a normalization surface, which
disappears from the final results, and the magnetic field is
obtained from the electric field through the Maxwell equa-
tion H�r�=− ic

� ��E�r�. Application of standard transfer-
matrix theory leads to the following relations between coef-
ficients �with the suffix � being understood for simplicity�:

A2 =
B1

2q
�q − i	1�eiqd/2, �A3�

B2 =
B1

2q
�q + i	1�e−iqd/2, �A4�

A3 =
B1

2q	3
�q�	3 − 	1�cos�qd� + �q2 + 	1	3�sin�qd�� ,

�A5�

and to the well-known implicit equation �13� of the main
text. The normalization integral �3� implies the relation
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	1
2 + g2

2	1
�B1�2 +

	3
2 + g2

2	3
�A3�2 + d��g2 + q2���A2�2 + �B2�2� + �g2 − q2��A2

*B2 + B2
*A2�

sin�qd�
qd

� = 1 �A6�

which, together with Eqs. �A3�–�A5�, determines all coefficients Aj and Bj. We choose B1 to be real.
The guided modes for TM polarization are characterized by the following field profiles:

H�
guided��,z� =

eig·�

�S
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where the electric field follows from the magnetic field pro-
file through Eq. �6�. The appropriate relations between coef-
ficients can be derived from �A3�–�A5� by the replacements
A→C, B→D and 	1→	1 / �̄1, q→q / �̄2 �except in the trigo-
nometric functions�, 	3→	3 / �̄3. The normalization integral
of the magnetic field gives the condition

�D1�2

2	1
+

�C3�2

2	3
+ d��C2�2 + �D2�2 + �C2

*D2 + D2
*C2�

sin�qd�
qd

� = 1.

�A9�

APPENDIX B: MATRIX ELEMENTS
FOR PHOTONIC DISPERSION

We calculate the matrix elements H�� of Eq. �5� between
guided modes of the effective waveguide from the field pro-
files given in Appendix A for TE and TM polarizations. We
adopt the following notations: ���k+G ,
���g ,
� and �
��k+G� ,
����g� ,
��, where k is the Bloch-Floquet vec-
tor, G and G� are reciprocal lattice vectors and 
,
� are the
indices of guided modes of the effective waveguide at wave
vectors k+G, k+G�, respectively. There are four kinds of
matrix elements: TE-TE, TM-TM, TE-TM, and TM-TE. The
z integral in Eq. �5� can be broken into three terms over the
regions 1–3 where the dielectric constant does not depend on
z, and can be expressed in terms of the following integrals:

I3 � �
d/2

�

e−�	3�+	3���z−d/2�dz = �	3� + 	3��−1,

I2± � �
−d/2

d/2

ei�q�±q��zdz =
sin��q� ± q��d/2�

�q� ± q��/2
,

I1 � �
−�

−d/2

e�	1�+	1���z+d/2�dz = �	1� + 	1��−1.

The xy integrals in Eq. �5� yield the inverse dielectric matri-
ces in the three layers, � j�G ,G��, defined in Eq. �16�. The
matrix elements are then obtained as follows:

H��
TE-TE = 	��

c

2	��

c

2

�̂g · �̂g� � ���̄1�2�1�G,G��B1�
* B1� I1

+ ��̄3�2�3�G,G��A3�
* A3� I3 + ��̄2�2�2�G,G��

���A2�
* A2� + B2�

* B2��I2− + �A2�
* B2� + B2�

* A2��I2+�� ,

�B1�

H��
TM-TM = �1�G,G��D1�

* D1��	1�	1�ĝ · ĝ� + gg��I1

+ �3�G,G��C3�
* C3��	3�	3�ĝ · ĝ� + gg��I3

+ �2�G,G����C2�
* C2� + D2�

* D2��

��q�q�ĝ · ĝ� + gg��I2− + �C2�
* D2� + D2�

* C2��

��− q�q�ĝ · ĝ� + gg��I2+� , �B2�

H��
TE-TM = 	��

c

2

�̂g · ĝ��− �̄1�1�G,G��B1�
* D1�	1� I1

+ �̄3�3�G,G��A3�
* C3�	3� I3 + i�̄2�2�G,G��q�

���− A2�
* C2� + B2�

* D2��I2−

+ �A2�
* D2� − B2�

* C2��I2+�� , �B3�
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H��
TM-TE = 	��

c

2

ĝ · �̂g��− �̄1�1�G,G��D1�
* B1�	1�I1

+ �̄3�3�G,G��C3�
* A3�	3�I3

− i�̄2�2�G,G��q���− C2�
* A2� + D2�

* B2��I2−

+ �D2�
* A2� − C2�

* B2��I2+�� . �B4�

APPENDIX C: SYMMETRY PROPERTIES
AND TE/TM MIXING

If the PhC slab is invariant under reflection through a
mirror plane bisecting the slab �which we take as z=0�, the
effective waveguide has the same reflection symmetry and its
eigenmodes can be classified as even or odd with respect to
the reflection operator �̂xy defined in the main text. The spa-
tial symmetries of the nonvanishing field components are
given in Table I, assuming a wave vector along the x̂ direc-
tion. The guided mode frequencies are found from the fol-
lowing implicit equations:

q sin
qd

2
− 	1 cos

qd

2
= 0 TE, �xy = + 1, �C1�

q cos
qd

2
+ 	1 sin

qd

2
= 0 TE, �xy = − 1, �C2�

q

�̄2

cos
qd

2
+

	1

�̄1

sin
qd

2
= 0 TM, �xy = + 1, �C3�

q

�̄2

sin
qd

2
−

	1

�̄1

cos
qd

2
= 0 TM, �xy = − 1. �C4�

Notice that the first-order TE and TM modes of the effective
waveguide are described by Eqs. �C1� and �C4�, respectively.
By keeping only �xy = +1 ��xy =−1� basis states in the
guided-mode expansion, photonic eigenmodes which are
even �odd� with respect to horizontal mirror symmetry are
obtained, and the computational effort in solving the eigen-
value equation �4� is reduced.

In general, a photonic eigenmode in a PhC slab is a linear
combination of TE- and TM-polarized basis states and all six
components of the electric and magnetic field are nonvanish-
ing. Nevertheless, low-lying photonic modes are often domi-
nated by the lowest-order guided mode of the effective
waveguide. In this situation, �xy = +1 states are dominated by
the TE guided modes described by Eq. �C1� and can be
called “quasi-TE,” while �xy =−1 states are dominated by the
TM guided modes described by Eq. �C4� and can be called
“quasi-TM.” This widespread terminology is useful and ap-
propriate for large wave vectors, when the dominant field
components are the spatially even ones: making reference to
Table I, and since the dielectric modulation � j�xy� couples
guided modes with all wave vector directions in the 2D
plane, the dominant components are Ex ,Ey ,Hz �for �xy = +1
or TE-like modes� or Hx ,Hy ,Ez �for �xy =−1 or TM-like
modes�. However, the terminology becomes inadequate

when the PhC slab is multimode, as it always happens at
sufficiently high frequencies. If the waveguide is not sym-
metric, any PhC slab mode is a linear combination of basis
states arising from all Eqs. �C1�–�C4� and even the lowest-
order TE/TM guided modes of the effective waveguide are
mixed.

APPENDIX D: RADIATION MODES
OF EFFECTIVE WAVEGUIDE

In this appendix we give the radiation modes of the effec-
tive waveguide which are outgoing in either the lower or the
upper cladding �see Fig. 2�. Each of these radiation modes is
labeled by the wave vector g in the 2D plane, the frequency
�, and the polarization. In the following the quantum num-
bers g ,� will be understood in order to simplify the nota-
tions. Instead of distinguishing between real and imaginary
components of the wave vectors in the three regions as in Eq.
�12�, we define three complex wave vectors as

qj = 	�̄ j
�2

c2 − g2
1/2

, j = 1,2,3. �D1�

While the wave vector q2 in the core region is always real,
the wave vectors q1 ,q3 in the cladding regions can be either
real or purely imaginary according to the values of the di-
electric constants and of g ,�. If the effective waveguide is
symmetric ��̄1= �̄3� all radiation modes have real q1 ,q3, while
if �̄1��̄3 there is a frequency region cg /��̄1���cg /��̄3 in
which q1 is real but q3 is imaginary: i.e., a quasiguided mode
in this region of k-� space is diffracted to the lower �but not
to the upper� cladding. This phenomenon is automatically
taken into account by the Heaviside �-function in the DOS
formula �20�, as the photonic DOS vanishes when qj is
imaginary. Therefore we shall write down the electric and
magnetic field components of radiative modes assuming that
all qj’s are real—if one of them is purely imaginary, that
radiation mode does not carry an energy flux and it does not
contribute to scattering loss.

With this proviso, the radiation modes of the effective
waveguide for TE polarization in the three regions j
=1,2 ,3 can be written as follows �setting z1=−d /2, z2=0,
z3=d /2 and with the time dependence e−i�gt being under-
stood�:

E j
rad��,z� =

eig·�

�S
i�̂g�Wje

iqj�z−zj� + Xje
−iqj�z−zj�� , �D2�

TABLE I. Spatial symmetry of the electric and magnetic field
components of an eigenmode of a symmetric waveguide with re-
spect to the mirror symmetry operation �̂xy. The wave vector is
assumed to lie along the x̂ direction. Vanishing components are
denoted by “*.”

Ex Ey Ez Hx Hy Hz

TE, �xy = +1 * + * − * +

TE, �xy =−1 * − * + * −

TM, �xy = +1 + * − * − *

TM, �xy =−1 − * + * + *
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H j
rad��,z� =

eig·�

�S
i
c

�
��gẑ − qjĝ�Wje

iqj�z−zj�

+ �gẑ + qjĝ�Xje
−iqj�z−zj�� . �D3�

For the scattering state which is outgoing in the lower clad-
ding �Fig. 2�a��, W1=0 and the normalization condition �3�
determines the coefficient of the outgoing component53 as

X1=1/��1̄. All other coefficients are then found from a stan-
dard transfer-matrix calculation, which yields

�W2

X2
� =

1

2q2
� �q2 + q1�eiq2d/2 �q2 − q1�eiq2d/2

�q2 − q1�e−iq2d/2 �q2 + q1�e−iq2d/2��W1

X1
�

�D4�

and

�W3

X3
� =

1

2q3
��q3 + q2�eiq2d/2 �q3 − q2�e−iq2d/2

�q3 − q2�eiq2d/2 �q3 + q2�e−iq2d/2��W2

X2
� .

�D5�

On the other hand, for the state outgoing in the upper clad-
ding �Fig. 2�b��, X3=0 and the proper normalization

condition53 is W3=1/��3̄. The other coefficients can then be
found from the inverse relations of �D4� and �D5�.

For what concerns TM-polarized radiation modes, the
field profiles are given by

H j
rad��,z� =

eig·�

�S
�̂g�Y je

iqj�z−zj� + Zje
−iqj�z−zj�� , �D6�

E j
rad��,z� = −

eig·�

�S

c

�̄ j�
��gẑ − qjĝ�Y je

iqj�z−zj�

+ �gẑ + qjĝ�Zje
−iqj�z−zj�� . �D7�

For the scattering state outgoing in the lower cladding �Fig.
2�a��, Y1=0 and the normalization condition �3� determines
the coefficient of the outgoing component as Z1=1. For the
state outgoing in the upper cladding �Fig. 2�b��, Z3=0 and
the proper normalization condition is Y3=1. All other coef-
ficients can be found from transfer-matrix theory, the rel-
evant expressions being obtained from �D4� and �D5� by the
replacements W→Y, X→Z, and qj→qj / �̄ j �except in the
exponential functions�.

APPENDIX E: MATRIX ELEMENTS
FOR DIFFRACTION LOSSES

We calculate the matrix elements �22� between guided
and radiation modes of the effective waveguide, to be used in
formula �21� for the loss calculation. The expressions are
similar to those of Appendix B, but care must be taken to
distinguish between the different quantum numbers. Guided
modes are labeled by the wave vector k+G�g and by the
index 
, which are combined as before into a single index �.
Radiation modes are labeled by the wave vector k+G��g�,
the frequency �, the polarization �, and an additional index
which specifies whether the mode is outgoing in medium 1

or 3: All these quantum numbers will be grouped into a
single index r. Like for the matrix elements between guided
modes, there are four possible combinations of polarizations.
The z integral can be broken into three terms over the regions
1–3 and it can be expressed in terms of the following inte-
grals:

I3± � �
d/2

�

e−�	3�±iq3r��z−d/2�dz = �	3� ± iq3r�−1,

I2± � �
−d/2

d/2

ei�q�±q2r�zdz =
sin„�q� ± q2r�d/2…

�q� ± q2r�/2
,

I1± � �
−�

−d/2

e�	1�±iq1r��z+d/2�dz = �	1� ± iq1r�−1.

The matrix elements between guided and radiative modes are
found as follows:

H�,r
TE-TE = 	��

c

2�r

c
�̂g · �̂g����̄1�2�1�G,G��B1�

*

��W1rI1+ + X1rI1−� + ��̄3�2�3�G,G��A3�
*

��W3rI3− + X3rI3+� + ��̄2�2�2�G,G��

���A2�
* W2r + B2�

* X2r�I2− + �A2�
* X2r + B2�

* W2r�I2+�� ,

�E1�

H�,r
TM-TM = �1�G,G��D1�

* ��gg� + i	1�q1rĝ · ĝ��Y1rI1+

+ �gg� − i	1�q1rĝ · ĝ��Z1rI1−�

+ �3�G,G��C3�
* ��gg� − i	3�q3rĝ · ĝ��Y3rI3−

+ �gg� + i	3�q3rĝ · ĝ��Z3rI3+�

+ �2�G,G����C2�
* Y2r + D2�

* Z2r�

��gg� + q�q2rĝ · ĝ��I2−

+ �C2�
* Z2r + D2�

* Y2r��gg� − q�q2rĝ · ĝ��I2+� ,

�E2�

H�,r
TE-TM = i	��

c

2

�̂g · ĝ���̄1�1�G,G��q1rB1�
*

��− Y1rI1+ + Z1rI1−�

+ �̄3�3�G,G��q3rA3�
* �− Y3rI3− + Z3rI3+�

+ �̄2�2�G,G��q2r��− A2�
* Y2r + B2�

* Z2r�I2−

+ �A2�
* Z2r − B2�

* Y2r�I2+�� , �E3�

H�,r
TM-TE =

�r

c
ĝ · �̂g��− �̄1�1�G,G��	1�D1�

* �W1rI1+ + X1rI1−�

+ �̄3�3�G,G��	3�C3�
* �W3rI3− + X3rI3+�

− i�̄2�2�G,G��q���D2�
* X2r − C2�

* W2r�I2−

+ �D2�
* W2r − C2�

* X2r�I2+�� . �E4�
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APPENDIX F: FOURIER TRANSFORM
OF TRIANGULAR HOLES

We give here the complex Fourier transform of the dielec-
tric constant in the unit cell for the triangular lattice of trian-
gular holes, to be used for the calculations shown in Secs. III
and IV. Let us refer to the geometry shown in Fig. 5, the side
of the triangle and the lattice constant being denoted by L
and a, respectively. The triangle is made of a medium of
dielectric constant �1 �in the case of an air hole, �1=1� em-
bedded in a background with dielectric constant �2. The ori-
gin of coordinates in the unit cell is taken to be at the center
of the triangle. The filling factor of the triangle is

f =
�3L2

4A
, �F1�

where A=�3a2 /2 is the unit-cell area. The Fourier transform
is written as

��G� =
1

A
�

cell
����e−iG·�d� . �F2�

For zero reciprocal lattice vector it is obviously given by

��G = 0� = f�1 + �1 − f��2. �F3�

For nonzero reciprocal lattice vector it is calculated as

��G � 0� = f��1 − �2��I�Gx,Gy� + I�− Gx,Gy�� , �F4�

where

I�Gx,Gy = 0� =
1

gx
2 �1 − e−igx� −

i

gx
, �F5�

I�Gx,Gy � 0� =
i

gy
ei��gy/3�−�gx/2��

��e−i�gy/2�j0	gx − gy

2

 − j0	gx

2

� ,

�F6�

with gx=GxL /2, gy =�3GyL /2 and j0�x�=sin�x� /x. In this
work, the triangles are oriented in such a way that one of the
triangle sides is along the x axis as in Fig. 5 �i.e., along the
�-K direction of the triangular lattice�: If other orientations
have to be considered, the simplest way is to apply a 2D
rotation matrix to the vector G before calculating the Fourier
transform with the above formulas.
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