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Using a Fermi-liquid-based theory we calculate the in-plane anisotropy of the spin susceptibility ��q ,�� for
hole-doped high-Tc cuprates. Employing the two-dimensional one-band Hubbard model and a generalized
RPA-type theory we consider anisotropic hopping matrix elements �tx� ty� and a mixing of d- and s-wave
symmetry of the superconducting order parameter in order to describe orthorhombic superconductors. We
compare our calculations with available inelastic neutron scattering data on untwinned YBa2Cu3O6+x and find
good agreement. Furthermore, we predict a strongly anisotropic in-plane dispersion of the resonance peak.
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I. INTRODUCTION

The spin dynamics plays an essential role in high-Tc cu-
prates. Superconductivity occurs very close to a Mott insu-
lating state supporting a strong long-range antiferromagnetic
�AF� order. Inelastic neutron scattering �INS� demonstrates,
through the so-called commensurate and incommensurate
peaks, the existence of magnetic collective phenomena in the
superconducting state of hole-doped high-Tc cuprates inti-
mately tied to superconductivity.1–7

Several theoretical scenarios have proposed a mechanism
for superconductivity in the high-Tc cuprates attributed to
magnetism. It has been argued that superconducting quasi-
particles emerge from an exchange of AF spin fluctuations
between Fermi-like quasiparticles8–10 or from a recombina-
tion in momentum space of holons and spinons in a spin-
charge-separated normal state.11 In the stripe scenario,12

strong electronic interactions result in normal and supercon-
ducting states in which spin and charge are separated in a
predominantly one-dimensional region, called stripes, of the
CuO2 planes.

The incommensurate and commensurate peaks seen in
INS on La15/8Ba1/8CuO4 in Ref. 5 are interpreted in terms of
excitation spectra in a bond centered stripe state with quasi
or long-range magnetic order in the stripe picture of Refs.
13–15. Using a Fermi-liquid-like theory for itinerant quasi-
particles, it was argued in Refs. 16–26 that the incommensu-
rate and resonance INS peaks in YBa2Cu3O6+x �YBCO� or
Bi2Sr2CaCu2O8+x �Bi2212� are a fingerprint of a pure
dx2−y2-wave symmetry of the superconducting order param-
eter. In order to distinguish between the Fermi-liquid and
stripe pictures applied to YBCO, a detailed analysis of the
spin excitations in untwinned YBCO is helpful.

Pure dx2−y2-pairing symmetry is only to be expected for
underlying lattices with tetragonal symmetry. Most of the
cuprates are known to show orthorhombic distortions. The
high-Tc superconductor YBCO reveals a strong structural
orthorhombic distortion as a function of doping. For ex-
ample, a 60% anisotropy in the London penetration depth
between the a and b directions in the two-dimensional CuO2
planes was found by Basov et al.27 As YBCO is character-
ized by CuO-chains that are present only along the b direc-
tion and as these chains are believed to act as charge reser-

voirs that fill up with increasing doping x, a density
functional calculation predicts a distorted Fermi surface �FS�
in two dimensions.28 This prediction of a two-dimensional
anisotropic FS is consistent with angle-resolved photoemis-
sion spectroscopy �ARPES� studies by Lu et al.29 who mea-
sured a strong a-b anisotropy in the electronic dispersion of
monocrystalline YBa2Cu3O6.993. In particular, they reported
a 50% difference in the magnitude of the superconducting
gap in the vicinity of the �� ,0� and �0,�� region of the first
Brillouin zone �BZ�, respectively. Smilde et al.30 measured
an a-b anisotropy of the Josephson current in junctions be-
tween monocrystalline YBa2Cu3O7 and s-wave Nb, claiming
that the obtained anisotropy can be well fitted by a 83%
d-wave and 17% s-wave order parameter. Anisotropic re-
sponses are not limited to electromagnetic probes. The dy-
namical magnetic susceptibility measured by INS in mono-
crystalline and fully detwinned YBCO shows that the
incommensurate peaks are strongly anisotropic in that their
line shapes and intensities break the tetragonal
symmetry.31–34 Thus, it has become necessary to go beyond a
pure dx2−y2 superconducting order parameter so as to incor-
porate the effects of crystalline hosts with orthorhombic
symmetry.

Strongly anisotropic INS responses have both been inter-
preted as evidences for the proximity in parameter space to
one-dimensional physics �stripe scenario� in Ref. 33 or to
two-dimensional physics �Fermi-liquid-like scenario� in Ref.
34. The effects on INS of an orthorhombic dispersion of the
superconducting quasiparticles were previoulsy studied in
Refs. 35–38. In this article, we analyze the observed aniso-
tropy in INS within a conventional fermiology picture under
the hypothesis that the observed anisotropies in the spin and
charge response are caused by both a subdominant s-wave
component in the superconducting gap and an orthorhombic
BCS dispersion. To this end we use a phenomenological
single-band tight-binding model describing BCS quasiparti-
cles interacting weakly through a residual repulsive Hubbard
interaction. The parameters entering the BCS dispersion are
chosen so as to reproduce the measured values of the Fermi
surface and the BCS gaps at �� ,0� and �0,�� close to opti-
mally doped YBCO. The residual Hubbard interaction is
fixed by the energy of the resonance at �� ,�� at the same
doping.39
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The paper is organized as follows. Our model is described
in Sec. II. Results for the dynamical magnetic susceptibility
are presented in Sec. III. The qualitative behavior of the dy-
namical magnetic susceptibility is explained in Sec. IV. We
summarize with Sec. V.

II. DEFINITION OF FERMIOLOGY

In this paper, we shall assume an effective one-band Hub-
bard Hamiltonian for each CuO2 plane

H = H0 + H1, �2.1a�

H0 = − �
�ij���

tijci�
† cj� − ��

i�

ni� − �
�ij�

��ijci↑
† cj↓

† + H.c.� ,

�2.1b�

H1 = U�
i

ni↑ni↓, �2.1c�

where the brackets �ij� and �ij�� denote the summation over
the first nearest neighbors, and the first to fifth nearest neigh-
bors, respectively �see Fig. 1�. Here, ci�

† is the creation op-
erator of a quasiparticle with spin � on site i, ni�=ci�

† ci� is
the spin-dependent local number operator, tij is a hopping
matrix element in the CuO2 plane, � is the chemical poten-
tial, �ij is the superconducting gap, and U denotes a residual
on-site �i.e., intraorbital� Coulomb repulsion. For simplicity
we shall use a rigid-band approximation, by which all the
effects of doping can be incorporated into a doping depen-
dent chemical potential. The summation over the first few
nearest-neighbors pairs of directed sites is most easily per-
formed in the first BZ of the reciprocal space for the square
lattice, in which case the noninteracting Hamiltonian is diag-
onal in reciprocal space

H0 = − �
k�BZ

�	k�
�

ck�
† ck� + �k�ck↑

† ck↓
† + H.c.�� .

�2.1d�

We shall choose the band parameters so as to fit qualitatively
the FS as measured by ARPES. This can be done with the
choice

	k =
t1

2
�1 + 
0�cos kx +

t1

2
�1 − 
0�cos ky + t2 cos kx cos ky

+
t3

2
�1 + 
0�cos 2kx +

t3

2
�1 − 
0�cos 2ky

+
t4

2
cos 2kx cos ky +

t4

2
cos kx cos 2ky

+ t5 cos 2kx cos 2ky + � . �2.1e�

The values for the hopping matrix elements are those that
Norman used in Ref. 40 to fit photoemission experiments.
The parameter 
0�0 breaks the tetragonal symmetry as the
kx and ky directions in the BZ of the square lattice are not
equivalent. In this paper we shall always choose a nonvan-
ishing 
0�0 that corresponds to effective hopping ampli-

tudes larger along the ky direction than along the kx direc-
tion. The superconducting gap is also chosen, on
phenomenological grounds and out of simplicity, to be

�k = ��x cos kx − �y cos ky�/2 + �s, �2.1f�

where

0 � �s � �0 � ��x + �y�/2. �2.1g�

The condition 	���,0�	� 	��0,��	 that is observed in ARPES
�see Ref. 29� can be implemented with the choice �0��x
=�y and �s�0 for the effective gap parameters. Of course,
this choice is not unique, but since we are not concerned
with deducing in a self-consistent manner the band and gap
parameters from a microscopic model, we will make it for
simplicity. In general, the effective energy scale U can en-
code an interaction that is strongly momentum dependent.
For example, in the 1/z expansion with z as the number of
nearest neighbors, the repulsive channel of the interaction is
peaked at the AF wave vector QAF= �� ,��.19–21,41 This, how-
ever, will have no bearing on our conclusions and we choose
U to represent a Hubbard on-site repulsion out of simplicity.
The value for U throughout this paper is fixed by demanding
that the position in energy of the resonance at the wave vec-
tor �� ,�� coincides with the one observed in optimally
doped YBCO.

The shape of the FS is depicted in Fig. 2�a� for the band
parameters �see Ref. 40�, �=110.0 meV, t1=−588.1 meV,
t2=146.1 meV, t3=9.5 meV, t4=−129.8 meV, and t5
=6.9 meV for 
0=0 �blue� and 
0=−0.03 �red�. The Fermi
arcs of the orthorhombic FS are closer together in the
�0, ±�� region than in the �±� ,0� region of the BZ. This is a
consequence of taking 
0�0. The opposite result follows
from the choice 
0�0.42 It is possible to use the chemical
potential � as a tuning parameter through a phase transition
of the Fermi surface topology. The FS in Fig. 2�a� is two-
dimensional and holelike, i.e., it is closed around the four

FIG. 1. The hopping parameters used in the tight-binding dis-
persion �2.1e� are t1=−588.1 meV, t2=146.1 meV, t3=9.5 meV,
t4=−129.8 meV, and t5=6.9 meV throughout this paper. An ortho-
rhombic symmetry implies that rotation symmetry by � /2 is bro-
ken, i.e., that t1x� t1�1+
0� /4 is not equal to t1y � t1�1−
0� /4 and
that t3x� t3�1+
0� /4 is not equal to t3y � t3�1−
0� /4.
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corners of the first BZ of the square lattice. Upon increasing
the chemical potential to the value �=120 meV, the FS 
Fig.
2�a�� undergoes a transition to the quasi-one-dimensional to-
pology 
Fig. 2�b�� by which it is now open along the kx
direction but closed along the ky direction in the first BZ of
the square lattice. It has been argued in Refs. 20 and 43 that
such a distorted FS can arise as a result of a dx2−y2-wave
Pomeranchuk instability due to strong electron-electron in-
teractions. The absolute value of the superconducting gap
�k=�0�cos kx−cos ky� /2+�sas a function of k with �0

=26 meV and �s=3 meV is shown in Fig. 2�c�. The nodal
points form two lines that are closed around the points
�±� ,0�, respectively, in the extended BZ. The choice �k

= ��x cos kx−�y cos ky� /2+�s as a function of k with �x

=20.8 meV, �y =31.2 meV, and �s=0 �extended s-wave
subdominant component� is shown in Fig. 2�d�. A subdomi-
nant extended s-wave component with �y ��x was found in
Refs. 36 and 44 after solving self-consistently a t− t�−J
model treated by the slave-boson approach.

In this paper we shall approximate the full frequency �
and momentum q-dependent dynamical spin susceptibility
��� ,q� by the RPA approximation in terms of the noninter-
acting BCS-Lindhard response function �0�� ,q�. In turn, as
the INS intensity in the superconducting state is proportional
to the imaginary part ���� ,q� of ��� ,q�, we shall be com-
puting

�RPA� ��,q� =
�0���,q�


1 − U�0���,q��2 + U2�0�
2��,q�

. �2.2�

A dispersing branch of incommensurate or commensurate
peaks occurs whenever it is possible to find a frequency-
momentum pair ��* ,q*� that satisfies the dynamical Stoner
criterion

1 − U�0���
*,q*� = 0. �2.3�

The height of the peaks in a momentum or energy scan is
determined by the size of �0���

* ,q*�. We define the resonance
energy �res as �* at the AF wave vector q*= �� ,��. It is of
order 43 meV for the band parameters of Fig. 1, the arith-
metic average gap maximum �0 taking the value of 26 meV,
and the choice U=155 meV.

III. NUMERICAL RESULTS FOR THE DYNAMICAL
MAGNETIC SUSCEPTIBILITY

We have computed numerically the imaginary part of the
RPA spin susceptibility �2.2� at a fixed transfer energy as a
function of q for values of the transfer energy ranging from
well below to well above the resonance energy �43 meV.
The band parameters in Fig. 1 and the arithmetic average gap
maximum �0=26 meV are fixed throughout this section. The
values taken by the subdominant s-wave component �s and
the orthorhombic parameters 
0 and 	�x−�y	 are varied.

�i� FS with orthorhombic anisotropy. Gap with isotropic
s-wave subdominant component. The case of a weakly ortho-
rhombic distorted FS and of an orthorhombic gap induced by
a weak s-wave subdominant component is displayed in Fig.
3. The band structure corresponds to that in Fig. 2�a� with


0=−0.03 and the anisotropic gap of Fig. 2�c�, i.e., 	�x
−�y	=0 while �s=3 meV. Most of the intensity in
�RPA� �� ,q� is concentrated on the perimeter of a diamond
that is centered around the AF wavevector �� ,�� for ener-
gies smaller than 40 meV. The area enclosed by this dia-
mond decreases with increasing transfer energies. Remark-
ably, the maximum intensity is on the upper and lower
corners of the diamond 
intersection between the diamond
and the vertical line passing through �� ,��� at the transfer
energy of 20 meV whereas it has moved to the left and right
corners of the diamond 
intersection between the diamond
and the horizontal line passing through �� ,��� at the transfer
energy of 30 meV. The ratio of intensities at the upper and
left corners of the diamond is of order 2 �1/2� for the transfer
energy of 20 meV �35 meV�. This anisotropy is much stron-
ger than the orthorhombic anisotropy in the dispersion of the
BCS quasiparticles �a 10% effect induces a 100% effect�. For
comparison, one finds that most of the intensity in �RPA� �� ,q�
is to be found in a ring centered around �� ,�� with four
pronounced peaks at ��±q0 ,�� and �� ,�±q0� in the tetrag-
onal case, 
0=�s=0 
not shown here, see Fig. 4�a� in Ref.
37�. For energies larger than 40 meV the intensity in
�RPA� �� ,q� is suppressed along the x axis passing through
�� ,�� and is mostly concentrated in a disc that is centered
around the AF wave vector.

�ii� FS with orthorhombic anisotropy. Gap with tetragonal
symmetry. The case of a weakly orthorhombic distorted FS,

0=−0.03, and of a tetragonal gap, 	�x−�y	=�s=0, is dis-
played in Fig. 4�a�. The only qualitative difference with Fig.
3 is the fact that the maximum intensity is always found at
the left and right corners of a diamond centered at �� ,��
below the resonance energy �43 meV. Evidently, this differ-

FIG. 2. �Color online� Panels �a� and �b� display the FS for the
tight-binding dispersion �2.1e� with an orthorhombic distortion 
0

=0 �blue� and 
0=−0.03 �red� using two different values of the
chemical potential �=110 and �=120 meV, respectively. The nu-
merical values taken by the five hopping parameters t1 , . . . , t5 are
given in Fig. 1. Panel �c� displays the absolute value of the super-
conducting gap �k=�0�cos kx−cos ky� /2+�s in meV using �0

=26 meV and �s=3 meV. Panel �d� displays the absolute value of
the superconducting gap �k= ��x cos kx−�y cos ky� /2 with �x

=20.8 meV and �y =31.2 meV.
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ence at the lower end of the transfer energies �20 meV can
be ascribed to switching off the s-wave subdominant compo-
nent to the gap. We thus conclude that, below the resonance
energy, the anisotropy ty / tx�1 favors dominant incommen-
surate peaks along the qx direction while the subdominant
s-wave component �s�0 favors dominant incommensurate
peaks along the qy direction.

�iii� FS with tetragonal symmetry. Gap with isotropic
s-wave subdominant component. The case of a tetragonal FS,

0=0, and of an orthorhombic gap induced by a weak s-wave
subdominant component, �s=3 meV, is displayed in Fig.
4�b�. There are two qualitative differences with Fig. 3. The
maximum intensity is always found at the upper and lower
corners of a diamond centered at �� ,�� below the resonance
energy �43 meV. The intensity distribution above
�43 meV is much less blurry than in Fig. 4�a� and displays
some well defined arcs of dominant intensity centered about
the diagonals passing through the center �� ,�� of the mag-
netic BZ.

�iv� FS with orthorhombic anisotropy. Gap with extended
s-wave subdominant component. The case of a weakly ortho-
rhombic distorted FS, 
0=−0.03, and of a gap with a strong

orthorhombic distortion induced by 	�x−�y	=10.4 meV
��y ��x�, but �s=0, is displayed in Fig. 5�a�. It is qualita-
tively very similar to Fig. 4�a�. The maximum intensity is
always found at the left and right corners of a diamond cen-
tered at �� ,�� below the resonance energy �43 meV. The
anisotropy in the ratio between the intensities at the upper
and left corners of the diamond are more pronounced than in
Fig. 4�a�. Since the anisotropy in the hopping parameters
dominates over the anisotropy in the SC gap function, the
opposite choice �x��y �not shown� leads to a qualitatively
similar result, albeit with a reduced anisotropy ratio at low
transfer energies �20 meV.

At last we illustrate with Fig. 5�b� the fact that the distri-
bution of intensities below the resonance energy �43 meV
in the RPA spin susceptibility tracks that in the bare Lindhard
spin susceptibility. It is in this sense that the qualitative evo-
lution of the intensity distribution in Fig. 3 between 20 and
35 meV is robust to changing the momentum dependence of
the residual quasiparticle interaction in Eq. �2.1c�.

IV. DISCUSSIONS

In this section we explain the qualitative behavior of the
imaginary part of the RPA spin susceptibility �RPA� �� ,q� for
an orthorhombic superconductor in terms of the properties of
�0��� ,q� and the two-particle energy E2�q ,k�. We recall that
in the limit of T=0 and for positive frequencies the imagi-
nary part of the noninteracting BCS-Lindhard response func-
tion �0�� ,q� simplifies to25

�0���,q� =
�

N
�

k
Cq,k

+,−

� − E2�q,k�� , �4.1�

Cq,k
+,− =

1

4
1 −

	k+q	k + �k+q�k

Ek+qEk
� , �4.2�

E2�q,k� = Ek+q + Ek, �4.3�

where Ek=�	k
2+�k

2 denotes the dispersion of the quasiparti-
cles in the superconducting state. At a fixed wave vector

FIG. 3. �Color online� Imaginary part of the RPA spin suscepti-
bility �RPA� �� ,q� for a constant transfer energy �=20, . . . ,60 meV
as a function of q �in units of �� for the tight-binding band structure
of Fig. 2�a� with 
0=−0.03. We are also using �0=26 meV, �s

=3 meV, U=155 meV, T=0 K, and a damping =1 meV.

FIG. 4. �Color online� �a� Same as in Fig. 3 except for �s=0. �b�
Same as in Fig. 3 except for 
0=0.
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q the imaginary part of the noninteracting spin susceptibility
�0��� ,q� vanishes below the threshold frequency

�c�q� = min
k�BZ

E2�q,k� �4.4�

that defines the border to a continuum of particle-hole exci-
tations. For a d-wave superconductor the low-energy border
of the continuum has a nontrivial form �see Fig. 6�. It is
bounded by several segments of different curves along each
of which �0��� ,q� exhibits either a jump ��1 and �2 in Fig.
6� or a kink ��d in Fig. 6� as a function of frequency, de-
pending on whether the coherence factor Cq,k

+,− in Eq. �4.1� is
vanishing for the wave vectors k contributing to �0��� ,q� at
the border to the continuum.21 The size of the jump in
�0��� ,q� is controlled by two criteria: �i� How flat the two-
particle dispersion at the corresponding minimum in E2�q ,k�
is, and �ii� by the degeneracy of the minimum itself. As
explained in Ref. 25 the degeneracy of the minima
minkE2�q ,k� is increased for q on a high symmetry axes of
the magnetic BZ, i.e., on the kx or ky axes passing through
�� ,�� in the case of orthorhombic symmetry. The dispersion
of the spin excitations in the presence of interactions is to a
large extent determined by the behavior of �0��� ,q� at the
border to the particle-hole continuum. A steplike discontinu-
ity in the frequency dependence of �0��� ,q� results in a loga-
rithmic singularity in �0��� ,q� due to the Kramers-Kronig
relation. This in turn leads to a pole in �RPA� �� ,q� since the
dynamical Stoner criterion �2.3� can be satisfied at a fre-
quency �*�q���c�q�. A finite damping  cuts off the loga-
rithmic singularity in �0��� ,q�, and the dynamical Stoner cri-
terion can only be met for a sufficiently large size of the step
in �0��� ,q� �see open diamonds in Fig. 6�.

We find that an orthorhombic distortion in the band struc-
ture or in the superconducting order parameter partially lifts
the degeneracy of the minima in E2�q ,k� for q on the diag-
onal axes passing through �� ,��. That is, for orthorhombic
symmetry and q on the diagonal lines, there are four twofold
degenerate critical frequencies �i�q� along which �0��� ,q�
exhibits a jump. Whereas in the tetragonal case there are one
fourfold and two twofold degenerate threshold frequency
�i�q�. Consequently, the intensity maxima in �RPA� �� ,q�, for
���res and for orthorhombic symmetry, lie on the horizon-
tal and vertical axes passing through �� ,��. This is in con-
trast to the tetragonal case, where the intensity maxima can
occur on the diagonal axes as well.

In Fig. 6 we present the electron-hole continuum and the
threshold frequencies �1�q�, �2�q�, and �d�q� for the direc-
tions �qx ,�� and �� ,qy� using the same parameters as in Fig.
3. Also shown is the continuation of the threshold lines �2�q�
into the continuum along which �0��� ,q� exhibits a second
jump as a function of frequency. For tetragonal symmetry,
similar results have been reported by Norman in Ref. 40. To
illustrate the fact that the threshold frequencies correspond to
�local� minima in the two-particle energy, we show in Fig. 7
the k dependence of E2�q ,k� at the wave vectors q
= �1.25� ,�� and q= �� ,1.25�� together with the associated
scattering vectors between points on the FS 
Figs, 7�c� and
7�d��. In order to isolate the effect of an orthorhombic FS
from the effect of a subdominant s-wave component we plot
in Fig. 8 the dispersion of the threshold frequencies for �s
=0, 
0=−0.03, and �s=3 meV, 
0=0, respectively.

In the case of an orthorhombic FS and for q along the qx
direction the first scattering process 
label �1� in Fig. 7� con-
nects points that are further away from the gap nodes 
see
Fig. 1� than the corresponding points for q along the qy di-
rection. To the contrary, when q is on the horizontal axis
passing through �� ,�� the scattering vector of the second
scattering process 
label �2� in Fig. 7� connects points that
are further away from the antinodes than the analogous

FIG. 5. �Color online� �a� Same as in Fig. 3 except for the gap
�k= ��x cos kx−�y cos ky� /2 with �x=20.8 meV and �y

=31.2 meV from Fig. 1�d�. �b� Imaginary part of the BCS-Lindhard
spin susceptibility �0��� ,q� for a constant transfer energy �
=20, . . . ,60 meV as a function of q �in units of �� for the same
parameters as in Fig. 3.

FIG. 6. �Color online� Momentum dependence of the threshold
frequencies �1, �2, and �d calculated from mink E2�q ,k� using the
same parameters as in Fig. 3. The threshold frequency as a function
of �� ,qy� 
�qx ,��� is depicted in black �red�. The open diamonds
represent the position of the resonance peak.
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points for q on the vertical axis.45 This behavior reflects itself
in the shape of the threshold lines 
Figs. 8�a�, 8�b�, and 6�. It
is found that �1�q ,����1�� ,q�, whereas �2�q ,��
��2�� ,q� for any q. Since the local minima corresponding
to the second scattering process are absent in the range
�0.65��qx�0.85�, qy =�� and �1.15��qx�1.35�, qy =��
the line �2�q� along the qx direction has a gap in this mo-
mentum range 
Figs. 7�a� and 6�. As seen from Fig. 2�c� the
inclusion of a subdominant s-wave component �s=3 meV
tilts the vector connecting the SC nodes from the diagonal
line towards the x direction. Hence, the mismatch between
the node-to-node vector and a wave vector q along the qy
direction is smaller than between the node-to-node vector
and a wave vector q along the qx direction 
see Figs. 7�c� and
7�d��. This leads to a smaller minimum of the particle-hole
continuum along the qy direction than along the qx direction

Figs. 8�c�, 8�d�, and 6�. Finally, we note that the energy
dispersion around the global mimina in E2�q ,k� for q on the
horizontal line is flatter than the dispersion for q on the ver-
tical line �Fig. 7�, which results in a larger jump in �0��� ,q�
in the qx direction than in the qy direction.

As mentioned above the dispersion of the spin excitations
tracks the behavior of the border to the particle-hole con-
tinuum �1�q�. In Fig. 6 the position of the resonance peak
are represented by open diamonds. We find that the down-
ward parabola of the incommensurate peaks has a larger
opening angle for q along the qx direction than for q along
the qy direction. The dispersion is flatter in the qx direction
leading to incommensurate peaks that are broader in momen-
tum space for a momentum transfer q on the horizontal axis
than for q on the vertical axis. Moreover, if constant energy
scans are taken, the incommensurate peaks along the qx di-
rection are about twice as intense than those along the qy

direction. This is due to the flatter energy dispersion of
E2�q ,k� for q on the x axis, and is in agreement with INS
experiments recently performed by Hinkov et al. in
YBa2Cu3O6.85, i.e., near optimal doping �see Fig. 1 in Ref.
34�. The fact that the magnetic response is larger along the qx
direction compared to the qy direction for the energy range
30 meV���43 meV is robust as long as the anisotropy in
the hopping parameters �tx� ty� dominates the anisotropy in
the SC gap. For example, we have computed Fig. 3 with the
band structure of Fig. 2�b�, and found very similar results.
The full parabolic dispersion of the resonance peak both
along the qx and qy direction still needs to be measured. For
energies smaller than 25 meV we find that the presence of a
subdominant s-wave component in the SC gap shifts the in-
tensity maxima in �RPA� �� ,q� at a constant transfer energy
from the horizontal axis passing through �� ,�� to the verti-
cal axis.

V. SUMMARY

In summary, we have determined the effect of anisotropic
hopping matrix elements and a mixing of d- and s-wave
symmetry of the gap on the dynamical magnetic susceptibil-
ity of high-Tc cuprates within a Fermi-liquid-based theory.
For transfer energies smaller than the resonance energy, �res,
we find strongly anisotropic spin excitations on the horizon-
tal and vertical axes of the magnetic BZ. The inclusion of
anisotropic hopping parameters leads to a distortion of the
square like excitation pattern at a constant transfer energy to
a rhombus shape. For tx� ty and within the energy window
1/2�res����res we have shown that the spin excitations
along the qx direction are about twice as intense than the
ones along the qy direction. Furthermore, we predict consid-

FIG. 7. �Color online� Panels �a� and �b� display the calculated
k-dependence of E2�q ,k� in the first BZ for q= �1.25� ,�� and q
= �� ,1.25��, respectively, using the same parameters as in Fig. 3.
Panels �c� and �d� show the transitions between points on the Fermi
surface yielding the threshold frequencies �1 and �2 for q
= �1.25� ,�� and q= �� ,1.25��, respectively.

FIG. 8. Momentum dependence of the threshold frequencies �1,
�2, and �d calculated from mink E2�q ,k� for different FS and gap
parameters with q= �qx ,�� in panels �a� and �c� while q= �� ,qy� in
panels �b� and �d�. The FS parameters are those of Fig. 2�a� with

0=−0.03 while the gap is a pure d-wave gap with �0=26 meV and
�s=0 in both panels �a� and �b�. The FS parameters are those of
Fig. 2�a� with 
0=0 while the gap parameters are those of Fig. 2�c�
with �s=3 meV in both panels �c� and �d�.
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erable differences in the dispersion of the resonance peak
along the �qx ,�� and �� ,qy� axes, respectively �see Fig. 6�.
The peaks along the qx direction are both further apart and
broader in momentum space compared to the peaks along the
qy direction.

The effect of a subdominant s-wave component in the
superconducting gap is most prominent at small energies of
about �1/2�res. Assuming �s�0, as demanded by ARPES
measurements,29 the subdominant s-wave component results
in a rotation of the intensity maxima by 90° relative to the
excitation pattern at energies 1 /2�res����res, and the spin
gap becomes strongly anisotropic.

Between the resonance energy and a transfer energy of up
to 50% larger than the resonance energy, the spin response
remains anisotropic with a suppression of the intensity along
the qx direction. The anisotropy between the spin response

along the inequivalent directions qx and qy decreases with an
increasing transfer energy above the resonance energy. Inten-
sities are negligible at transfer energies 400% larger than the
resonance energy in sharp contrast to what is measured for
La15/8Ba1/8CuO4 in Ref. 5.
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