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We numerically study the quantum Hall effect �QHE� in graphene based on a lattice model in the presence
of disorder. Two distinct QHE regimes are identified in the energy band with unconventional “half-integer”
QHE appearing near the band center, in agreement with the experimental observation. A topological invariant
Chern number description provides a consistent understanding of the peculiar behavior of the two QHE
regimes in the energy band. The phase diagram for the unconventional QHE is obtained where the destruction
of the Hall plateaus at strong disorder is through the float-up of extended levels towards the band center. An
insulating phase emerges between �= ±2 QHE plateaus at the band center in weak disorder region, which may
explain the experimentally observed resistance discontinuity near zero gate voltage.

DOI: 10.1103/PhysRevB.73.233406 PACS number�s�: 73.43.Cd, 72.10.�d, 72.15.Rn

With the advances in micromechanical extraction and fab-
rication techniques, a high mobility single atomic layer of
graphite, called graphene, became available recently.1–4 This
new material has many extraordinary properties, which has
attracted much experimental and theoretical interest. It is
generally believed that graphene may have potential applica-
tions in electronic devices.1–4 Graphene is of great funda-
mental interest as well because of its special band structure.5

Undoped graphene has one � electron per lattice site forming
a two-dimensional �2D� extended electronic structure. The
only states at the Fermi energy �EF=0� are at two corners of
the Brillouin zone, where the conduction and valence bands
touch. The low energy excitations have a linear dispersion
relation similar to that of the massless Dirac equation. So the
electron system of graphene can be viewed as a condensed-
matter realization of relativistic Dirac fermions and the band
touching points are often referred to as Dirac points.

Remarkably, novel quantum Hall effect �QHE� with Hall
plateaus obeying the unconventional quantization rule �xy

= �k+1/2�gs
e2

h has recently been observed experimentally6,7

in graphene films in strong magnetic fields. Here, k is
an integer and gs=4 stands for the spin and sublattice
-related degeneracy. In units of gs

e2

h , the “half-integer” quan-
tization of �xy was also predicted8–11 in continuous Dirac
fermion models, and was conjectured6,7,12 to be associated
with some topological Berry phase shift around the Dirac
points.

For the conventional QHE systems, the topological
characterization13,14 and disorder effect are two essential in-
gredients for understanding the underlying physics of the
QHE phenomenon and the associated electron localization-
delocalization transitions. For the unconventional QHE
phase in graphene, these crucial issues have not been ad-
dressed so far. Therefore it is highly desirable to investigate
these issues by taking into account the full band structure in
order to reveal the peculiar nature and the phase diagram of
the QHE.

In this paper, we present an exact numerical study on the
QHE in graphene by using a tight-binding model5 in the
presence of random disorder. We show that the experimen-

tally observed Hall plateaus are reproduced near the band
center, while the conventional integer QHE plateaus appear
near the band edges. A topological invariant Chern number
description of the QHE is also established, where the unusual
distribution of the Chern numbers in the energy band ac-
counts for the unconventional “half-integer” QHE near the
band center. We further map out the phase diagram for the
QHE and demonstrate that the Hall plateaus can be destroyed
at strong disorder �or weak magnetic field� through the float-
up of extended levels towards the band center with the anni-
hilation of positive and negative Chern numbers. While the
�= ±2 QHE states are the most robust ones against disorder,
we find that an insulating region can emerge at weak disorder
between them around the band center, which may explain the
experimentally observed anomalously high resistivity6,7,15

near zero gate voltage.
We consider a rectangular sample of a 2D graphene sheet

consisting of carbon atoms on a honeycomb lattice,5 which
has totally Ly zigzag chains with Lx atomic sites on each
chain.16 The size of the sample will be denoted as N=Lx
�Ly. In the presence of an applied magnetic field perpen-
dicular to the graphene plane, the lattice model can be writ-
ten in the tight-binding form:5

H = − t �
�ij��

eiaijci�
† cj� + �

i

wici�
† ci�,

where ci�
+ �ci�� creates �annihilates� a � electron of spin � on

lattice site i with t as the nearest-neighbor hopping integral,
and wi is random disorder potential uniformly distributed in
the interval wi� �−W /2 ,W /2�. The magnetic flux per hexa-
gon �=�

˝

aij =
2�
M , with M an integer. The total flux N�

4�
through the sample is taken to be an integer such that the
periodic boundary condition for the single-particle magnetic
translation operators can be used in both x and y directions.
We choose M to be commensurate with Ly so that the bound-
ary conditions are reduced to the ordinary periodic ones.

The Hall conductance �xy can be calculated by using the
Kubo formula through exact diagonalization of the Hamil-
tonian of one spin component. Here, a double spin degen-
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eracy for all energy levels is assumed without considering
the weak Zeeman energy splitting for simplicity. In Fig. 1�a�,
the Hall conductance �xy and electron density of states are
plotted as functions of electron Fermi energy EF at W=0
with flux �= 2�

48 , which illustrates the overall picture of the
QHE in the full energy band. According to the behavior of
�xy, the energy band is naturally divided into three different
regimes. Around the band center, �xy =�

e2

h is indeed quan-
tized according to the unconventional quantization rule �
= �k+1/2�gs with a degeneracy factor gs=4 for each Landau
level �LL� due to two spin components and two Dirac points.
These Hall plateaus explain the experimentally observed un-
conventional QHE,6,7 and agree with the results from the
theory based upon the continuous model.8–11 In Fig. 1�b�, the
quantization rule of the Hall conductance in this unconven-
tional region for three different strengths of � is shown.

The unconventional QHE near the band center can be
understood in terms of the topological Chern number13 with
the total Hall conductance in units of e2

h being exactly the
sum of the Chern numbers of all the occupied states below
EF.14 Here, the extended states of each LL are characterized
by a nonzero Chern integer,14,17 and with the additional de-
generacy gs=4 around the band center18 we find a total
Chern number C=4 for each LL in this region as shown in
Fig. 1�a�. Thus, with each additional LL being occupied, the
total Hall conductance should increase by gs

e2

h . At the
particle-hole symmetric point EF=0, which corresponds to
the half-filling of the central LL, �xy =0 and the total Chern
number of all the occupied states �hole band� must sum up to
zero. Now if one counts �xy from this point, then the central
LL will effectively contribute to ±� gs

2
� e2

h to �xy, when EF is
shifted away from the central LL by adding particles or
holes. This leads to the “half-integer” quantization of �xy in
units of gs

e2

h as shown in Fig. 1. The present Chern number

description provides a precise account of the Berry phase
shift effect for the unconventional QHE.6,7 Such an account
is important, as the Chern number is the unique topological
invariant of the Landau levels �LLs�, while the Berry phase
around the Dirac points in general may exhibit nonuniversal
behavior.5

On the other hand, each LL carries a total Chern number
C=2 near the band edges �Fig. 1�a��, and thus the Hall con-
ductance is quantized as �xy =kgs

e2

h with k an integer and
gs=2 for spin degeneracy only, as in the conventional QHE
systems. Remarkably, around EF= ± t, there are two critical
regions which separate the unconventional and conventional
QHE states. The extended states in each critical region carry
a large negative total Chern number, e.g., �C=−72 for �
= 2�

48 , within a narrow energy region �E�0.4t as shown in
Fig. 1�a�, where the Hall plateaus become indiscernible. The
existence of such negative Chern number regimes is crucial
for understanding the peculiar structure of two QHE phases
in the whole energy band. When the Fermi energy EF is
increased from EF�−3t, following a sequence of the con-
ventional Hall plateaus, the negative Chern numbers will
lead to a dramatic reduction and a sign inversion of �xy, so
that the unconventional low Hall plateaus with �=−6,
−2,2 , . . . can emerge near the band center. These crossover
regions also correspond to a transport regime, where the Hall
resistance changes sign and the longitudinal conductance ex-
hibits metallic behavior as they carry nonzero Chern
integers.14 It will be of interest to verify this prediction ex-
perimentally, if sufficiently high doping can be achieved in
graphene.

Now we turn to the effect of random disorder on the QHE
in graphene. In Fig. 2, the Hall conductance around the band
center is shown for different disorder strengths with mag-
netic flux �= 2�

96 at system size 48�96. We see that with
increasing W, higher Hall plateaus �with larger 	�	� are de-
stroyed first. At W=0.5t, the plateaus with �= ±10, ±6, and
±2 still remain well quantized, while at W=2.0t all the pla-
teaus except for the �= ±2 ones are destroyed. The last two
plateaus eventually disappear around W�2.5t. For compari-

FIG. 1. �Color online� �a� Calculated Hall conductance and elec-
tron density of states in the full energy band for magnetic flux �
= 2�

48 or M =48, and �b� the Hall conductance near the band center
for M =24, 48, and 96. The disorder strength is set to W=0 and N
=48�96 in all cases.

FIG. 2. �Color online� Unconventional Hall conductance as a
function of electron Fermi energy near the band center for four
different disorder strengths each averaged over 200 disorder con-
figurations. Inset: conventional Hall conductance near the lower
band edge. Here M =96 and the sample size is 48�96.
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son, the QHE near the lower band edge is shown in the inset,
where all plateaus have disappeared at a much weaker disor-
der W=1.0t. This clearly indicates that, under the same con-
dition �constant magnetic field�, the unconventional QHE
near the band center is much more stable than the conven-
tional one. This is attributed to the Dirac-fermion-like linear
dispersion relation around the band center, where the widths
of the LL gaps are proportional to 
B instead of B. We also
notice that �xy always vanishes at EF=0 for all W, due to the
fact that the whole particle or hole band still carries zero total
Chern number as a conserved quantity in the disordered sys-
tem.

We further study the quantum phase transition of the
graphene electron system and establish the phase diagram for
the QHE. This can be more conveniently done by calculating
the finite-size localization length � on an essentially infi-
nitely long bar of width Ly �with length Lx	106� by using
the well-established recursive Green’s function approach.19,20

Here, standard periodic boundary condition in the ŷ direction
and open boundary condition in the x̂ direction are
employed.19 We first present the calculated phase diagram in
Fig. 3�a� for a relatively large flux �= 2�

48 for clarity, while
the topology of the phase diagram remains essentially un-
changed at weaker magnetic fields. In the W-EF plane, dif-
ferent QHE plateaus with �xy =�

e2

h are separated by extended
states, where � grows linearly with increasing bar width Ly.
With the increase of W, each plateau can be destroyed
through a transition, �→0, to the insulating phase and higher
plateaus disappear first. In Figs. 3�b�–3�d�, we then show
some examples of the raw data to explain how the phase
boundaries in the phase diagram are determined. In Fig. 3�b�,
the normalized localization length � /Ly for EF=−0.3t is plot-
ted as a function of W for three sample widths Ly =48, 96,
and 144, which suggests a �=−2→0 transition as indicated
by the arrow B in the phase diagram. The sample length Lx
used ranges from 106 up to 5�106, so that the relative error

due to the statistical fluctuations in � reduces to about 2%.
We see clearly that � /Ly is peaked at W=Wc�2.7t. A con-
stant � /Ly at W=Wc means that the localization length � will
diverge linearly with Ly in the thermodynamic limit Ly→
.
Thus this Wc corresponds to a critical point separating the
�=−2 plateau from the outside insulating phase, as indicated
by the corresponding open circle in Fig. 3�a�. Here, the error
bar is determined from the peak width of � /Ly for Ly =144 in
Fig. 3�b�, when � /Ly decreases to 96% of its peak value, in
consideration of the fact that the relative error of the raw data
is about 2%. The phase diagram is consistent with a “float-
up” picture,21 in which the negative-Chern-number states
coming from the lower energy region are moving continu-
ously towards the band center with increasing W. They
sweep across a given EF at W=Wc�EF�, causing the collapse
of the Hall plateau with the annihilation of positive and
negative Chern numbers.

Figure 3�c� shows � /Ly as a function of W at EF=
−0.55t, corresponding to the path indicated by the arrow C in
the phase diagram �Fig. 3�a��. We see that a peak occurs at
W=Wc�1.6t, which similarly to Fig. 3�b�, indicates the de-
struction of the �=−6 QHE state and a transition into the
insulating phase. However, we note that here the localization
length � is relatively large, being much greater than the larg-
est Ly that is reachable in our calculation. So � /Ly does not
decrease visibly with increasing Ly away from Wc, in con-
trast to the clear transition of �=−2→0 discussed above. All
the phase boundaries separating the QHE phases from the
insulating phase at strong W, indicated by the solid line with
open circles in Fig. 3�a�, are determined in the same way.

To determine the phase boundaries between different
QHE states, � /Ly vs EF for a fixed W is calculated as shown
in Fig. 3�d�, which corresponds to the path indicated by the
arrow D in Fig. 3�a� with W=0.75t, where a peak of � /Ly
occurs at EF=Ec�−0.46t, indicating a critical point separat-
ing �=−6 and −2 plateaus. All the phase boundaries indi-

FIG. 3. �Color online� �a� Phase diagram for the unconventional
QHE regime in graphene at M =48, which is symmetric about EF

=0. �b�–�d�: Normalized localization lengths calculated for three bar
widths Ly =48, 96, and 144, as the phase boundary is crossed by the
paths indicated by the arrows B, C, and D in �a�, respectively.

FIG. 4. �Color online� The normalized localization length � /Ly

for three bar widths Ly =48, 96, and 144, when the phase boundary
is crossed with varying disorder strength W at EF=−0.01t, as indi-
cated by the arrow E in Fig. 3�a�. Upper inset shows the one-
parameter scaling function. Lower inset shows the localization
length � at the thermodynamic limit determined through one-
parameter scaling with the dotted line as a power-law fit �
=104/ �W / t−0.96�1.1.
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cated by the dotted lines with cross symbols in the phase
diagram are determined in the same manner.

Since the extended critical states between the unconven-
tional QHE plateaus carry multiple total Chern number C
=4, we expect that disorder scattering will in general split
these quantum critical points. As a consequence, we find that
in the phase diagram Fig. 3�a�, the �=−2 and 2 plateaus
around the band center are no longer connected to each other
by a single critical point, and instead they are now separated
by an insulating phase in between in the presence of some
weak disorder �e.g., W�1.0–3.0t�. To demonstrate such a
phase transition, along the path indicated by the arrow E in
Fig. 3�a�, we show � /Ly at EF=−0.01t as a function of W in
Fig. 4. Clearly � /Ly is peaked at a largely reduced critical
disorder strength Wc�1.0t. For W�Wc, � /Ly decreases with
increasing Ly, indicating that the electron states are
localized.19 All the data in Fig. 4 for W�Wc can be well
fitted by a one-parameter scaling relation19 � /Ly = f�Ly /�� for
Ly =48, 96, and 144, as shown in the upper inset. The fitting
parameter ��W� is the thermodynamic localization length,
which becomes divergent at Wc�1.0t, as plotted in the lower
inset of Fig. 4. Such an insulating regime between the two
plateaus �= ±2 may explain the anomalously large value of


xx near zero gate voltage observed in the experiments.6,7,15

In summary, we have numerically investigated the QHE
in 2D graphene based upon a lattice model in the presence of
disorder. The experimentally discovered unconventional
quantization of QHE is reproduced near the band center,
which is understood in terms of the distribution of the topo-
logical Chern integers in the energy band. The phase diagram
indicates a new float-up picture, in which the extended levels
move towards band center with increasing disorder strength,
causing higher plateaus to disappear first. The unconven-
tional QHE plateaus around the band center are found to be
much more stable than the conventional ones near the band
edges. An insulating phase as an Anderson localized state is
predicted to emerge at the band center at weak disorder, be-
tween two �= ±2 QHE states, which is consistent with the
experimentally observed resistance discontinuity near zero
gate voltage.
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