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We present investigations of Josephson charge-phase qubits of superconducting quantum interference device
�SQUID� configuration, inductively coupled to a radio-frequency-driven tank circuit, enabling the readout of
the states by measuring the Josephson inductance of the qubit. The circuits, including junctions with linear
dimensions of 60 nm�60 nm and 80 nm�80 nm, are fabricated from Nb/AlOx /Nb trilayer and allow the
determination of relevant sample parameters at liquid helium temperature. The observed partial suppression of
the circulating supercurrent in the qubit loop at 4.2 K is explained within the framework of a quantum-
statistical model. We have probed the ground-state properties of qubit structures with different ratios of the
Josephson coupling to Coulomb charging energy at 20 mK, demonstrating both the magnetic control of phase
and the electrostatic control of charge of the qubit.
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I. INTRODUCTION

Superconducting structures with mesoscopic Josephson
tunnel junctions can provide a basis for electronic devices
operating on single Cooper pairs. Prominent examples are
the superconducting quantum bit �qubit� circuits, which are
regarded as promising elements for a scalable quantum
computer.1 The Josephson charge-phase qubit2 is based on a
Cooper-pair box3 of superconducting quantum interference
device �SQUID� configuration, i.e., a superconducting loop
interrupted by two small-capacitance junctions with an island
in between, which is capacitively coupled to a gate electrode
�i.e., the Bloch transistor4�. The charging energy EC and the
Josephson coupling energy EJ are typically of the same or-
der, so the dimensionless parameter �=EJ /EC is of the order
of one. Moreover, our circuit comprises both the qubit and its
readout.5 The transistor can be operated as a box �qubit�
whose distinct quantum states with energies En ,n
=0,1 ,2 , . . ., are associated with different Bloch-bands of the
system.6 The eigenfunctions �n ,q� are the Bloch wave func-
tions of a particle in the periodic �Josephson� potential. Here,
n is the band number and q the quasicharge governed by the
gate voltage VG, i.e., q=CGVG, where CG is the gate capaci-
tance �see, e.g., Ref. 7�. The quantum states of the transistor
also involve the phase coordinate � set by the external mag-
netic flux �dc applied to the SQUID loop. The variable �
behaves almost classically and is regarded as a parameter.
Because of two control parameters �charge and phase�, the
eigenenergies En�q ,��, the transition frequency �10= �E1

−E0� /h, and—in the case of multiple qubits—the strength of
mutual coupling can be varied in the wide range. The read-
out of our qubit can be performed similar as in the rf-
SQUID-based impedance measurement technique pioneered
by Rifkin and Deaver:8 the qubit eigenstates can be distin-
guished by the Josephson inductance of the effective weak
link, i.e., the transistor, included in the loop whose imped-
ance is probed by small rf oscillations induced by an induc-
tively coupled resonant tank circuit;5,9 see the equivalent cir-
cuit in Fig. 1.

Recently, Born et al.10 have confirmed the aforementioned
readout conception in a spectroscopic experiment with an Al

qubit. The authors demonstrated the detection of microwave-
power-induced interband transitions by tracking the resonant
response of the tank. However, because of the rather large
ratio �=EJ /EC�30, manipulation of the qubit state via its
gate was in their experiment limited to a narrow ��5% �
interval of values of the flux. In this paper, we present a
comprehensive mapping of the ground state of Nb qubits
operating in the charge-phase regime over a wide range of
the parameters q and �. This is done for the most illustrative
case of the values of the parameter ��1. In this regime, the
behavior of the system strongly depends on the value of �.
Moreover, the effect of thermal fluctuations is studied com-
paratively at 20 mK and 4.2 K for the same samples. These
investigations strongly benefit from the advanced technology
for the fabrication of submicron Josephson junctions based
on Nb/AlOx /Nb trilayers with a large superconducting en-
ergy gap � and a low subgap leakage current.11 Applying this
technology allows all inductive components of the circuitry
shown in Fig. 1 to be integrated on one chip.

The material presented in this paper is organized as fol-
lows. In Sec. II, we briefly outline the considerations that
motivated our choice of experimental parameters. In Sec. III,
radio-frequency measurement results for niobium-based
Bloch transistors will be presented and quantitatively ana-
lyzed. Especially, the fluctuation-induced partial suppression
of the critical current through Bloch transistors will be dis-

FIG. 1. Scheme of the experiment. The core element is a double
Josephson junction �two crossed boxes� with a capacitive gate
coupled to its island, i.e., the Bloch transistor, embedded in a mac-
roscopic superconducting loop. The loop is inductively coupled to
an rf-driven tank circuit connected to a cold preamplifier. The ca-
pacitance between the loop and the ground is assumed to be much
larger than the total capacitance of the island.
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cussed within a quantum-statistical model. In Sec. IV the
concluding remarks will be made.

II. DESIGN OF EXPERIMENT

A. Parameters of the samples

The operation of a charge-phase qubit based on the single
charge phenomena thus requiring the charging energy EC
=e2 /2C of the small island electrode �C=CJ1+CJ2+CG de-
notes the corresponding total capacitance, including the ca-
pacitances of the junctions CJ1,J2� to be large, compared to
the thermal energy kBT. In the case of our Nb technology, the
parameter EC�50–80 �eV roughly corresponds to tempera-
ture �1 K. The rather balanced situation with the target
value ��1, i.e., the Josephson coupling energy of individual
junctions EJ0= ��0 /2	�Ic0�50–100 �eV, where �0=h /2e
�2.07�10−15 Wb is the magnetic flux quantum, corre-
sponds to nominal critical currents of the individual junc-
tions Ic0 of several tens of nanoamperes.12

The Bloch transistor is included in a double superconduct-
ing loop of octagon shape with an outer dimension of
1.0 mm �see Fig. 2�. Such a gradiometer design improves the
stability against homogeneous magnetic field noise. The total
inductance value of such a loop L�0.7 nH was estimated
using Mohan’s formula.13 This value is sufficiently small in
the sense that, first, the corresponding magnetic energy is
rather large, i.e., EM =�0

2 /2L�20 meV and, second, the di-
mensionless screening parameter, i.e., 
L�2	LIc0 /�0�1,
is small. The former relation ensures the suppression of flux
fluctuations and fixes the phase � across the transistor.14 The
latter one ensures the required nonhysteretic operation re-
gime in the case of a single-junction SQUID circuit,8,15 as
well as of the realistic qubit circuit having finite asymmetry
in the critical currents of individual junctions.9 Moreover, the
total inductance of the closed-loop circuit is determined
mostly by the transistor Josephson inductance. This induc-
tance is directly related to the local curvature of the surface
En�q ,�� taken for fixed q,9 i.e.,

LJ�n,q,�� = ��0

2	
	2
 �2En�q,��

��2 �−1

. �1�

In our measurements of the circuit in the ground state, the
band index n=0; thus we introduce the notation LJ�0,q ,��
�LJ�q ,��.

The loop is coupled through the mutual inductance M to
the coil of a resonant tank circuit formed by the double
octagon-shaped spiral inductor with total inductance LT
=0.15–0.2 �H �see Fig. 2�a� and the capacitance of the
coaxial cable connecting the tank to the preamplifier. The
bare resonance frequency of such a tank circuit with quality
factor Q�250 is f0�70 MHz. Because of the coupling to
the qubit, the effective inductance of the circuit is changed,15

Leff = LT − M2LJ
−1�q,�� , �2�

in a gate-charge and phase-specific way. The resulting shift
�f of the resonant frequency, is9

�f

f0
= −

1

2
k2
L

�0/2	Ic

LJ�q,��
. �3�

Here, k=M /�LLT�1 denotes the coupling coefficient,
which is determined by the arrangement of the inductively
coupled conductors. The integrated on-chip design of our
qubit allows close mutual arrangement of the loop and the
coil and, therefore, rather large values of k. The tank circuit
is driven by a combined current signal, consisting of a dc
part fixing the working point and an rf component Irf at the
frequency f close to f0.

The cold preamplifier is based on an AGILENT ATF-
10136 GaAs field-effect transistor, which has the main task
of matching of the impedance of the tank circuit and the
cabling. The output of the preamplifier is connected by the
coaxial cable to the room-temperature amplifier. Although
our two-stage amplifier can operate in the wide-frequency
range, it works most stable in the range between 60 and
90 MHz with a frequency-independent overall gain of
26 dB. Its noise temperature is evaluated to be about 1.2 K.
The amplified rf voltage across the tank is fed to a lock-in
amplifier measuring both the amplitude VT and the phase
shift  relative to the reference rf signal.

B. Precharacterization of Bloch transistors

Embedding the Bloch transistors in a superconducting
loop, unfortunately, renders its precharacterization in a
simple dc configuration impossible. To get nevertheless an
estimate of the relevant parameters, i.e., the Josephson cou-
pling energy EJ0 and the charging energy EC, we character-
ized the similar stand-alone Bloch transistor structures fabri-
cated from the same wafer, hence, made from the same
Nb/AlOx /Nb trilayer and having the same dimensions. From
I-V measurements at 4.2 K �shown in Fig. 3�a�, we extract
the sum asymptotic resistance R� and the gap voltage VGap.
Resistance R� is assumed to equal twice the normal state
resistance RN�33.5 k� of one from two nominally identical
junctions while the superconductor energy gap �=eVGap/4
�1.04 meV. Inserting these values into the Ambegaokar-
Baratoff relation RNIc0��	 /2�� /e,16 we estimate the critical

FIG. 2. �a� The image of the sample of the gradiometer configu-
ration with the Bloch-transistor structure in the center. �b� The
zoomed-in microphotograph of the transistor, which is located be-
tween two parallel wires terminated by the loops at both sides.
Thus, the loops are connected in parallel, resulting in the total in-
ductance L equal to one half of the inductance of each loop.
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current Ic0 and finally, EJ0 the Josephson coupling energy of
one junction as listed in Table I. Note that Ic0 values of
25 nA �wafer A� respectively 45 nA �wafer B� differ almost
by a factor of 2. The radio-frequency measurements per-
formed at 4.2 K with the single junctions inserted instead of
the transistors in the similar loops �see Fig. 1�, i.e., the
rf-SQUID configuration, gave almost similar values for Ic0.

The values of EC were derived from the gate and bias
voltage dependencies of the current of the stand-alone tran-
sistors at 20 mK and perpendicular magnetic field of up to
2 T. This magnetic field partially suppresses the supercon-
ductivity of the Nb electrodes and enhances the single-
electron tunneling at small voltage bias.17 For the bias below
the gap voltage, we found the characteristic diamondlike pat-
tern resulting from Josephson quasiparticle cycles;18 the bias

voltage period provides an estimate of the charging energy
�see Fig. 3�b� and Table I, while the gate voltage period
�VG�28 mV gives the value of the gate capacitance, CG
=e /�VG�6 aF.

III. RADIO-FREQUENCY MEASUREMENTS

A. Resonance curves

First, the resonance measurements of the Bloch transistors
were performed in order to calibrate the rf oscillation ampli-
tude of the phase, ��t�=�dc+a sin�2	ft�, with a being pro-
portional to the amplitude of the rf-flux oscillations in the
loop, �a=a�0 /2	. In these measurements we applied an rf
driving current Irf via a cold divider from the generator to the
tank circuit. An external dc bias current �see Fig. 1� was
added with the aid of a bias tee. The resonance curves VT-f
for a moderate pumping amplitude are shown in Fig. 4�a�.
The curves exhibit characteristic “nodes” typical of rf
SQUIDs,19 where, at certain pumping levels, the sensitivity
of the tank oscillation amplitude against the dc bias, i.e., the
stationary Josephson phase difference �dc, disappears. As-
suming a sinusoidal current-phase relation �CPR�, these
“nodes” are related to the amplitude-dependent resonant fre-
quency for fixed �dc given by the formula:20

f�a� = f0�1 + k2
L�J1�a�/acos �dc� �4�

with J1�a� denoting the first-order Bessel-function. If a
equals one of the positive zeros a0

�i� �i=1,2 , � of function J1,

TABLE I. Parameter overview for the experiments with the
Bloch transistor samples T1 �from wafer A� and T2 �from wafer B�.

T1 �60 nm�60 nm� T2 �80 nm�80 nm�

EJ0 ��eV� 50 95

EC ��eV� 80 45

L �nH� 0.7 0.7

LT ��H� 0.20 0.15

M �nH� 4.6 3.8

k 0.42 0.39

Ic �nA� 3.9 17


L 0.008 0.036

f0 �MHz� 68.80 76.18

Q 250 235

FIG. 3. �a� Typical dc I-V curve of the stand-alone test transistor
from wafer B at 4.2 K. The superconducting gap-voltage in this
sample is VGap=4.17 mV and the normal-state resistance R�

=67 k� of the series double-junction �transistor�. �b� Contour-plot
of the differential conductance dI /dV in �S of an isolated test tran-
sistor of wafer B as a function of gate voltage and bias voltage
measured at 25 mK.

FIG. 4. �a� Typical resonance curves for sample T2 �fabricated
from wafer A� at 20 mK. Shown is the detected tank-circuit voltage
as a function of the applied frequency of the rf excitation for a
driving current of Irf�89 nA. The dashed-dotted line shows the
amplitude-dependency f�a� of the resonance-frequency for an as-
sumed harmonic phase-dependence, as described by Eq. �4�. �b�
Typical resonance curves of sample T2 for a low excitation power,
i.e., driving-currents Irf�1.6 nA and Irf�3.7 nA. The asymmetric
shifts of the two resonance curves at extreme values of �dc with
respect to the tank circuit resonance frequency f0 results from the
pronounced nonharmonic current-phase relation in sample T2, com-
pare Fig. 6�b�.
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the resonant frequency is no longer dependent on �dc or on
the dc bias current. The amplitude VT

�1� for the first node can
be assigned to the respective value a0

�1�, thus providing cali-
bration according to a=3.83VT

p /VT
�1�, where VT

p =max�VT�.
From the value of VT

p , one can estimate the amplitude of the
driving-current Irf as Irf=YVT

p , where the impedance of the
circuit at resonance is 1 /Y =2	f0LTQ�18 k�.

The good agreement between the calculated
f�a�-dependence �dash-dotted line in Fig. 4�a�� and the posi-
tion of the nodes illustrates that the transistor sample inves-
tigated behaves for rather large amplitudes approximately as
an element with harmonic CPR. In other words, the contri-
bution of higher harmonics in the CPR to the resulting reso-
nance frequency f�a� is small.

For the small pumping levels, the resonance curve is
shifted as a whole when changing the dc bias current, see
Fig. 4�b�. In contrast to the situation for the large amplitude
of oscillations, the nonharmonic shape of the CPR plays a
crucial role here as expressed by Eq. �1�, relating the local
curvature of the band with the Josephson inductance. The
frequency shift determined for the two opposite values of the
external dc magnetic flux applied to the loop is no longer
symmetric relative to the tank-circuit frequency since the re-
verse inductance LJ

−1�q ,�� producing this shift �see Eq. �3�
is not exactly proportional to cos � here. This asymmetric
splitting appears so clear in our experiment because of the
rather large value of the product k2Q
L�1.6 for sample T2
�cf. experiments on rf-SQUIDs with large values of this
product in Ref. 21�. The minimum rf excitation, which al-
lows us to work with a sufficiently high signal-to-noise ratio
in our measurements, corresponds to values a�0.1a0

�1�.
For a sufficiently small value of a, the phase angle 

between the driving signal Irf and the voltage oscillations is
given by

tan  = 2Q� �f

f0 − �
	 , �5�

with the resonance frequency detuning �f resulting from the
transistor’s Josephson inductance Eq. �3� and the relative
shift �= �f-f0� / f0 of the operation frequency f . The measure-
ment of this angle for different values of the dc flux and gate
charge at a sufficiently low temperature allows the curvature
of the qubit ground-state surface to be mapped.

B. Radio-frequency measurements at 4.2 K

As long as our samples are fabricated from Nb films hav-
ing a critical temperature of about 9 K, they preserve the
Josephson properties and can be measured at a temperature
of T=4.2 K. Earlier, the rf measurements of transistors,
which comprise somewhat larger Nb junctions �with dimen-
sions down to 300 nm�300 nm� and are included in low-
inductance loops were successfully carried out at 4.2 K by
Il’ichev et al.22 These samples showed a clear dependence of
the phase angle on the applied dc flux and allowed the criti-
cal current of the junctions to be evaluated ��55 nA�. Be-
cause of the large capacitance of the island in these samples,
the charging energy was small �about 4 �eV, i.e., 50 mK�

and the values of parameter � were rather large ��30�; thus,
these transistors behaved classically at an operation tempera-
ture of 4.2 K, i.e., like two classical Josephson junctions
connected in series. Remarkably, our qubit samples with sig-
nificant charging energy �i.e., ��1�, and thus a large Cou-
lomb suppression of Ic,

7 also exhibited a clear dependence of
 on the dc flux at this temperature. This means, that our
experiment allowed the monitoring at 4.2 K of very small
effective critical currents of the order of 7 nA �cf. 55 nA
measured in Ref. 22�.

Figure 5�a� shows the periodic dependencies -�dc mea-
sured in the qubit sample T1 �fabricated from wafer A� at
4.2 K �solid line� and 20 mK �dashed-dotted line�. For com-
parison, the corresponding curve �measured at 4.2 K� for the
similar single Josephson junction included in the identical rf
circuit is shown by a dashed-double-dotted line. This plot
demonstrates first the reduction of the critical current of the
transistor in the ground state at T=20 mK �kBT�EJ ,EC� in
comparison to a single junction. This is due to the charging
effect of the island �see, for example, the experiments23,24�.
Second, one can see a further reduction of the critical current

FIG. 5. �a� Phase-shift  as a function of the phase ��dc��dc�
for a single-junction �dashes-double-dotted line� of wafer A at 4.2 K
and for the double-junction sample T1 of wafer A at 20 mK
�dashed-dotted line� and 4.2 K �solid line�. The nominal value of
the Josephson energy of each junction of wafer A is about 50 �eV.
�b� Current-phase relations for the ground band �dashed-dotted
line�, the first �dashed line�, and second band �dotted line� of the
Bloch-transistor calculated for EJ0=100 �eV, EC=45 �eV, and q
=0.5. The thick solid line indicates the observable value of the
supercurrent IS�� ,q� derived from Eq. �8�.
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observed at the elevated temperature of 4.2 K.
Such behavior can be explained by a simple model, that

takes the mixed Bloch states at values of thermal energy kBT
into account that are comparable to the interband energies. In

this case the observable supercurrent �ÎS� is found as the
quantum-statistical averaging over the canonical ensemble,

IS��,q� = �ÎS� =
Tr�ÎSeĤ/kBT�

Tr�eĤ/kBT�
, �6�

where Ĥ denotes the Hamiltonian of the total system includ-
ing the electromagnetic environment in the thermal equilib-
rium at a temperature T. In view of the small gate capaci-
tance �CG�e2 /2kBT� and the small loop inductance �L
� ��0 /2	�2 /kBT�, the variables � and q can be regarded as
classical parameters. The full expression for the supercurrent

operator ÎS was derived in Ref. 9. The diagonal matrix ele-
ments contributing to the expectation value entering in Eq.
�6� are, therefore, equal to

�n�ÎS�n� =
2	

�0

EJ1EJ2

EJ���
sin ��n�cos ��n� , �7�

where the effective Josephson coupling energy of the tran-
sistor is given by EJ���= �EJ1

2 +EJ2
2 +2EJ1EJ2 cos ��1/2 and �

is the operator of the transistor island’s phase �conjugate to
the operator of the island’s charge�. Note that the value
��n�cos ��n���1 �see the plots of this matrix element for n
=0 in Ref. 7� also depends on the phase �, because � deter-
mines the ratio �=EJ��� /EC.

Note that, due to the different signs of the term
�n�cos ��n�, the supercurrent in the different Bloch bands

�n�ÎS�n�, n=0,1 ,2 , . . .. has usually inverted the phase depen-
dencies �see the calculated curves in Fig. 5�b� as well as Fig.
3 in Ref. 5�. These antiphase terms contribute with the cor-
responding Boltzmann’s factors to the observable value Eq.
�6�. Finally, the supercurrent value to be detected in the
4.2 K measurement is equal to

IS��,q� = �2	

�0
	EJ1EJ2 sin

�

EJ����n=0

N

�
m=0

1

�n�cos ��n�

�e−En�q+me,��/kBT�
n=0

N

�
m=0

1

e−En�q+me,��/kBT. �8�

Here, En is the eigenenergy of the system taken at the corre-
sponding values of q and �. The summation over m takes
into account both even and odd configurations of charge on
the island. In the odd states �m=1� we omit the contribution
of ��kBT to the energy En related to an unpaired electron.
Thus, in our model we assume the existence of electron
states inside the energy gap in the spectrum of the island.
Both of these configurations are realized due to the unavoid-
able single electron tunneling at the elevated temperature. An
analysis of Eq. �8� shows that, taking into account the three
lowest energy bands �i.e., choosing N=2�, is sufficient for an
adequate description of our experiments with the given
sample parameters and temperatures up to T=4.2 K. Then,

higher bands �n�2� are sparsely populated and do not es-
sentially contribute to IS. As a tendency, the dependence of
IS�� ,q� on the gate charge q practically vanishes as soon as
higher bands get involved. The phase dependence becomes
almost harmonic.

In Table II, we compare the critical-current values calcu-
lated according to our model, Ic

�th�, with those extracted from
the measurements, Ic

�m�, for both our transistor samples at
20 mK and 4.2 K. From the experimental data, we obtained
the critical currents according to the relation

Ic
�m� =

�0

2	

tan��/2�a
k2QLJ1�a�

, �9�

following from Eqs. �3� and �5�. Here we introduce the value
�=max��dc�−min��dc�. For both temperatures considered
here, we find that the theoretical and experimental critical
currents are in good agreement. Moreover, the fact that Ic

�th�

does not differ for zero temperature and 20 mK, indicates
that measurements at the base temperature of the dilution
refrigerator explore, indeed the ground state, since in the
1e-periodic regime, i.e., for the gate charge between −e /2
and e /2 �mod 2� the contribution of higher bands due to
nonequilibrium effects is negligible because of the large gap
� in Nb and the large energy band spacing in this gate range.

C. Mapping of the ground state

Figure 6 presents the phase dependence as a function of
both external dc-flux �corresponding to the Josephson phase
�� and the gate-voltage VG proportional to the quasicharge q
for the samples T1 and T2. A nearly sinusoidal dependence
of the phase  on �dc is to be seen that is modulated peri-
odically by the applied gate voltage VG.

A closer look at Fig. 6 reveals that the amplitude of the
oscillations of  and, therefore, the critical current is smaller
in T1 than in T2, as expected from the Ambegaokar-Baratoff
values of EJ and also because of the smaller � ratio, due to
the charging effects. The nominal values EJ0 differ by less
than a factor of 2, whereas the critical currents differ by more
than a factor of 4. Related to that, the dc-bias dependence of
 is closer to the sinusoidal one for sample T1 having the
smaller value of �=0.7.25 In contrast to this, the correspond-
ing dependence for sample T2 �see Fig. 6�b�� having larger

TABLE II. Theoretical and experimental values of the critical
currents of two Bloch transistor samples at a sufficiently low tem-
perature of 20 mK and at 4.2 K. For the Ic

�th� calculation based on
the parameters EJ0 and EC listed in Table I, EJ0=EJ1=EJ2 is as-
sumed as justified by the weak influence of the imbalance parameter
b= �EJ1−EJ2� / �EJ1+EJ2� found in the simulations.

T1 T2

Ic
�th� at T=20 mK 4.5 nA 16 nA

Ic
�m� at T=20 mK 3.9 nA 17 nA

Ic
�th� at T=4.2 K 0.9 nA 4.3 nA

Ic
�m� at T=4.2 K 0.6 nA 3.0 nA
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��1.9 is clearly nonharmonic resulting in an asymmetric
shift of the resonance curves in Fig. 4�b�.

Gate-modulation curves of sample T1 �low �-ratio� for
different values �dc are displayed in Fig. 7�a�. We find a
periodic gate-modulation curve with a modulation depth ���
of 0.05 rad for �dc=0 and of 0.09 rad for �dc=	, whereas
for �dc=	 /2, the gate charge sensitivity disappears almost
completely. The gate-dependence period �VG is roughly
29 mV for both samples and complies with the value found
for the stand-alone test transistor shown in Fig. 3�b�. In con-
trast to our recent measurements on Al-qubit samples with
similar layout,26 the gate oscillations are 1e-periodic. Since
the periodicity of the Nb samples does not change when
applying a magnetic field of 2 T that is sufficient to cause
intensive quasiparticle tunneling,17 we think that the
1e-periodicity originates from the presence of presumably
few unpaired quasiparticles27 on the transistor island chang-
ing its parity. Because of the large � of Nb the presence of
nonequilibrium quasiparticles23,28 is less likely.

One should note that the gate modulation appears for
sample T1 over the whole range of phase �dc, hence allowing
efficient qubit control over the whole flux bias range. On the
other hand, for sample T2 ��=1.9�, the modulation depth is
nonzero only in the vicinity of the point �dc=	 �cf. Ref. 10,
where this range was notably smaller� and almost zero for
the rest of the flux-bias range; see Fig. 7�b�.

The surface plots of the phase shift presented in Fig. 6
should reflect the dependence of the local curvature of the
ground-state energy on q and � �see Eq. �1�. However, be-
cause of the finite amplitude of the oscillations, a�0.1a0

�1�,
of phase � these surfaces yield the values of curvature aver-
aged over the finite interval. Such averaging of the reverse
Josephson inductance is described by the integral

LJ
−1�q,�� →

1

	
�

−1

1

LJ
−1�q,� + ax�

dx
�1 − x2

. �10�

This expression makes it possible to compare the obtained
experimental data to the corresponding dependencies follow-
ing from the theory, taking into account the local curvature
of the ground-state energy and the finite amplitude of the
phase oscillations. By inserting the known parameters EJ0,
EC, Q, �f , k, and a into Eqs. �3�, �5�, and �10�, we calculate
the dc bias modulation curves for arbitrary charge on the
transistor gate. The curves for q=0 and q=0.5e are shown in
Fig. 8. These curves, which are based on input data partly
deduced from the dc measurements described in Sec. II,
agree well with the primary data from the rf experiments.

FIG. 6. �Color online� Phase-shift  as a function of the applied
dc-flux ��Idc� and gate voltage VG at T=20 mK for samples �a� T1
and �b� T2.

FIG. 7. �a� Gate modulation curves �VG� of T1 for three dif-
ferent values of the applied magnetic flux. The curves are shifted
for clarity. �b� Dependence of the peak-to-peak value � of the gate
modulation as a function of the external magnetic flux for T1 and
T2. The negative values of � have the meaning of the reverse
phase dependencies in plot �a�.
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IV. CONCLUSION

The radio-frequency impedance measurements of the
charge-phase qubit samples with balanced Josephson cou-
pling to Coulomb charging energy ratio � clearly demon-
strated the dependence of the curvature of the ground-state
energy on the control charge and phase in a wide range. The
shape of the Josephson inductance surface of the transistor is
well described by the Bloch band theory.

An advantage of our Nb technology is that we were able
to characterize our qubit system at a temperature of T
=4.2 K. In our investigation, we found that the Josephson
critical current of the tunnel junctions forming the qubit is
scaled with their size, almost approaching the nominal

Ambegaokar-Baratoff value. The availability of sub-0.1 �m
niobium-based Josephson junctions was extremely helpful as
it offered the valuable possibility of studying the influence of
thermal fluctuations in an extended temperature range with-
out increasing the cryogenic efforts. The experimental results
obtained at the large temperature can be interpreted within a
simple quantum-statistical model of the Bloch transistor.

Although the measured qubit samples T1 and T2 had a
charging energy EC of the island �equal to 80 and 45 �eV,
respectively� much smaller than the value of the Nb energy
gap, �1 meV, this relation did not ensure the desired sup-
pression of the quasiparticle tunneling. As result, instead of
the 2e-, the 1e-periodic dependence of the qubit Josephson
inductance on the gate charge was observed. Such behaviour
of the stand-alone Nb transistor samples was also observed
in earlier measurements performed in dc configuration; see
Ref. 11, and references therein. As was suggested in Ref. 11,
this behavior is most probably due to possible intragap en-
ergy states formed in Nb/AlOx /Nb tunnel barriers. There-
fore, further improvement of the Nb technology of fabrica-
tion is required. On the other hand, the given Nb qubit
samples can still operate in the “magic” points corresponding
to the value of the control charge q=0. The question as to the
rate of the quasiparticle tunneling in the excited state, pre-
senting the most critical mechanism of the qubit relaxation,9

deserves a special study.
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