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The density-functional theory total energy within the projector-augmented wave formalism is expressed in a
form suitable for application of the variation-perturbation formalism. We derive the corresponding expressions
up to the third order. The much deeper complexity of the projector-augmented wave formalism, compared to
the norm-conserving pseudopotential case, implies the introduction of several new notations. However, the
structure of the resulting formalism is quite similar, and should be as useful, accurate, and widely applicable.
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I. INTRODUCTION

The computation of properties of condensed matter, based
on first-principles within density functional theory �DFT�,1
involves choices related to the representation of electronic
wavefunctions as well as to the treatment of core electrons.
Several methodologies are well-established, like those based
on pseudopotentials or those based on “augmented waves.”

Pseudopotentials allow one to ignore the core electrons, at
the expense of the replacement of the strong nuclear Cou-
lomb potential of the all-electron system by a weak pseudo-
potential, designed to mimick the scattering due to the com-
bined effect of nuclei and core electrons. This replacement
leads to a somewhat uncontrolled approximation of the all-
electron system. However, with a weak pseudopotential, a
plane-wave basis can be used to represent the electronic
wavefunctions, with many computational advantages. The
norm-conserving2 separable3 pseudopotential method, thanks
to its simplicity, elegance, and computational efficiency, is
widely used in present-day research. For systems that include
elements in the transition metal series, or for actinides, or
even for elements in the right-side of first row of the periodic
table, the size of the plane wave basis has been further de-
creased by the introduction of ultra-soft pseudopotentials
�USPP�,4 at the expense of the loss of simplicity.

Borrowing ideas from the augmented-waves methodol-
ogy, Blöchl designed a formalism5 called projector aug-
mented waves �PAW�, in which an accurate, all-electron, rep-
resentation of the electronic system is placed in one-to-one
correspondence with a pseudopotential-like treatment of the
valence and conduction electrons.5–7 In particular, the elec-
tronic system can be represented by a small set of plane-
waves, of a size comparable to the USPP case. Actually, the
USPP treatment can even be derived from the PAW treat-
ment, provided some terms are assumed to be constants.6 Of
course, the PAW formalism has the conceptual advantage of
being directly derived from an all-electron approach thanks
to a well-controlled approximation. As such, it seems to
gather all advantages from the different methodologies, and
would be the method of choice, if it were not for its com-
plexity.

First-principles approaches, considered both within the
pseudopotential framework or the augmented waves frame-
work, provide a direct approach to total energy and charge
densities of electronic systems. However, many other prop-
erties of such systems are derivatives of the total energy with
respect to perturbations, like an electric field, an atomic dis-
placement, the change of the primitive vectors, or combina-
tions thereof. First-order derivatives can be computed
straighforwardly from the Hellmann-Feynman theorem,1

providing forces, stresses, or polarization. For higher-order
derivatives, like interatomic force constants �leading to pho-
non band structures�, dielectric tensors, Raman tensors,
Grüneisen parameters, etc., the simplest approach would be
to rely on finite-differences of first-order derivatives. How-
ever, by mixing perturbation theory with density-functional
theory, it is possible to obtain a much more powerful, com-
putationally efficient, and systematic treatment of the deriva-
tives, as realized by Baroni and co-workers.8

The resulting framework, called density perturbation
functional theory �DFPT�,9 has been extensively studied, and
used for practical applications. Expressions have been ob-
tained to all orders of perturbation.10 The existence of a
variational principle for the total energy as a functional of
wavefunctions11,12 is at the heart of this framework. An in-
terplay between expansions of the wavefunctions and the to-
tal energy allows one to get, for example, all mixed
second-order13 and third-order14 derivatives of the total en-
ergy from the knowledge of the first-order derivative wave-
functions, the latter being determined by the minimization of
a second-order total energy, or the resolution of a generalized
Sternheimer equation.9

This framework, when considered up to the second-order
of total energy derivatives only, has been implemented
in numerous softwares, most of them based on
norm-conserving pseudopotentials �NCPP� and plane
waves, with the noticeable exceptions of the USPP imple-
mentation of PWSCF/PHONON,15 based on the derivation
by Dal Corso and co-workers,16,17 the LMTO implementa-
tion of Savrasov,18 the LAPW implementation of Yu and
Krakauer,19 and the local orbital approach of Heid and
Bohnen.20 To our knowledge, only the linear response to the
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very specific external field perturbation has been examined
within PAW.21

Concerning third-order derivatives of the total energy,
they have only been established and implemented within the
norm-conserving pseudopotential framework.10,15,22–25

The PAW formalism complexity contrast with the simplic-
ity of the norm-conserving pseudopotential framework.
Moreover, the density-functional perturbation theory, even in
the case of norm-conserving pseudopotentials, can become
rapidly quite complex. It will be the purpose of the present
paper to establish the equations for the density-functional
perturbation theory within PAW, up to the third-order deriva-
tive of the total energy, for generic perturbations �except
those perturbations affecting the space metric, like the strain
perturbation�.

The chain of dependencies that link the PAW total energy
to the wavefunctions includes several levels. Our first task
will be to identify correctly the dependences and the levels.
Then, in order to present the expressions in a systematic way,
new notations will be introduced see, e.g., Eqs. �29�, �37�,
�52�, �84�, �85�, and �87�. We have checked that such equa-
tions and the corresponding new notations can be general-
ized to the case of mixed perturbations �see Appendix G�.

In Sec. II, after a short summary of the main results of
variation-perturbation theory, we present a formulation of the
PAW total energy as a variational functional of the wave-
functions, depending on some parameter �, taking into ac-
count the constraints thanks to Lagrange parameters. The
chain of dependencies is analyzed carefully. Our notations
and basic PAW “usual” expressions are presented in Appen-
dix A. The formulas for the first-order derivatives are pre-
sented in Sec. III, and follow quite straighforwardly from the
Hellmann-Feynman theorem. Although these are mostly
known results,5,6 the notations and equations in this section
will prove useful in the next ones. The variational principle
for the second-order derivative of the total energy, quadratic
in the pseudo-wave functions, is presented in Sec. IV. The
associated Euler-Lagrange equations, also called generalized
Sternheimer equations, are presented in Sec. V. In the same
section, Lagrange multipliers and gauge freedom are briefly
discussed. We derive a nonvariational form of the second-
order derivative of the total energy, linear in the wavefunc-
tions, in Sec. VI. In the Sec. VII, we establish the notation
and expressions for the third-order derivative of the total
energy. In the body of the text, we have tried to focus on the
new notations and correspondences between important for-
mulas. Additional detailed expressions are given in Appendi-
ces B–F. An even more extensive account of the present
theory in given in Ref. 26.

Throughout this article, we will use atomic �Hartree�
units.

II. THE PAW TOTAL ENERGY AS A VARIATIONAL
FUNCTIONAL

In order to apply the well-established perturbation theory
of a variational principle,11 we must build an expression of
the PAW total energy �see Appendix A�, as a variational

functional of a set of pseudo-wave wavefunctions �̃i. Gener-

alized orthonormalization constraints should be taken into
account thanks to Lagrange multipliers. We want also to
keep track from the very start, of the possible dependencies
of the different terms in this total energy expression upon
some parameter �, describing the perturbation. In this sec-
tion, we will adopt the convention that square brackets indi-

cate the different � and/or �̃i-dependencies of the term pre-
ceding them. The x-dependence of densities and potentials
will not be indicated, except when there is a risk of confu-
sion.

Let us denote such a variational PAW total energy expres-

sion, that includes the constraint terms, as Etot
+ ��̃i ,��. The

minimization procedure will select among the trial pseudo-

wavefunctions �̃i, those giving the lowest energy. Such a
minimization procedure can be performed for different val-
ues of �, and will select different optimized pseudo-
wavefunctions. The pseudo-wavefunctions, determined

variationally, acquire thus a �-dependence, �̃i���.
In the variation-perturbation theory,11 all physical quanti-

ties X �like densities, energy, atomic datas, etc.� are expanded
in terms of �:

X��̃i���,�� = X�0� + �X�1� + �2X�2� + ¯ �1�

with X�n�= 1
n! ��

dn

d�n X���=0. A first theorem of variation-
perturbation theory states that the knowledge of the expan-

sion of �̃i��� up to order n allows one to determine the ex-

pansion of Etot
+ ��̃i ,�� up to order 2n+1. Explicitly,

Etot
+�2n+1� = �Etot

+ ��
j=0

n

� j�̃i
�j�,�	
�2n+1�

�2�

For even orders, one finds a variational �minimum� principle:

Etot
+�2n� = min

�̃i,trial
�n�

�Etot
+ ��

j=0

n−1

� j�̃i
�j� + �n�̃i,trial

�n� ,�	
�2n�

�3�

At the minimum, �̃i,trial
�n� is equal to �̃i

�n�.
From the PAW standard expressions �Appendix A�, one

can build the requested PAW total energy expression, suit-
able for the application of the variation-perturbation theory
whose critical terms will be detailed in Eqs. �6�–�16�:
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Etot
+ ��̃i,�� = �

j=1

N

��̃ j�H̃KV�����̃ j� − �
j,j�=1

N

� j j���̃i,�����̃ j�S̃�����̃ j�� − � j j��

+ ẼHxc��̃��̃i�, �̂��̃i,��,�1
k��̃i,��, �̃1

k��̃i,��, �̂k��̃i,��, �̃c���,�c
k���, �̃c

k����

+ �
k=1

K 

�k

Vext����Zc

k ���dx +
1

2�
k=1

K 

�k



�k

�Zc

k ����x��Zc

k ����y�

�x − y�
dxdy + U��� �4�

This expression, considered for some value of � should be

minimized by varying the pseudo-wavefunctions �̃i, for all i
between 1 and N. The N2 constraints describing the general-
ized orthonormalization conditions

��̃ j�S̃�����̃ j�� − � j j� = 0 �5�

should be enforced, after the minimization, by the adequate

choice of the Lagrange multipliers � j j���̃i ,��, see the second
term of Eq. �4�.

Equation �4� does not take into account metallic occupan-
cies �the pseudo-wavefunctions are all occupied wavefunc-
tions�, as well as the possible spin-polarization of the system.
Also, it does not take into account the possibility that the
very expressions of scalar products or Hartree convolutions,
might be �-dependent. The generalization to metals and spin-
polarized systems can be done in a way very similar to the
one followed in the NCPP and USPP cases,27 without any
additional complication specifically due to the PAW. By con-
trast, the possible additional �-dependencies in scalar prod-
ucts or Hartree convolutions, would lead to much more in-
tricate formulas. Actually, such dependences are needed only
in the case of perturbations acting on the space metrics �the
only useful case in the present practice being the strain-type
perturbation�. The corresponding formalism has been devel-
oped only very recently,28 in the NCPP case. To avoid un-
needed complexity, we will ignore the possibility a
�-dependence mediated by the metrics. In the same spirit, the
Laplacian as well as atomic orbitals �p

k, �̃p
k �see Appendix A�

can be considered as �-independent.
The last line of Eq. �4� includes contributions that do not

depend on the wavefunctions. Hence, the computation of
their derivative should not pose any specific problem. The
first of these terms takes into account a possible applied ex-

ternal potential, also present in the forthcoming Eqs. �6� and
�7�.

The three first terms of Eq. �4� will now be detailed, one
after the other. In order to deal with the operator H̃KV and the
overlap one S̃ in a compact notation, we replace the dyadic
product �p̃p

k��p̃q
k� by the slightly shorter �p̃p

k p̃q
k†�. The operator

H̃KV, related to the kinetic energy and the attractive potential
between electrons and nuclei, is defined by:

H̃KV��� = −
1

2
�2 + VH��̃Zc

���� + Vext���

+ �
k=1

K

�
p,q=1

Npk

Ekpq����p̃p
k p̃q

k†���� �6�

with

Ekpq��� = �
LM



R3
�VH��̃Zc

���� + Vext����Q̂kpq
LM���dx

+ ��p
k � −

1

2
�2 + VH

��k

��Zc

k ���� + Vext�����q
k�k

− ��̃p
k � −

1

2
�2 + VH

��k

��̃Zc

k ���� + Vext�����̃q
k�k

− �
LM



�k

�VH
��k

��̃Zc

k ���� + Vext����Q̂kpq
LM���dx .

�7�

These expressions, Eqs. �6� and �7�, do not depend on the
pseudo-wavefunctions. Hence, as for the last three terms of
Eq. �4�, the computation of their derivative should not pose
any specific problem, see Appendix B.

Let us come to the Hartree and exchange-correlation en-
ergy. We write29

ẼHxc��̃��̃i�, �̂��̃i,��,�1
k��̃i,��, �̃1

k��̃i,��, �̂k��̃i,��, �̃c���,�c
k���, �̃c

k����

= EHxc��̃��̃i� + �̂��̃i,��; �̃c���� + �
k=1

K

�EHxc��1
k��̃i,��;�c

k���� − EHxc��̃1
k��̃i,�� + �̂k��̃i,��; �̃c

k�����
��k

�8�
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in which we have combined the Hartree and exchange-
correlation contributions, on the basis of the following nota-
tion

EHxc��;�c� = EH��� + Exc�� + �c� . �9�

The different densities are:

�̂��̃i,�� = �
k=1

K

�̂k��̃i,�� , �10�

�̃��̃i� = �
j=1

N

��̃ j�2, �11�

�1
k��̃i,�� = �

p,q=1

Npk

�kpq��̃i,���p
k�q

k*, �12�

�̃1
k��̃i,�� = �

p,q=1

Npk

�kpq��̃i,���̃p
k�̃q

k* �13�

and

�̂k��̃i,�� = �
p,q=1

Npk

�
LM

�kpq��̃i,��Q̂kpq
LM��� �14�

with the coefficients

�kpq��̃i,�� = �
i=1

N

��̃i��p̃q
kp̃p

k†������̃i�k �15�

We come now to the second term in Eq. �4�. It is made of

two factors. The Lagrange multipliers � j j���̃i ,�� that guar-
antee the fulfillment of the constraints, are obtained from

� j j���̃i,�� = ��̃ j��H̃��̃i,����̃ j� �16�

The Hamiltonian H̃��̃i ,�� also appears in the Euler-Lagrange
equations derived from Eq. �4�:

H̃�̃ j = �
j�=1

N

� j j�S̃�̃ j�. �17�

After a unitary rotation of the pseudo-wavefunctions �̃i, one
can deduce the Kohn-Sham equations from Eq. �17�.

This Hamiltonian H̃��̃i ,�� depends itself on the pseudo-
wavefunctions and on �. Indeed,

H̃��̃i,�� = −
1

2
�2 + VH��̃Zc

���� + VHxc��̃��̃i� + �̂��̃i,��; �̃c���� + Vext���

+ �
k=1

K

�
p,q=1

Npk

�D̃kpq��̃i,�� + Dkpq
1 ��̃i,�� − D̃kpq

1 ��̃i,����p̃p
k p̃q

k†���� �18�

with

D̃kpq��̃i,�� = 

R3

�VH��̃Zc
���� + VHxc��̃��̃i� + �̂��̃i,��; �̃c���� + Vext������

LM

Q̂kpq
LM���
dx , �19�

Dkpq
1 = ��p

k � −
1

2
�2 + VH

��k

��Zc

k ���� + VHxc
��k

��1
k��̃i,��;�c

k���� + Vext�����q
k�k �20�

and

D̃kpq
1 = ��̃p

k � −
1

2
�2 + VH

��k

��̃Zc

k ���� + VHxc
��k

��̃1
k��̃i,�� + �̂k��̃i,��; �̃c

k���� + Vext�����̃q
k�k

+ 

�k

�VH
��k

��̃Zc

k ���� + VHxc
��k

��̃1
k��̃i,�� + �̂k��̃i,��; �̃c

k���� + Vext������
LM

Q̂kpq
LM���
dx . �21�
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To simplify the notations in the previous expressions, we
have combined the Hartree and exchange-correlation poten-
tials as follows �see Eq. �9��:

VHxc��;�c� = VH��� + Vxc�� + �c� . �22�

The second factor in the third term in Eq. �4� relies on the
definition of the overlap operator

S̃��� = I + �
k=1

K

�
p,q=1

Npk

Skpq�p̃p
k p̃q

k†���� �23�

with

Skpq = ��p
k ��q

k�k − ��̃p
k ��̃q

k�k. �24�

Equations �23� and �24� are independent of the pseudo-
wavefunctions.

In view of the perturbation expansion, we will add two
hypotheses to our formulation. First, we suppose that the
zero-order pseudo-wavefunctions have been unitary trans-
formed such as to satisfy Kohn-Sham eigenequations, in-
stead of the nondiagonal Eqs. �17�. Thus,

� j j�
�0� = � j

�0�� j j� �25�

Second, the external potential Vext��� vanishes at �=0, and is
a linear function of the parameter �:

Vext��� = �Vext
�1� �26�

Thus, our PAW formulation is made of Eqs. �4�–�26�. It is
significantly more complex than the corresponding NCPP
total energy.10

Let us analyze the dependencies, with respect to pseudo-
wavefunctions, of the six terms in Eq. �4�. The first term

�based on H̃KV�, and the second factor of the second term,
have an explicit quadratic dependence on the pseudo-

wavefunctions �̃i, while the last three terms have no depen-
dences on the pseudo-wavefunctions. The longest chain of

dependencies for the exchange-correlation term ẼHxc is as
follows:

��̃i� → ��kpq� → ��1
k, �̃1

k, �̂k� → �ẼHxc� �27�

The longest chain of dependencies for the Lagrange multi-
pliers in the second term of Eq. �4� is even longer �and,
moreover, the Lagrange multipliers must be multiplied by the
second factor in this second term�:

��̃i� → ��kpq� → ��1
k, �̃1

k, �̂k� → �Dkpq
1 ,D̃kpq

1 � → �H̃� → �� j j��

�28�

In this framework, we are going to build the expressions
of Etot

+�1�, Etot
+�2� and Etot

+�3�.

III. FIRST-ORDER CHANGE OF TOTAL ENERGY

Due to the complex dependencies of the PAW total energy
Eq. �4�, we will benefit a lot from notations that takes into
account the limited wavefunction expansion that is needed in

Eqs. �2� and �3�. We define, for all the quantities X��̃i��� ,��,
the incomplete terms of the series expansion:

X�2n + 1� = �X��
j=0

n

� j�̃i
�j�,�	
�2n+1�

�29�

and

X�2n� = �X��
j=0

n

� j�̃i
�j�,�	
�2n�

. �30�

For the specific case of the total energy, Eqs. �2� and �3�
imply, for all m:

Etot
+�m� = Etot

+�m� � �31�

But this equality is true only for the total energy.
Let us focus on the first-order incomplete terms �terms for

higher orders will be found in the following sections�. We
have

X�1� � = �X��̃i
�0�,����1� =

�X

��
, �32�

so that, X�1� � is equal to the partial derivative of X with respect
to �, and

X�1� =
dX

d�
= �

i=1

N
�X

��̃i

�̃i
�1� + X�1� �, �33�

Eq. �2� taken with n=0 gives the first-order term in the

expansion of the energy, for which the knowledge of �̃i
�0� is

sufficient. For the unperturbed wavefunctions, and evaluated

at �=0, the Lagrange constraint term ���̃i � S̃��� � �̃ j�−�ij�
vanish.

From Eqs. �2� and �4�, we derive thus

Etot
+�1� = �

i=1

N

��̃i
�0��H̃KV

�1� − �i
�0�S̃�1���̃i

�0�� + �ẼHxc��1� �

+ �
k=1

K 

�k

Vext
�1��Zc

k�0�dx

+ �1

2�
k=1

K 

�k



�k

�Zc

k �x��Zc

k �y�

�x − y�
dxdy + U
�1�

.

�34�

H̃KV
�1� and S̃�1� are specified in Appendix B.
The exchange-correlation energy derivative is the most

embarrassing term. Using the fact that only the �̃i
�0� are

needed for the knowledge of �ẼHxc��1� �, we introduce the fol-
lowing decomposition:

�EHxc�����;�c������1� � = EHxc� ���0�;�c
�0�� · ���1� �;�c

�1�� �35�

where we have set
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EHxc� =
�EHxc

��
= VH + Vxc = VHxc �36�

and abbreviate further the final expression thanks to the defi-
nition

EHxc� ���0�;�c
�0�� · ���1�;�c

�1��

=
 VHxc���0�;�c
�0�����1�;�c

�1��

=
 VH���0����1�dx +
 Vxc��� + �c��0���� + �c��1�dx .

�37�

We also need first-order derivatives of the different den-
sities. In the norm-conserving formalism, the electronic den-
sity � only depends on the wavefunctions, implying that
��1� �=0. In the PAW formalism, we have the same thing for �̃,
which depends on � only in an implicit way:

�̃�1� = �
i=1

N

��̃i
�0�*�̃i

�1� + �̃i
�1�*�̃i

�0�� , �38�

meaning also that �̃�1� �=0. For �1, �̃1, and �̂, the dependence
of � are both implicit and explicit. We have gathered all the
equations defining derivatives of densities in Appendix C.

Thanks to Eqs. �35� and �38�, Eq. �34� becomes:

Etot
+�1���̃i

�0�� = �
i=1

N

��̃i
�0��H̃KV

�1� − �i
�0�S̃�1���̃i

�0�� + 

R3

VHxc���̃ + �̂��0�; �̃c
�0����̂�1� �; �̃c

�1��dx

+ �
k=1

K 

�k

VHxc
��k

��1
k�0�;�c

k�0����1
k�1� �;�c

k�1��dx − �
k=1

K 

�k

VHxc
��k

���1
k + �̂k��0�; �̃c

k�0�����̃1
k + �̂k��1� �; �̃c

k�1��dx

+ �
k=1

K 

�k

Vext
�1��Zc

k�0�dx + �1

2�
k=1

K 

�k



�k

�Zc

k �x��Zc

k �y�

�x − y�
dxdy + U
�1�

. �39�

In the case of perturbation caused by atomic displace-
ments, Blöchl,5 as well as Kresse and Joubert6 have derived
a PAW expression for the forces. The correspondence with
the present formalism will be derived now. We have to con-
sider in a different way the change of atomic positions in the
“real” space, on one hand, and in the spaces �k attached to
the atomic spheres, on the other hand. Indeed, for the space
attached to the sphere, there is no direct effect of an atomic
position change: The positions are relative to the origin of
the sphere. By contrast, the atomic position changes will
affect all the atomic functions in the “real” space. So, the
changes of core densities in the space “attached” to the
spheres vanish: �c

k�1�= �̃c
k�1�=0. By contrast, this is not the

case for the changes of core densities in real space �̃c
�1�. The

external potential change vanishes also, Vext
�1��x�=0, as well as

the change of self-interaction of core charge �Zc

k .

For H̃KV
�1� , the general expression Eq. �B1�, presented in

Appendix B, simplifies to

H̃KV
�1� = VH��̃Zc

�1�� + �
k=1

K

�
p,q=1

Npk

Ekpq
�0� �p̃p

k p̃q
k†��1�

+ �
k=1

K

�
p,q=1

Npk ��
LM



R3
�VH��̃Zc

�Q̂kpq
LM��1�dx	�p̃p

k p̃q
k†��0�.

�40�

Now, we can reformulate Eq. �39� to make exactly appear the
different forces according to Ref. 6:

Etot
+�1� = − �F1 + F2 + F3 + Fnlcc� + U�1�, �41�

with

F1 = − 

R3

�VH��̃Zc

�1�����̃ + �̂��0�dx , �42�

F2 = − �
k=1

K

�
p,q=1

Npk

�
LM



R3
�kpq

�0� �VH��̃Zc

�0�� + VHxc���̃ + �̂��0�; �̃c
�0����Q̂kpq

LM��1�dx , �43�
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F3 = − �
i=1

N

�
k=1

K

�
p,q=1

Npk

�D̃kpq + Dkpq
1 − D̃kpq

1 − �iSkpq��0���̃i
�0���p̃p

k p̃q
k†��1���̃i

�0�� �44�

and

Fnlcc = − 

R3

Vxc���̃ + �̂ + �̃c��0���̃c
�1�dx . �45�

IV. SECOND-ORDER CHANGE OF TOTAL ENERGY

The second-order energy term Etot
+�2� is given by Eq. �3� for

n=1, also a variational principle with respect to the first-

order wavefunctions �̃i
�1�. Higher-order pseudo-

wavefunctions are not needed.

To get Etot
+�2�, we have to characterize perturbation terms

up to the second order. We introduce quantities X�2� �, follow-
ing Eq. �30�, or equivalently, from the following expansion:

X��̃i
�0� + ��̃i

�1�,�� = X�0� + �X�1� + �2X�2� � + �3X�3� � + ¯

�46�

To build X�2� �, only first-order and zero-order wavefunctions

�̃i are needed; the exact second-perturbation term X�2� would

need at least an expansion up to the second-order �̃i
�2�, except

for Etot
+�2�=Etot

+�2� �.
The variational principle can now be written as follows:

Etot
+�2� = min

�̃i
�1�
��

i=1

N

���̃i�H̃KV��̃i���2� � − �
j,j�=1

N

� j j�
�0����̃ j�S̃��̃ j���

�2� � + �ẼHxc��2� ��
+ �

k=1

K 

�k

Vext
�1��Zc

k�1�dx + �1

2�
k=1

K 

�k



�k

�Zc

k �x��Zc

k �y�

�x − y�
dxdy + U
�2�

. �47�

under the constraints

��̃ j
�1��S̃�0���̃ j�

�0�� + ��̃ j
�0��S̃�0���̃ j�

�1�� + ��̃ j
�0��S̃�1���̃ j�

�0�� = 0.

�48�

The first two terms are expanded as follows

���̃i�H̃KV��̃i���2� � = ��̃i
�1��H̃KV

�0� ��̃i
�1�� + ��̃i

�0��H̃KV
�1� ��̃i

�1��

+ ��̃i
�1��H̃KV

�1� ��̃i
�0�� + ��̃i

�0��H̃KV
�2� ��̃i

�0�� .

�49�

and

���̃ j�S̃��̃ j���
�2� � = ��̃ j

�1��S̃�0���̃ j�
�1�� + ��̃ j

�0��S̃�1���̃ j�
�1��

+ ��̃ j
�1��S̃�1���̃ j�

�0�� + ��̃ j
�0��S̃�2���̃ j�

�0�� �50�

In the second term, we will need only the j= j� contribution,
due to Eq. �25�.

In order to cope with the long chain of dependencies, e.g.,
Eqs. �27� and �28�, we will need one more notational handle.
Suppose that one quantity X depends on �, as well as on
another quantity Y, that depends also on �. Then,

X�2� =
1

2
� d2

d�2X�Y���,��

��=0

=
�X

�Y
Y�2� +

1

2

�2X

�Y2 �Y�1��2 + � �

��

�X

�Y



��=0

Y�1� +
1

2
� �2X

��2

��=0

.

�51�

An even more complex expression is found for the third-
order expressions, see Sec. VII. We aim at a concise and
systematic identification of the four terms in Eq. �51�. One
can distinguish them on the basis of the set of superscripts of
Y factors in each term.30 For Eq. �51�, we write

X�2� = X�2:2� + X�2:1,1� + X�2:1� + X�2:0�. �52�

with

X�2:2� =
�X

�Y
Y�2�, �53�

X�2:1,1� =
1

2

�2X

�Y2 �Y�1��2, �54�
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X�2:1� = � �

��

�X

�Y



��=0

Y�1� �55�

and

X�2:0� =
1

2
� �2X

��2

��=0

. �56�

Such a decomposition easily generalizes to higher-order
expansions. In particular, we have

X�k:0� =
1

k!
� �kX

��k

��=0

, �57�

and

X�k:k� = ��X

�Y



��=0

Y�k�. �58�

It generalizes also easily to more than one Y argument, by
collecting the superscripts in a set, as previously, without
taking care of the different arguments.

In the particular case where Y���= �̃���, where �̃ is a
pseudo-wavefunction, we find

X�2� � = X�2� :1,1� + X�2� :1� + X�2� :0�, �59�

because the expansion of the pseudowavefunctions up to the
first order only is needed �so, the contribution that would be
labelled X�2� :2� vanishes�.

The exchange-correlation term ẼHxc, Eq. �9�, does not de-

pend directly of the �̃i but on the different PAW densities,
and does not depend explicitly on �. We can use the decom-
position Eq. �52�, generalized to more than one argument,
but without explicit �-dependence:

�ẼHxc��2� � = ẼHxc
�2� :2� + ẼHxc

�2� :1,1�. �60�

with

ẼHxc
�2� :2� = VHxc���̃ + �̂��0�; �̃c

�0�� · ��̃�2� � + �̂�2� �; �̃c
�2��

+ �
k=1

K

VHxc
��k

��1
k�0�;�c

k�0�� · ��1
k�2� �;�c

k�2��

− �
k=1

K

VHxc
��k

���̃1
k + �̂k��0�; �̃c

k�0�� · ���̃1
k + �̂k��2� �; �̃c

k�2�� �61�

and

ẼHxc
�2� :1,1� =

1

2�EHxc� ���̃ + �̂��0�; �̃c
�0�� · ���̃ + �̂; �̃c��1�,��̃ + �̂; �̃c��1��

+ �
k=1

K

EHxc
��k

� ��1
k�0�;�c

k�0�� · ���1
k ;�c

k��1�,��1
k ;�c

k��1��

− �
k=1

K

EHxc
��k

� ���̃1
k + �̂k��0�; �̃c

k�0�� · ���̃1
k + �̂k; �̃c

k��1�,��̃1
k + �̂k; �̃c

k��1��	 , �62�

where we have used the convention

A · �f ,g� = 

R3



R3
A�x,y�f�x�g�y�dxdy , �63�

so that

1

2
EHxc� ���0�;�c

�0�� · ���;�c��1�,��;�c��1��

= EH���1�� +
1

2

 Exc� ��� + �c��0���� + �c��1��� + �c��1�dx ,

�64�

E
�
Hxc being the second differential of EHxc with respect to

��x�.
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Taking into account the expressions �C1�–�C3� of �1
k�2� �,

�̃1
k�2� �, �̂�2� �, and others in Appendix C, one shows that in Eq.

�47�, we can recover the term

�
i=1

N

��̃i
�1��H̃�0���̃i

�1�� , �65�

involving the unperturbed PAW Hamiltonian H̃�0� defined by
Eq. �18�. For this, we split �kpq

�2� � given by Eq. �C17� of Ap-
pendix C into

�kpq
�2� � = �kpq

�2� :1,1� + �kpq
�2� :1� + �kpq

�2� :0�. �66�

The decomposition Eq. �59� can be considered here because
�kpq directly depends on the �̃i. One can then verify that
quantities belonging to ẼHxc

�2� :2�, gathered with

�i=1
N ��̃i

�1� � H̃KV
�0� � �̃i

�1��, finally give the relation Eq. �65�.
Equation �47� can thus be written in a way that makes

more apparent its variational character, with some terms be-
ing quadratic in the first-order wavefunctions, some terms
being linear in them, and the remaining being constant with
respect to them.

Etot
+�2� = min

�̃i
�1�
��

i=1

N

���̃i
�1���H̃ − �iS̃��0���̃i

�1�� + ��̃i
�0��H̃KV

�1� − �i
�0�S̃�1���̃i

�1�� + ��̃i
�1��H̃KV

�1� − �i
�0�S̃�1���̃i

�0�� + ��̃i
�0��H̃KV

�2� − �i
�0�S̃�2���̃i

�0���

+ ẼHxc
�2� :1,1� + 


R3
VHxc���̃ + �̂��0�; �̃c

�0����̂�2� :1� + �̂�2� :0�; �̃c
�2� ��dx + �

k=1

K 

�k

VHxc
��k

��1
k�0�;�c

k�0����1
k�2� :1� + �1

k�2� :0�;�c
k�2��dx

− �
k=1

K 

�k

VHxc
��k

���̃1
k + �̂k��0�; �̃c

k�0�����̃1
k + �̂k��2� :1� + ��̃1

k + �̂k��2� :0�; �̃c
k�2��dx�

+ �
k=1

K 

�k

Vext
�1��Zc

k�1�dx + �1

2�
k=1

K 

�k



�k

�Zc

k �x��Zc

k �y�

�x − y�
dxdy + U
�2�

�67�

with the first-order perturbations on the constraints Eqs. �48�.
In the variational formulation Eq. �67�, we have used expres-
sions �̂�2� :1�, �̂�2� :0�, �1

k�2� :1�, �1
k�2� :0�, �̃1

k�2� :1�, �̃1
k�2� :0�, �̂k�2� :1�, and

�̂k�2� :0�, which are parts of �̂�2� �, �1
�2� �,�̃1

�2� �. These quantities are
defined in Appendix C. The first term of Eq. �67� is quadratic
in the pseudo-wavefunctions. Other quadratic parts are also

found in each of the three terms of ẼHxc
�2� :1,1�, see Eq. �62�. All

the other contributions are either linear in �̃i
�1� or do not

depend on them.

V. THE GENERALIZED STERNHEIMER EQUATION

The resolution of this variational principle might rely on
self-consistent minimization techniques, like conjugate gra-
dient ones described, for example, in Refs. 33 and 34, or on
the Euler-Lagrange equations corresponding to the minimi-
zation problem Eq. �67�. These Euler-Lagrange equations are
called generalized Sternheimer equations, and write:

�H̃�0� − �i
�0�S̃�0���̃i

�1� + �H̃�1� − �i
�0�S̃�1���̃i

�0� = �
j

�ij
�1�S̃�0��̃ j

�0�,

�68�

where the operator H̃�1� will be detailed later. In Appendix D,
we define the generalization to the PAW method of the
parallel-transport gauge for NCPP �see Sec. III C of Ref. 10�.
Thanks to gauge freedom, one can impose the more restric-
tive constraints

��̃i
�1��S̃�0���̃ j

�0�� = ��̃i
�0��S̃�0���̃ j

�1�� , �69�

which lead also to

��̃i
�1��S̃�0���̃ j

�0�� = −
1

2
��̃i

�0��S̃�1���̃ j
�0�� . �70�

As in the USPP formalism,16,17 the projector operators Pc
and Pc

† can be defined, as

Pc = I − �
i=1

N

��̃i
�0����̃i

�0��S̃�0�, �71�

Pc
† = I − �

i=1

N

S̃�0���̃i
�0����̃i

�0�� . �72�

In particular, we have Pc
†�S̃�0��̃i

�0��=0. We finally get �see
Appendix D� the generalized Sternheimer equations:

Pc
†�H̃�0� − �i

�0�S̃�0��Pc�̃i
�1� = − Pc

†�H̃�1� − �i
�0�S̃�1���̃i

�0�.

�73�
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We checked26 that the operator Pc
†�H̃�0�−�i

�0�S̃�0��Pc of the Eq.
�73� is positive-definite, as in the norm-conserving case. In
particular, the different assumptions required in the PAW for-
malism play an important role: Using the completeness rela-
tion Eq. �A3� of Appendix A, assuming the fact that the
support of the projectors p̃j

k are inside �k and that each
monoatomic operator I+Tk is invertible, the application

�u,v� � �u�S̃�0��v�

is a scalar product. Therefore, the operator of the generalized
Sternheimer Eqs. �73� is positive-definite with respect to the

norm defined by S̃�0�, provided that there exists an energy
gap �N+1

�0� ��N
�0�: for all u, we have

�u�Pc
†�H̃�0� − �i

�0�S̃�0��Pc�u� = � �
j	N+1

��̃ j
�0��S̃�0��u��̃ j

�0���H̃�0� − �i
�0�S̃�0��� �

k	N+1
��̃k

�0��S̃�0��u��̃k
�0��

= �
j	N+1

���̃ j
�0��S̃�0��u��2�� j

�0� − �i
�0�� 	 ��N+1

�0� − �i
�0�� �

j	N+1
���̃ j

�0��S̃�0��u��2

= ��N+1
�0� − �i

�0���Pcu�S̃�0��Pcu� . �74�

Thus, we can transfer to the PAW case �with the appropriate
modifications� the discussion on the variational properties of
the corresponding NCPP expression, as given in Sec. IV B of
Ref. 10.

To achieve the description of the Sternheimer equations,
we give the form of the operator H̃�1�. Directly from the
relation Eq. �18�, we get the expression

H̃�1� = VH��̃Zc

�1�� + �VHxc��̃ + �̂; �̃c���1� + Vext
�1�

+ �
k=1

K

�
p,q=1

Npk

�D̃kpq + Dkpq
1 − D̃kpq

1 ��1��p̃p
k p̃q

k†��0�

+ �
k=1

K

�
p,q=1

Npk

�D̃kpq + Dkpq
1 − D̃kpq

1 ��0��p̃p
k p̃q

k†��1�, �75�

with

�VHxc��̃ + �̂; �̃c���1� = VH���̃ + �̂��1��

+ Exc� ���̃ + �̂ + �̃c��0����̃ + �̂ + �̃c��1�.

�76�

From the Eqs. �19�–�21�, the first-order perturbations of the

coefficients D̃kpq, Dkpq
1 , D̃kpq

1 stand for

D̃kpq
�1� = �

LM



R3
�VH���̃ + �̂��1�� + Vext

�1��Q̂kpq
LM�0�dx

+ �
LM



R3
Exc� ���̃ + �̂ + �̃c��0����̃ + �̂ + �̃c��1�Q̂kpq

LM�0�dx

+ �
LM



R3
�VH��̃Zc

�Q̂kpq
LM��1�dx

+ �
LM



R3
VHxc���̃ + �̂��0�; �̃c

�0��Q̂kpq
LM�1�dx , �77�

Dkpq
1�1� = 


�k

�VH
��k

��1
k�1�� + Vext

�1���p
k�q

k*dx

+ 

�k

Exc� ���1
k + �c

k��0����1
k + �c

k��1��p
k�q

k*dx

+ 

�k

�VH
��k

��Zc

k ���1��p
k�q

k*dx , �78�

D̃kpq
1�1� = 


�k

�VH
��k

���̃1
k + �̂k��1�� + �VH

��k

��̃Zc

k ���1� + Vext
�1����̃p

k�̃q
k* + �

LM

�Q̂kpq
LM��0�
dx

+ 

�k

Exc� ���̃1
k + �̂k + �̃c

k��0����̃1
k + �̂k + �̃c

k��1���̃p
k�̃q

k* + �
LM

�Q̂kpq
LM��0�
dx

+ 

�k

�VH
��k

��̃Zc

k�0�� + VHxc
��k

���̃1 + �̂�k�0�; �̃c
k�0����

LM

�Q̂kpq
LM��1�dx . �79�
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Alternatively, one can obtain the perturbed operator H̃�1� by

deriving the expression of Etot
+�2� by respect to the �̃i

�1�, taking

into account of all dependences in �̃i
�1� of �̃�1�, �̂�1�, �1

k�1�,
�̃1

k�1�, �̂k�1�, �1
k�2� :1�, �̃1

k�2� :1�, and �̂k�2� :1�.

VI. NONVARIATIONAL FORM OF THE SECOND-ORDER
ENERGY CHANGE

We can also give a nonvariational form of Etot
+�2�, as in the

norm-conserving formalism. Coming back to the Eq. �39�,
we calculate 1

2
� d

d�Etot
+�1���̃i

�0�+��̃�1���
�=0

to obtain:

Etot,not−var
+�2� = �

i=1

N

���̃i
�1��H̃KV

�1� − �i
�0�S̃�1���̃i

�0��

+ ��̃i
�0��H̃KV

�2� − �i
�0�S̃�2���̃i

�0���

−
1

2 �
j,j�=1

N

� j j�
�1���̃ j

�0��S̃�1���̃ j�
�0��

+ ẼHxco
�2� :2� + ẼHxco

�2� :1,1� + �
k=1

K 

�k

Vext
�1��Zc

k�1�dx

+ �1

2�
k=1

K 

�k



�k

�Zc

k �x��Zc

k �y�

�x − y�
dxdy + U
�2�

�80�

where ẼHxco
�2� :2� and ẼHxco

�2� :1,1� are detailed in Appendix E. This

nonvariational expression is linear with respect to the �̃i
�1�,

contrary to the variational principle Eq. �67� which is a qua-
dratic form. We have derived the same expression by substi-
tuting the Euler-Lagrange Eqs. �68� into Eq. �67�, thanks to

the expression Eq. �75� of H̃�1�, see Ref. 26.
The perturbed Lagrange multipliers �

j j�
�1� that appear in Eq.

�80� can be obtained, within the parallel gauge, as:

� j j�
�1� = ��̃ j�

�0��H̃�0���̃ j
�1�� + ��̃ j�

�1��H̃�0���̃ j
�0�� + ��̃ j�

�0��H̃�1���̃ j
�0�� .

�81�

Finally, Eq. �80� can be compared to the Eqs. �20� and �21�
of Ref. 11 given in the norm-conserving case.31

VII. THIRD-ORDER CHANGE OF TOTAL ENERGY

Thanks to the 2n+1 theorem with n=1, we get the fol-
lowing relation:

Etot
+�3� = �

i=1

N

���̃i
�1��H̃KV

�1� − �i
�0�S̃�1���̃i

�1��

+ ��̃i
�0��H̃KV

�2� − �i
�0�S̃�2���̃i

�1�� + ��̃i
�1��H̃KV

�2� − �i
�0�S̃�2���̃i

�0��

+ ��̃i
�0��H̃KV

�3� − �i
�0�S̃�3���̃i

�0���

− �
j,j�=1

N

� j j�
�1����̃ j

�1��S̃�0���̃ j�
�1��

+ ��̃ j
�1��S̃�1���̃ j�

�0�� + ��̃ j
�0��S̃�1���̃ j�

�1�� + ��̃ j
�0��S̃�2���̃ j�

�0���

+ �ẼHxc��3� � + �
k=1

K 

�k

Vext
�1��Zc

k�2�dx

+ �1

2�
k=1

K 

�k



�k

�Zc

k �x��Zc

k �y�

�x − y�
dxdy + U
�3�

. �82�

To explicit the exchange-correlation term, we use, as in Sec.
IV, the following developments:

X�3� =
1

6
� d3

d�3X�Y���,��

��=0

=
�2X

�Y2 Y�2�Y�1� +
1

6

�3X

�Y3 �Y�1��3 + � �

��

�X

�Y



��=0

Y�2� +
�X

�Y
Y�3�

+
1

2
� �

��

�2X

�Y2

��=0

�Y�1��2 +
1

2
� �2

��2

�X

�Y



��=0

Y�1�

+
1

6
� �3X

��3

��=0

�83�

that is to say, using the previous notations introduced in Sec.
IV:

X�3� = X�3:2,1� + X�3:1,1,1� + X�3:2� + X�3:3� + X�3:1,1� + X�3:1�

+ X�3:0�. �84�

For the special case Y���=����, we define as before the
quantities

X�3� � = X�3� :1,1,1� + X�3� :1,1� + X�3� :1� + X�3� :0�, �85�

corresponding to the development in Eq. �46�.
For example, the third-order perturbation term of �kpq

stands

�kpq
�3� � = �kpq

�3� :1,1� + �kpq
�3� :1� + �kpq

�3� :0�, �86�

where �kpq
�3� :1,1�, �kpq

�3� :1�, and �kpq
�3� :0� are presented explicitly in Ap-

pendix C.
Using a Taylor development we get:

1

6

d3

d�3 �EHxc�����,�����̃i=�̃i
�0�+��̃i

�1�,�=0
= EHxc

�3� :1,1,1� + EHxc
�3� :2,1� + EHxc

�3� :3�

�87�

where the term EHxc
�3� :1,1,1� is detailed in Appendix F.

As in the Sec. IV, in the expression of Etot
+�3� we gather all

terms depending on �kpq
�3� :1,1� and �kpq

�2� :1,1� with

�i=1
N ��̃i

�1� � H̃KV
�1� � �̃i

�1��, to make appear �i=1
N ��̃i

�1� � H̃�1� � �̃i
�1��. It

leads to the introduction of the following quantities, �1
k�3� :1�,

�1
k�3� :0�, �̃1

k�3� :1�, �̃1
k�3� :0�, �̂�3� :1�, �̂�3� :0�, �̂k�3� :1�, and �̂k�3� :0�, all de-

fined in Appendix C.
We finally get the expression of Etot

+�3�:
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Etot
+�3� = �

i=1

N

���̃i
�1��H̃�1� − �i

�0�S̃�1���̃i
�1�� + ��̃i

�0��H̃KV
�2� − �i

�0�S̃�2���̃i
�1�� + ��̃i

�1��H̃KV
�2� − �i

�0�S̃�2���̃i
�0�� + ��̃i

�0��H̃KV
�3� − �i

�0�S̃�3���̃i
�0���

− �
j,j�=1

N

� j j�
�1����̃ j

�1��S̃�0���̃ j�
�1�� + ��̃ j

�1��S̃�1���̃ j�
�0�� + ��̃ j

�0��S̃�1���̃ j�
�1�� + ��̃ j

�0��S̃�2���̃ j�
�0���

+ �
k=1

K 

�k

Vext
�1��Zc

k�2�dx + �1

2�
k=1

K 

�k



�k

�Zc

k �x��Zc

k �y�

�x − y�
dxdy + U
�3�

+ ẼHxc
�3� :1,1,1�

+ 

R3

VHxc���̃ + �̂��0�; �̃c
�0����̂�3� :1� + �̂�3� :0�; �̃c

�3��dx + �
k=1

K 

�k

VHxc
��k

��1
k�0�;�c

k�0����1
k�3� :1� + �1

k�3� :0�;�c
k�3��dx

− �
k=1

K 

�k

VHxc
��k

���̃1
k + �̂k��0�; �̃c

k�0�����̃1
k + �̂k��3� :1� + ��̃1

k + �̂k��3� :0�; �̃c
k�3��dx

+ EHxc� ���̃ + �̂��0�; �̃c
�0�� · ����̃ + �̂��1�; �̃c

�1��,��̂�2� :1� + �̂�2� :0�; �̃c
�2���

+ �
k=1

K

EHxc
��k

� ��1
k�0�;�c

k�0�� · ���1
k�1�;�c

k�1��,��1
k�2� :1� + �1

k�2� :0�; �̃c
k�2���

− �
k=1

K

EHxc
��k

� ���̃1
k + �̂k��0�; �̃c

k�0�� · ����̃1
k + �̂k��1�; �̃c

k�1��,���̃1
k + �̂k��2� :1� + ��̃1

k + �̂k��2� :0�; �̃c
k�2��� �88�

This expression, which only involves the wavefunctions �̃i
�0�

and the perturbations �̃i
�1�, can be compared with Eq. �111�

given in Ref. 10.
In Eq. �88�, the terms in lines five to seven come from

ẼHxc
�3� :3� in Eq. �87�, while the terms in lines eight to ten come

from ẼHxc
�3� :2,1� in the same equation. The additional contribu-

tions from ẼHxc
�3� :3� and ẼHxc

�3� :2,1� have been absorbed in the first
term of Eq. �88�.

VIII. CONCLUSIONS AND PERSPECTIVES

Despite the PAW approach being much more complex
than the norm-conserving pseudopotential approach, their
structures is formally very similar. A careful analysis of de-
pendencies of the PAW total energy, in Sec. II, has been
performed. The variation-perturbation theorems have been
applied to the formulation Eqs. �4�–�26�, and have yield
first-, second-, and third-order derivatives of the total energy.

At the level of the second-order derivative, the minimiza-
tion principle allows to determine the first-order derivative of
the wavefunctions. An alternative nonstationary expression
allows the second-order derivative of the total energy to be
computed as a linear function of the first-order derivative of
the wavefunctions, plus constant terms.

As such, all the interesting applications of this method for
NCPP or USPP can be expected to be implemented in the
PAW case. At this stage, a real implementation is needed, to
assert the kind of accuracy that can be obtained. In the NCPP
case, finite-difference and variation-perturbation expressions

have been shown to match numerically at the level of seven
digits for the second-order derivative of the total energy, and
at the level of four digits for the third-order derivative. At
first sight, a similar accuracy should be obtained in the PAW
case.

We expect the amount of developer time needed to imple-
ment the PAW-DFPT formalism up to second-order, starting
from an existing �and reliable� PAW implementation, to be
similar to the one needed to implement from scratch the
PAW formalism. Availability of routines for DFPT calcula-
tion in the case of norm-conserving pseudopotentials should
greatly facilitate this task: The same code structure could be
used, and datastructures could be derived from PAW ones,
thanks to appropriate generalization to first-order quantities,
similar to those done in the norm-conserving pseudopotential
case.

Finally, it is worth discussing briefly the CPU demand of
PAW-DFPT calculations. We can compare it, as well, to the
one needed for norm-conserving pseudopotentials. Usually,
PAW calculations �nonperturbed� need a much smaller plane
wave basis set than norm-conserving pseudopotential calcu-
lations, although the factor of improvement depends very
much on the system under investigation. Like the USPP
methodology, and even more than it, the PAW technique im-
plies adding several calculations, compared to the norm-
conserving pseudopotential technique. However, all the
added steps are related to the treatment inside atomic
spheres, and the overlap matrix. Such steps are already
present in USPP, and are known to account only for a small
fraction of the CPU time.
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APPENDIX A: THE PAW METHOD

The PAW method connects the Kohn-Sham wave func-

tions �i to pseudo-wavefunctions �̃i thanks to:

�i = �I + T��̃i, �A1�

where the index i runs over N, the number of occupied elec-
tronic states. For a molecular system composed of K nuclei,
the linear operator T is defined by

T = �
k=1

K

�
j=1

Npk

��� j
k� − ��̃ j

k���p̃j
k� = �

k=1

K

Tk, �A2�

where � j
k, �̃ j

k, and p̃j
k are atomic datas obtained for the k

reference atom: � j
k and �̃ j

k are all-electron and pseudo atomic
wavefunctions which coincide outside the augmentation re-
gion, �k, p̃j

k are projectors functions which are dual to the �̃ j
k

and whose support is in �k. Here, the exponent k means that
the functions � j

k, �̃ j
k, and p̃j

k are centered on the kth atomic
site x̄k �see Refs. 5–7 for details of such functions�. By con-
struction, the operator T only acts in the spheres �k, which

implies that �i= �̃i outside the region �=�k=1
K �k.

It can be shown26,32 that the operator I+T is invertible,
provided that each monoatomic operator I+Tk is so and that
the augmented zones are disjoined.

In each zone �k, the projectors are supposed to satisfy the
following completeness relation:

�
j=1

Npk

��̃ j
k��p̃j

k� = I . �A3�

Therefore, for each local operator A, the associated operator

Ã= �I+T�†A�I+T� such that ��i�A�� j�= ��̃i�Ã��̃ j�, can be writ-
ten:

Ã = A + �
k=1

K

�
p,q=1

Npk

�p̃p
k��p̃q

k����p
k �A��q

k�k − ��̃p
k �A��̃q

k�k� .

�A4�

The pseudo-wavefunctions �̃i satisfy in that way the gener-
alized constraints

��̃i�S̃��̃ j� = �ij �A5�

where the overlap operator is defined by

S̃ = I + �
k=1

K

�
p,q=1

Npk

Skpq�p̃p
k��p̃q

k� , �A6�

with Skpq defined in Eq. �24� The notations �� �� or ��� mean
matrix elements or scalar products over all space R3, while
�� ��k or ���k are defined over the sphere �k only.

Following the notations of Ref. 6, the total charge density
� is decomposed in:

� = ��̃ + �̂ + �̃Zc
� + ��1 + �Zc

� − ��̃1 + �̂ + �̃Zc
� , �A7�

where �̃+�1− �̃1 represents the electronic valence density;
�Zc

=�Z+�c is the core charge �core electrons and nuclei
charge� and �̃Zc

the pseudo core charge density. The compen-
sation charge �̂, built to have the same multipole moments as
�1+�Zc

− ��̃1+ �̃Zc
�, allows to separate the potential and the

Hartree terms of the total energy into two contributions, one
estimated on a regular Fourier grid in the whole space, and
other ones on radial grids in the regions �k. Let us note that
the scalar products in the sphere �k of functions that are
centered on the k atomic site do not change if this atom is
moved.

The different densities of Eq. �A7� are given by:

�̃�x� = �
i=1

N

��̃i�x��2 �A8�

which is calculated on the regular grid, while �1�x�
=�k=1

K �1
k�x� and �̃1�x�=�k=1

K �̃1
k�x� are estimated on the radial

grids in �k. Each atomic component is defined by

�1
k�x� = �

p,q=1

Npk

�kpq�p
k�x��q

k*�x� �A9�

and

�̃1
k�x� = �

p,q=1

Npk

�kpq�̃p
k�x��̃q

k*�x� , �A10�

with

�kpq = �
i=1

N

�p̃p
k ��̃i�k��̃i�p̃q

k�k = �
i=1

N

��̃i��p̃q
kp̃p

k†���̃i�k.

�A11�

The compensation charge is given by

�̂�x� = �
k=1

K

�̂k�x� �A12�

with

�̂k�x� = �
p,q=1

Npk

�kpq�
LM

Q̂kpq
LM�x� , �A13�

where Q̂kpq
LM are atomic datas, the indices L ,M being the an-

gular momentum numbers. The whole density �̂ is calculated
on the regular grid while the atomic-centered density �̂k is
computed on the radial ones. Finally, the core charge is given
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by �Zc
�x�=�k=1

K �Zc

k �x� with �Zc

k �x�=�Z
k �x�+�c

k�x� and �Z
k �x�

=Zk��x− x̄k�, Zk being the nucleus charge of the kth atom;
the pseudo core density is just an atomic data

�̃Zc
�x� = �

k=1

K

�̃Zc

k �x� . �A14�

Here we introduce the notation “�” for the repulsive Cou-
lomb interaction between two densities charges u and v as
follows:

�u� � �v� = 

R3



R3

u�x�v�y�
�x − y�

dxdy . �A15�

The total energy Etot of the system can be split into:5–7,26

Etot = Ẽ + E1 − Ẽ1 �A16�

with

Ẽ = �
i=1

N

��̃i� −
1

2
�2��̃i� +

1

2
��̃ + �̂� � ��̃ + �̂� + ��̃Zc

� � ��̃ + �̂�

+ U + Exc��̃ + �̂ + �̃c� + 

R3

Vext�x���̃ + �̂��x�dx , �A17�

E1 = �
k=1

K

�
p,q=1

Npk

�kpq��p
k � −

1

2
�2��q

k�k +
1

2�
k=1

K

��1
k� � ��1

k�
��k

+ �
k=1

K

��Zc

k � � ��1
k�

��k
+

1

2�
k=1

K

��Zc

k � � ��Zc

k �
��k

+ �
k=1

K

Exc��1
k + �c

k�
��k

+ �
k=1

K 

�k

Vext�x���1
k + �Zc

k ��x�dx

�A18�

and

Ẽ1 = �
k=1

K

�
p,q=1

Npk

�kpq��̃p
k � −

1

2
�2��̃q

k�k

+
1

2�
k=1

K

��̃1
k + �̂k� � ��̃1

k + �̂k�
��k

+ �
k=1

K

��̃Zc

k � � ��̃1
k + �̂k�

��k

+ �
k=1

K

Exc��̃1
k + �̂k + �̃c

k�
��k

+ �
k=1

K 

�k

Vext�x���̃1
k + �̂k��x�dx .

�A19�

The atomic electrostatic repulsion term U of the Eq. �A17� is
given by

U =
1

2�
k�l

Nv
kNv

l

�x̄k − x̄l�
, �A20�

where Nv
k represents the number of valence electrons of the

kth atom; in the Eq. �A18�, �c
k indicates the density of core

electrons of the kth atom. Finally, Vext represents an external
linear potential �for example, an electric field� in which the
molecular system is set.

If we consider the Euler-Lagrange equations associated
with the minimization of the energy Eq. �A16�, under the
generalized constraints Eq. �A5�, then we get the equations

H̃�̃i = �iS̃�̃i. �A21�

APPENDIX B: EXPANSIONS OF H̃KV AND S̃

In the first term, H̃KV
�1� and S̃�1� are readily expressed as

H̃KV
�1� = VH��̃Zc

�1�� + Vext
�1�

+ �
k=1

K

�
p,q=1

Npk

�Ekpq
�0� �p̃p

k p̃q
k†��1� + Ekpq

�1� �p̃p
k p̃q

k†��0�� �B1�

Ekpq
�1� = �

LM



R3
�VH��̃Zc

�1�� + Vext
�1��Q̂kpq

LM�0� + VH��̃Zc

�0��Q̂kpq
LM�1�dx

− �
LM



�k

�VH
��k

��̃Zc

�1�� + Vext
�1��Q̂kpq

LM�0�

+ VH
��k

��̃Zc

�0��Q̂kpq
LM�1�dx

+ ��p
k �VH

��k

��Zc

k�1�� + Vext
�1���q

k�k

− ��̃p
k �VH

��k

��̃Zc

k�1�� + Vext
�1���̃q

k�k �B2�

and

S̃�1� = �
k=1

K

�
p,q=1

Npk

Skpq�p̃p
k p̃q

k†��1�, �B3�

where the coefficients Skpq and Ekpq
�0� are defined by Eqs. �24�

and �7�, respectively, taken at �=0.

The second-order terms H̃KV
�2� and S̃�2� are defined by

H̃KV
�2� = VH��̃Zc

�2�� + �
k=1

K

�
p,q=1

Npk

�Ekpq
�0� �p̃p

k p̃q
k†��2� + Ekpq

�1� �p̃p
k p̃q

k†��1�

+ Ekpq
�2� �p̃p

k p̃q
k†��0�� �B4�

Ekpq
�2� = �

LM



R3
VH��̃Zc

�0��Q̂kpq
LM�2� + �VH��̃Zc

�1�� + Vext
�1��Q̂kpq

LM�1�

+ VH��̃Zc

�2��Q̂kpq
LM�0�dx + ��p

k �VH
��k

��Zc

k�2����q
k�k

− ��̃p
k �VH

��k

��̃Zc

k�2����̃q
k�k − �

LM



�k

VH
��k

��̃Zc

�0��Q̂kpq
LM�2�

+ �VH
��k

��̃Zc

�1�� + Vext
�1��Q̂kpq

LM�1� + VH
��k

��̃Zc

�2��Q̂kpq
LM�0�dx

�B5�

and
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S̃�2� = �
k=1

K

�
p,q=1

Npk

Skpq�p̃p
k p̃q

k†��2�. �B6�

Finally, H̃KV
�3� and S̃�3� are given by

H̃KV
�3� = VH��̃Zc

�3�� + �
k=1

K

�
p,q=1

Npk

�Ekpq
�0� �p̃p

k p̃q
k†��3� + Ekpq

�1� �p̃p
k p̃q

k†��2�

+ Ekpq
�2� �p̃p

k p̃q
k†��1� + Ekpq

�3� �p̃p
k p̃q

k†��0�� �B7�

Ekpq
�3� = �

LM



R3
VH��̃Zc

�0��Q̂kpq
LM�3� + �VH��̃Zc

�1�� + Vext
�1��Q̂kpq

LM�2�

+ VH��̃Zc

�2��Q̂kpq
LM�1� + VH��̃Zc

�3��Q̂kpq
LM�0�dx

+ ��p
k �VH

��k

��Zc

k�3����q
k�k − ��̃p

k �VH
��k

��̃Zc

k�3����̃q
k�k

− �
LM



�k

VH
��k

��̃Zc

�0��Q̂kpq
LM�3� + �VH

��k

��̃Zc

�1�� + Vext
�1��Q̂kpq

LM�2�

+ VH
��k

��̃Zc

�2��Q̂kpq
LM�1� + VH

��k

��̃Zc

�3��Q̂kpq
LM�0�dx �B8�

and

S̃�3� = �
k=1

K

�
p,q=1

Npk

Skpq�p̃p
k p̃q

k†��3�. �B9�

APPENDIX C: EXPANSIONS OF THE DIFFERENT
DENSITIES

In this Appendix, we examine the terms of the expansions
of the different densities that depend on the wavefunctions,

namely, �̃��̃i�, �̂��̃i ,��, �1
k��̃i ,��, �̃1

k��̃i ,��, �̂k��̃i ,��, as well

as the coefficients �kpq��̃i ,��, see Eqs. �10�–�15�.
The computation of these terms is quite straightforward,

following the different definitions in the present paper. In
particular, in Eqs. �10�, �12�, and �13� the density on the l.h.s.
is simply linear in the factor that depends on the pseudo-
wavefunctions and �. Thus, for any index index, be it a
simple number �index=1,2 ,3 . . . �, an underlined number
�index=1� ,2� ,3� , . . . �, or even a composite index, like 2: 1,3: 1,
1, or 2� :1 ,1, the following relations apply:

�1
k�index� = �

p,q=1

Npk

�kpq
�index��p

k�q
k*, �C1�

�̃1
k�index� = �

p,q=1

Npk

�kpq
�index��̃p

k�̃q
k*, �C2�

�̂�index� = �
k=1

K

�̂k�index�. �C3�

Despite being systematic, the expansion of Eqs. �11�, �14�,
and �15� is not as trivial. We start with Eq. �11�:

�̃�1� = �
i=1

N

��̃i
�0�*�̃i

�1� + �̃i
�1�*�̃i

�0�� , �C4�

�̃�2� � = �
i=1

N

��̃i
�1��2, �C5�

�̃�3� � = 0. �C6�

Equation �14� gives

�̂k�1� = �
p,q=1

Npk

�
LM

��kpq
�0� Q̂kpq

LM�1� + �kpq
�1� Q̂kpq

LM�0�� , �C7�

�̂k�1� � = �
p,q=1

Npk

�
LM

��kpq
�0� Q̂kpq

LM�1� + �kpq
�1� � Q̂kpq

LM�0�� , �C8�

�̂k�2� � = �
p,q=1

Npk

�
LM

��kpq
�0� Q̂kpq

LM�2� + �kpq
�1� Q̂kpq

LM�1� + �kpq
�2� � Q̂kpq

LM�0�� ,

�C9�

�̂k�2� :1� = �
p,q=1

Npk

�
LM

��kpq
�1:1�Q̂kpq

LM�1� + �kpq
�2� :1�Q̂kpq

LM�0�� , �C10�

�̂k�2� :0� = �
p,q=1

Npk

�
LM

��kpq
�0� Q̂kpq

LM�2� + �kpq
�1:0�Q̂kpq

LM�1� + �kpq
�2� :0�Q̂kpq

LM�0�� ,

�C11�

�̂k�3� � = �
p,q=1

Npk

�
LM

��kpq
�0� Q̂kpq

LM�3� + �kpq
�1� Q̂kpq

LM�2� + �kpq
�2� � Q̂kpq

LM�1�

+ �kpq
�3� � Q̂kpq

LM�0�� , �C12�

�̂k�3� :1� = �
p,q=1

Npk

�
LM

��kpq
�1:1�Q̂kpq

LM�2� + �kpq
�2� :1�Q̂kpq

LM�1� + �kpq
�3� :1�Q̂kpq

LM�0�� ,

�C13�

�̂k�3� :0� = �
p,q=1

Npk

�
LM

��kpq
�0� Q̂kpq

LM�3� + �kpq
�1:0�Q̂kpq

LM�2� + �kpq
�2� :0�Q̂kpq

LM�1�

+ �kpq
�3� :0�Q̂kpq

LM�0�� . �C14�

Finally, the expansion of Eq. �15� gives:

�kpq
�1� = �

i=1

N

���̃i
�0���p̃p

k p̃q
k†��1���̃i

�0�� + ��̃i
�1���p̃p

k p̃q
k†��0���̃i

�0��

+ ��̃i
�0���p̃p

k p̃q
k†��0���̃i

�1��� , �C15�

�kpq
�1� � = �

i=1

N

��̃i
�0���p̃p

k p̃q
k†��1���̃i

�0�� , �C16�
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�kpq
�2� � = �

i=1

N

���̃i
�1���p̃p

k p̃q
k†��0���̃i

�1��� + �kpq
�2:1� + �kpq

�2:0�, �C17�

�kpq
�2� :1� = �

i=1

N

���̃i
�1���p̃p

k p̃q
k†��1���̃i

�0�� + ��̃i
�0���p̃p

k p̃q
k†��1���̃i

�1��� ,

�C18�

�kpq
�2� :0� = �

i=1

N

��̃i
�0���p̃p

k p̃q
k†��2���̃i

�0�� , �C19�

�kpq
�3� :1,1� = �

i=1

N

��̃i
�1���p̃p

k p̃q
k†��1���̃i

�1�� , �C20�

�kpq
�3� :1� = �

i=1

N

���̃i
�1���p̃p

k p̃q
k†��2���̃i

�0�� + c.c.� , �C21�

�kpq
�3� :0� = �

i=1

N

��̃i
�0���p̃p

k p̃q
k†��3���̃i

�0�� . �C22�

APPENDIX D: ABOUT THE GAUGE FREEDOM AND THE
GENERALIZED STERNHEIMER EQUATIONS

We first explain why the Eqs. �69� can be imposed.26 In
the PAW formalism, the unperturbed energy is invariant un-

der any unitary transformation on the wavefunctions �̃i, be-
cause so are the densities �̃, �1, �̃1, and �̂. From the unper-
turbed KS equations

H̃�0��̃i
�0� = �

j=1

N

�ij
�0�S̃�0��̃ j

�0�, �D1�

we can consider a unitary matrix U�0�, such that
U�0���0�U�0�†=diag��i

�0��. A natural choice is to take U�0�= I

and �ij
�0�=�i

�0��ij, leading to consider the problem H̃�0��̃i
�0�

=�i
�0�S̃�0��̃i

�0�.

For the perturbed KS problem with wavefunctions �̃i���,
let us consider a �-dependent unitary transform denoted by
U���= I+�U�1�+¯. The unitary transformation on each
wavefunction reads

�̃i���� = �
j=1

N

Uij����̃ j��� . �D2�

At the first order, we have �̃i
��0�= �̃i

�0� and

�̃i�
�1� = �i

�1� + �
j=1

N

Uij
�1��̃ j

�0�, �D3�

with Uji
�1�†=−Uij

�1�.
Therefore, the relations

��̃i�
�1��S̃�0���̃ j�

�0�� = ��̃ j�
�0��S̃�0���̃ j�

�1�� �D4�

are equivalent to

��̃i
�1��S̃�0���̃ j

�0�� + Uji
�1�† = ��̃i

�0��S̃�0���̃ j
�1�� − Uij

�1�. �D5�

So, for the particular choice of gauge

Uij
�1� =

1

2
���̃i

�0��S̃�0���̃ j
�1�� − ��̃i

�1��S̃�0���̃ j
�0��� , �D6�

the Eqs. �69� are valid.
With this choice of gauge we can obtain the generalized

Sternheimer equations. The projector operator Pc
† defined by

Eq. �72� is such that Pc
†�S̃�0��̃i

�0��=0. Applying Pc
† to Eqs.

�68�, we get

Pc
†�H̃ − �iS̃��0��̃i

�1� = − Pc
†�H̃�1� − �i

�0�S̃�1���̃i
�0�. �D7�

Let us define the adjunct projector operator

Pc = I − �
i=1

N

�̃i
�0���̃i

�0��S̃�0�, �D8�

we have

Pc�̃i
�1� = �̃i

�1� − �
j=1

N

��̃ j
�0��S̃�0���̃i

�1���̃ j
�0�

= �̃i
�1� +

1

2�
j=1

N

��̃ j
�0��S̃�1���̃i

�0���̃ j
�0�. �D9�

From Eqs. �D7� we deduce

Pc
†�H̃ − �iS̃��0��Pc�̃i

�1� −
1

2�
j=1

N

��̃ j
�0��S̃�1���̃i

�0���̃ j
�0�


= − Pc
†�H̃�1� − �i

�0�S̃�1���̃i
�0�. �D10�

Thus

Pc
†�H̃ − �iS̃��0��̃ j

�0� = �� j
�0� − �i

�0��Pc
†�S̃�0��̃ j

�0�� = 0,

�D11�

from which we finally get the generalized Sternheimer Eqs.
�73�.

APPENDIX E: EXPRESSIONS NEEDED FOR Etot,not−var
+„2…

The following equations are needed to complete the results of Sec. VI:

ẼHxco
�2� :2� = 


R3
VHxc���̃ + �̂��0�; �̃c

�0����̂o
�2� �; �̃c

�2��dx + �
k=1

K 

�k

VHxc
��k

��1
k�0�;�c

k�0����1
k�2� :1� + �1

k�2� :0�;�c
k�2��dx

− �
k=1

K 

�k

VHxc
��k

���̃1
k + �̂k��0�; �̃c

k�0����̃1
k�2� :1� + �̃1

k�2� :0� + �̂o
k�2� �; �̃c

k�2��dx , �E1�

AUDOUZE et al. PHYSICAL REVIEW B 73, 235101 �2006�

235101-16



ẼHxco
�2� :1,1� =

1

2



R3
EHxc� ���̃ + �̂��0�; �̃c

�0�����̃ + �̂��1�; �̃c
�1����̂�1� �; �̃c

�1��dx +
1

2�
k=1

K 

�k

EHxc
��k

� ��1
k�0�;�c

k�0����1
k�1�;�c

k�1����1
k�1� �;�c

k�1��dx

−
1

2�
k=1

K 

�k

EHxc
��k

� ���̃1
k + �̂k��0�; �̃c

k�0�����̃1
k + �̂k��1�; �̃c

k�1�����̃1
k + �̂k��1� �; �̃c

k�1��dx . �E2�

In Eq. �E2�, we have defined the following quantity:

�̂o
k�2� � = �

p,q=1

Npk

�
LM

��kpq
�0� Q̂kpq

LM�2� +
1

2
��kpq

�1� + �kpq
�1� � �Q̂kpq

LM�1� + �1

2
�kpq

�2� :1� + �kpq
�2� :0�
Q̂kpq

LM�0�
 . �E3�

APPENDIX F: EXPRESSIONS NEEDED FOR Etot
+„3…

We complete here Eq. �87�. First, we define the notation Exc� ���0�� · ���1� ,��1� ,��1��:

Exc����0�� · ���1�,��1�,��1�� = 

R3



R3



R3
EHxc� ���0�;x,y,z���1��x���1��y���1��z�dxdydz �F1�

Then, in the expression of Etot
+�3� �see Eq. �88��, we have the following quantity:

ẼHxc
�3� :1,1,1� =

1

6
Exc����̃ + �̂ + �̃c��0�� · ����̃ + �̂ + �̃c��1��,���̃ + �̂ + �̃c��1��,���̃ + �̂ + �̃c��1���

+
1

6�
k=1

K

Exc
��k

� ��1
k�0� + �c

k�0�� · ���1
k�1� + �c

k�1��,��1
k�1� + �c

k�1��,��1
k�1� + �c

k�1���

−
1

6�
k=1

K

Exc
��k

� ���̃1
k + �̂k + �̃c��0�� · ����̃1

k + �̂k + �̃c
k��1��,���̃1

k + �̂k + �̃c
k��1��,���̃1

k + �̂k + �̃c
k��1��� . �F2�

Exc� is the third-order differential of Exc with respect to the density. Note that EH is quadratic in �, hence EH�=0.

APPENDIX G: MIXED PERTURBATIONS

As an example, we give here the generalization of the
Eqs. �52�–�56� for mixed perturbations introduced in Ref. 13:

X�j1j2� =
1

2� d2

d� j1
d� j2

X�Y�� j1
,� j2

�,� j1
,� j2

�

�� j1

=� j2
=0

= X�j1j2:2� + X�j1j2:1,1� + X�j1j2:1� + X�j1j2:0� �G1�

with

X�j1j2:2� =
1

2

�X

�Y
Y�j1j2� +

1

2

�X

�Y
Y�j2j1�, �G2�

X�j1j2:1,1� =
1

2

�2X

�Y2 Y�j1�Y�j2�, �G3�

X�j1j2:1� =
1

2� �

�� j1

�X

�Y

�� j1

=0

Y�j2� +
1

2� �

�� j2

�X

�Y

�� j2

=0

Y�j1�,

�G4�

X�j1j2:0� =
1

2� �2X

�� j1
� j2



�� j1

=� j2
=0

. �G5�

The full generalization of all responses equations obtained in
the present paper will appear in another work.
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