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In a recent review by Anderson and co-workers, it was pointed out that an early resonating valence bond
�RVB� theory is able to explain a number of unusual properties of high-temperature superconducting �SC� Cu
oxides. Here we extend previous calculations to study more systematically the low-energy physical properties
of the plain vanilla d-wave RVB state, and to compare the results with the available experiments. We use a
renormalized mean-field theory combined with variational Monte Carlo and power Lanczos methods to study
the RVB state of an extended t-J model in a square lattice with parameters suitable for the hole-doped Cu
oxides. The physical observable quantities we study include the specific heat, the linear residual thermal
conductivity, the in-plane magnetic penetration depth, the quasiparticle energy at the antinode �� ,0�, the
superconducting energy gap, the quasiparticle spectra, and the Drude weights. The traits of nodes �including kF,
the Fermi velocity vF, and the velocity along Fermi surface v2�, and the SC order parameter are studied.
Comparisons of the theory and the experiments in cuprates show an overall qualitative agreement, especially
on their doping dependences.
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I. INTRODUCTION

Since the discovery of high transition temperature super-
conductivity �HTSC� in cuprates in 1986, there have been
enormous efforts in both experiments and theories to under-
stand the mechanism of the superconductivity and their un-
usual physical properties. One of the earliest theory is the
resonating valence bond �RVB� theory proposed by
Anderson.1 In that theory, the operative element in the elec-
tronic structure of this class of compounds is the square pla-
nar CuO2 lattice. The parent compound such as La2CuO4,
where the Cu is stoichiometrically bivalent Cu2+ with one
hole per Cu site, is an antiferromagnetically coupled Mott
insulator. Chemical doping such as the partial replacement of
La by Sr introduces additional holes on the CuO2 planes. The
minimum microscopic model to describe the low-energy
physics has been proposed to be the t-J model or its variant
extended t-J model, which includes an antiferromagnetic
spin coupling and a kinetic energy term for the hole
motion.1,2 Anderson proposed a doped spin liquid of spin
singlets, or the bond spin singlet resonating between many
configurations.1 This concept explains many unusual proper-
ties of the cuprates, as emphasized in a recent review by
Anderson and co-workers.3 More quantitatively, in the sim-
plest RVB theory, namely its plain vanilla version, the RVB
state in the cuprate is described by a Gutzwiller projected
d-wave BCS wave function, whose parameters are deter-
mined variationally either by using a renormalized mean
field theory4 �RMFT� or by variational Monte Carlo method
�VMC� numerically,5–7 or by other field theory methods.8

Recently the Gutzwiller RVB wave function approach was
applied to the strong coupling Hubbard model by Parame-
kanti, Randeria, and Trivedi, who used careful numerical

methods to calculate several quantities of direct experimental
relevance.9 Both results for the Hubbard and t-J models turn
out to correspond well to some experimental phenomena ob-
served in cuprates. The plain vanilla RVB theory has recently
been extended to study the scanning tunneling microscopy,
the angle resolved photoemission spectroscopy10 �ARPES�
and the Gossamer superconductivity11 in the Hubbard-like
models at the half electron filling. In view of the preliminary
success of the plain vanilla RVB theory, it is desirable to
extend previous calculations and to analyze more experimen-
tal data so that a more systematic and comprehensive com-
parison between the theories12,13 and the experiments14 can
be made on more observable quantities.

In the present paper, we extend the previous works of
Zhang et al.4 and of Paramekanti et al.9 to carry out more
systematic calculations on the low-energy physical properties
of the plain vanilla d-wave RVB state. We use a renormal-
ized mean-field theory combined with variational Monte
Carlo and power Lanczos �PL� methods15,16 to study the
RVB state of an extended t-J model in a square lattice for
parameters suitable for the hole doped lanthanum and yt-
trium Cu oxides. Our main focus is on the microscopic cal-
culations of the key parameters for nodal quasiparticles in
the d-wave RVB state, namely, the Fermi velocity vF and the
velocity along the Fermi surface v2. From these quantities,
we calculate a number of low-energy physical properties in-
cluding the specific heat, the linear residual thermal conduc-
tivity, and the in-plane magnetic penetration depth. We make
extensive comparison between these calculations with a very
broad spectrum of types of reported experiments, and find
qualitative agreement, especially on the doping dependences
of these properties. The discrepancy between the theory and
experiments is mostly on the absolute values of these quan-
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tities, which may be attributed to a factor of 2–4 times larger
in the value of v2 in the theory. We also calculate the quasi-
particle energy gap at the antinode �� ,0�, the superconduct-
ing �SC� energy gap, the quasiparticle spectra, and the Drude
weight. We find good agreements with experiments.

The paper is organized as follows. In Sec. II, we describe
the microscopic model and the methods we used in our cal-
culations. In Sec. III, we calculate the basic parameters of the
nodal quasiparticles. In Sec. IV, we discuss the nodal physics
and make comparison of the theory and experiments on a
number of low energy physical properties. In Sec. V, we
calculate other physical quantities and compare with the ex-
periments. A brief summary is given in Sec. VI.

II. MODEL AND METHODS

A. Model

We consider an extended t-J model including a nearest-
neighbor �NN�, a second NN and a third NN hopping terms
in the square lattice,

H = Ht + HJ,

Ht = − t �
�i,j�,�

ci�
† cj� − t� �

�i, j��,�

ci�
† cj� − t� �

�i, j��,�

ci�
† cj�,

HJ = J�
�i,j�

Si · S j . �1�

In the above Hamiltonian, a constraint of no double occupa-
tion of electrons on any site is implied: ��ci,�

† ci,��1. The
summations �i , j� , �i , j��, and �i , j�� run over the NN, second
NN, and third NN pairs. t, t� and t� are their corresponding
hopping integrals, respectively. We choose t, t� to be posi-
tive, and t� to be negative, appropriate for the hole-doped
cuprates, J is the superexchange coupling between the
NN spins. Table I lists the parameters �t , t� / t , t� / t ,J / t� used
in our calculations for monolayered La2−xSrxCuO4 �LSCO�
and bilayered cuprate YBa2Cu3O7−x �YBCO� or
Bi2Sr2CaCu2O8+x �Bi-2212�. These parameters appear con-
sistent with the band structure calculations17 and also with
the experimental analyses such as the topology of large
Fermi surface reported in ARPES,18,19 the inelastic light
scattering,20 neutron scattering,21–23 and two-magnon Raman
scattering experiments.24–26

We use a variational projected d-wave BCS state or the
d-RVB state to study the ground state and elementary exci-
tations of the model.1 The trial ground state is of the form

��L� = PG��BCS� , �2�

where the Gutzwiller projection operator PG=	i�1−ni↑ni↓� is
to ensure the constraint of no double occupation of electrons
on any lattice site. The BCS state is of the standard form,
given by

��BCS� = 	
k

�uk + vkck↑
† c−k↓

† ��0� ,

where �0� is the vacuum state, and uk and vk are the varia-
tional parameters satisfying the normalization condition:
�uk�2+ �vk�2=1.

In this paper, we use two complementary methods to carry
out the Gutzwiller projected variational calculation. One is
the renormalized mean field theory, which takes into account
of the Gutzwiller projection by a set of renormalization
factors.4 The other is the variational Monte Carlo method
which computes the quantities numerically, followed by a
further improvement of the variational wave function by us-
ing the PL method to eliminate or to reduce the bias in the
variational approach.15,16 It is well known that the variational
calculation often over-estimates the effect of superconductiv-
ity in the true ground state, and the variational calculation
usually leads to a larger �.7

B. Renormalized mean field theory

The RMFT is a Hartree-Fock-like mean-field theory to
approximately treat the projection operator in the Hamil-
tonian in Eq. �1�. In the RMFT, we apply the Gutzwiller
approximation to replace the effect of the projection operator
by a set of renormalization factors, which are determined by
statistical counting.4,27 The variation of a projected state for
Hamiltonian H is then approximately mapped onto that of
the corresponding unprojected state for a renormalized
Hamiltonian.3,4 This method was initially developed by
Gutzwiller to study possible ferromagnetism in strongly in-
teracting systems.27 It was later applied by Brinkman and
Rice to study the metal insulator transition, and by Vollhardt
to study the Fermi liquid theory of helium-3.28,29

Let �Q� be an expectation value of Q in the RVB state
��L�, and �Q�0 be an expectation value of Q in the BCS state
��BCS�, then the expectation values of the hopping term and
the spin-spin correlation in the RVB states can be written in
terms of those in the BCS state

�ci�
† cj�� = gt�ci�

† cj��0,

�Si · S j� = gs�Si · S j�0. �3�

gt and gs are the two renormalization factors for the kinetic
and the spin-spin superexchange terms, respectively, they are
given by

gt =
2�

1 + �
, gs =

4

�1 + ��2 ,

with � the hole concentration.4 The evaluation of H in the
RVB state is then mapped onto the evaluation of the renor-
malized Hamiltonian H� in the corresponding BCS state,
with H� given by

TABLE I. Parameters �t , t� / t , t� / t ,J / t� for La2−xSrxCuO4 and
YBa2Cu3O7−x �Bi2Sr2CaCu2O8+x� used in the renormalized mean
field theory.

t�eV� t� / t t� / t J / t

La2−xSrxCuO4 0.3 −0.1 0.05 0.3

YBa2Cu3O7−x

Bi2Sr2CaCu2O8+x

0.3 −0.3 0.2 0.3
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H� = gtHt + gsHJ. �4�

The variational energy of the system is then given by

W = �H� = �H��0.

In this paper, we shall only consider even parity SC state,
namely, �v−k�2= �vk�2 and vk

*uk=u−k
* v−k. We obtain

W = 2gt�
k

�vk�2��k� +
gs

N
�
k,k�

Vk−k���vk�2�vk��
2 + ukvkvk�

* uk�
* � ,

where

��k� = − 2t�cos kx + cos ky� − 4t��cos kxcos ky�

− 2t��cos 2kx + cos 2ky� ,

Vk−k� = −
3

2
J
cos�kx − kx�� + cos�ky − ky��� ,

with N the total number of lattice sites. The total number of
electrons operator Ne=�k�ck�

† ck� has an expectation value of
�Ne�=2�k �vk�2, so that the hole concentration

� = 1 − 2�
k

�vk�2/N . �5�

Let 	 be the chemical potential, the quantity we wish to
minimize is W�= �H−	Ne�, or

W� = W − 2	�
k

�vk�2.

The variation is carried out with respect to vk, uk, and � for
fixed 	. Carrying out this variational procedure, we find that

�vk�2 =
1

2

1 − 
�k�/E�k�� ,

�uk�2 =
1

2

1 + 
�k�/E�k�� ,

ukvk = ��k�/2E�k� , �6�

with

E�k� = �
2�k� + ���k��2.

The parameters 
�k� and ��k� are related to the particle-hole
and particle-particle pairing amplitudes which are introduced
below in Eqs. �7� and �8�. E�k� turns out to be the energy of
a quasiparticle in the SC state.4 We define

�� = �ci↑
† ci+�↓

† − ci↓
† ci+�↑

† � , �7�

�� = �
�

�ci�
† ci+��� , �8�

with �= x̂ , ŷ, the NN unit vector. For the dx2−y2 pairing sym-
metry, �x=−�y =�0, �x=�y =�0, and 
�k�, ��k� have the
forms


�k� = gt��k� − 	̃ − ��cos kx + cos ky� , �9�

��k� = ��cos kx − cos ky� , �10�

where �= �3gsJ /4��0, �= �3gsJ /4��0, and 	̃=	+��H��0 /
N��. The mean fields �0 and �0 can be determined by solv-
ing these self-consistent Eqs. �5�–�10�. The SC order param-
eter is defined as

�SC�Rij� = �ci↑
† cj↓

† − ci↓
† cj↑

† � ,

which is related to the variational parameter �0 in the
Gutzwiller approximation3,4

�SC = gt�0. �11�

C. Variational Monte Carlo method

In the VMC calculation, we first rewrite the wave func-
tion �2� in the Hilbert space with fixed number of Ne elec-
trons doped with even number of n holes,

��RVB� = PG
�
k

vk

uk
ck↑

† c−k↓
† ��Ne−n�/2

�0� �12�

with

vk

uk
=

�MC�k�

MC�k� + �
MC�k�2 + ��MC�k��2

,


MC�k� = − 2t�cos kx + cos ky� − 4tv�cos kxcos ky

− 2tv��cos 2kx + cos 2ky� − 	v,

�MC�k� = 2�v�cos kx − cos ky� ,

where �v and 	v are variational parameters, with �v related
to the d-wave SC order parameter and 	v similar to the
chemical potential. Note that we have used subscript “MC”
to distinguish the parameters here from those adopted in the
Sec. II B. We have also included two additional variational
parameters tv� and tv�, which are usually not equal to the bare
values t� and t� because the constraint strongly renormalizes
the hopping amplitudes. That is to say, the form of 
MC�k� in
the variational wave function can be different from the dis-
persion function of the noninteracting electrons. These varia-
tional parameters determine the Fermi surface topology.
Then, the quasiparticle excitations are created by adding
holes into Eq. �12�:

��exc�q�� = PGcq↑
† 
�

k

vk

uk
ck↑

† c−k↓
† ��Ne−n�/2−1

�0� . �13�

From Eq. �13� we calculate the energy dispersion for a given
doping density by using VMC. The system used in this paper
is of 12�12 sites with periodic boundary conditions.30 We
then fit the quasiparticle energy with the formula a��k

2 +�k
2

−b to determine the renormalized parameters, with a and b
the fitting parameters. Additionally, in order to eliminate the
bias introduced in the trial wave function method, the power-
Lanczos method which is a hybrid of the power and the
variational Lanczos method is used to further improve the
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trial function.15,16 In the power method it can be easily
shown that if a trial wave function ��� is not orthogonal to
the ground state, �W−H�m ��� is proportional to the ground
state wave function as the power m approaches infinity. W is
an appropriately chosen constant to make the ground-state
energy the largest eigenvalue of the W-H matrix. In our cal-
culation, the first order Lanczos method, i.e., m=1 is used
and the improved trial wave function is �PL1�= �1
+C1H� ���. C1 is a new variational parameter. The results
described below denoted as PL1 are calculated with the trial
wave function �1+C1H� ���.

III. BASIC PARAMETERS

In this section, we discuss the parameters of nodal quasi-
particles in the d-wave SC Cu oxides and make comparisons
between the theory and experiments. It has been well estab-
lished in experiments that the cuprate superconductivity has
dx2−y2-wave pairing.31 There are four gap nodes in the k
space, where the quasiparticle dispersion Ek=�
k

2 +�k
2 ap-

proaches zero. The typical Fermi surface �FS� in HTSC is
shown in Fig. 1, together with the “Fermi velocity” vF and
the “gap velocity” v2 defined as the slopes of Ek along the
directions perpendicular and tangential to the Fermi surface
at the nodes kF�±1, ±1�. �2kF is the Fermi wave vector along
the diagonal direction. Different from the conventional
s-wave pairing symmetry, low energy quasiparticles in the
vicinity of these nodes can be easily excited by thermal fluc-
tuation, impurity scattering, or disorder effects. These low-
energy nodal quasiparticles predominate physical properties
of HTSC at low temperatures.

A. Fermi wave vector

From ARPES data, it is well known that a transition from
a holelike Fermi surface centered at �� ,�� to an electronlike

Fermi surface centered at �0,0� occurs slightly above the
optimal doping in both LSCO and Bi-2212, meanwhile the
Fermi wave vector kF shifts just a little bit.18,32,33 For Bi-
2212, ARPES experiments34 suggest that kF is weakly
doping dependent and �2kF�0.43 Å−1.35 For optimally
doped YBCO6.95, �2kF�0.53 Å−1,36,37 and for underdoped
La2−xSrxCu2O4 �x=0.063�, �2kF=0.55 Å−1,38 with the lattice
constant a=3.8 Å. These experimental data are shown in
Fig. 2, compared with our theoretical calculation where kF is
determined by 
�k�=0 along the diagonal direction. For all
the methods considered, we found that kF decreases with
increasing doping and kF decreases more rapidly in YBCO
�Bi-2212� than in LSCO. The values of kF for the under-
doped LSCO and optimally doped Bi-2212 and YBCO agree
qualitatively with the experimental data.

B. Fermi velocity vF

In the vicinity of the gap nodes, the quasiparticle disper-
sion can be expressed as

E�k� = �vF
2k�

2 + v2
2k�

2 ,

where vF �v2� and k� �k�� are the components of the velocity
and wave vector perpendicular �parallel� to the Fermi sur-
face, respectively. The Fermi velocity extracted from the
slope of the quasiparticle dispersion obtained by ARPES is
found remarkably universal, independent of the doping con-
centration vF�250�270 km/s within an experimental error
of 10−20 %.35,39

In the RMFT, vF and v2 are given by the following equa-
tions:

vF = �2�sin kF�

��2
gtt +
1

2
�� − 4gt�t��cos kF + 8gtt�cos kF� ,

�14�

FIG. 1. �Color online� Illustration of the Fermi surface for
LSCO �dashed square� and for YBCO �solid line�, and the location
of the gap nodes kF�±1, ±1�. The “ Fermi velocity” vF and the “gap
velocity” v2 are defined as the slopes of the quasiparticle energy
along and perpendicular to the nodal direction. vF and v2 specify
the Dirac cone for the nodal quasiparticle dispersion.

FIG. 2. �Color online� Comparison of the doping dependence of
the Fermi wave vector kF obtained from our theoretical calculation
with those obtained by the ARPES for �a� LSCO and �b� YBCO
�Bi-2212�. �Refs. 34–38� Theoretical results are obtained using pa-
rameters listed in Table I for LSCO and YBCO �Bi-2212� with the
in-plane lattice constant a=3.8 Å. RMFT: renormalized mean field
theory; VMC: variational Monte Carlo; PL1: Power Lanczos to the
first order. Note that the values from VMC and PL1 may be very
close, and get overlapped with each other in some plots following.
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v2 = ��2� sin kF� . �15�

Shown in Fig. 3 is the value of vF obtained from Eq. �14�. vF
increases with doping. The VMC gives essentially the same
result. In the optimally doped and overdoped regimes, this
trend does not deviate greatly from the experimentally ob-
served universality. However, the value of vF appears under-
estimated in the RMFT for the extended t-J model compared
with the experimental data and that obtained for the Hubbard
model by including the correction of order of O�J / t� reported
previously by Paramekanti et al.3,9

C. “Gap velocity” v2

The “gap velocity” v2 is the slope of the SC energy gap
along the Fermi surface at the gap node. Together with kF
and vF, v2 specifies the Dirac cone for the nodal quasiparticle
dispersion. Among them v2 plays a crucial role in determin-
ing the nodal physics of HTSC. This is because kF and vF are
rather universal, depending weakly on the doping concentra-
tion. Furthermore, v2 is much smaller than vF, and many
physical properties are related to v2 in the form of the ratio
vF /v2, therefore a small variation in v2 may lead to a drastic
change of vF /v2, hence of some physical quantities.

Experimentally, v2 is difficult to be determined accurately.
It depends strongly on the doping concentration and other
material properties. A number of experiments may be used to
extract v2. These experiments include ARPES,18,35 the tem-
perature dependence of in-plane magnetic penetration depth
��T�,40 the electronic specific heat Cel,

41–44 and the linear
residual thermal conductivity �0 /T�T=0.37,45–47 The linear re-
sidual thermal conductivity is robust against renormalization
due to quasiparticle interactions and vertex corrections. In
the SC state, �0 /T�T=0�vF /v2+v2 /vF is universal and it does
not depend on the impurity scattering rate.48

Figure 4 shows the doping dependence of v2 and the ratio
vF /v2. The calculation shows that v2 drops quasilinearly with
increasing doping. This behavior is consistent with the recent
experiment of the magnetic field dependence of the specific
heat on LSCO.44 Our calculation gives v2=20�30 km/s at
optimal doping, which is larger than the experimentally re-
ported value of 10�20 km/s for YBCO �Bi-2212� obtained

from the thermal conductivity measurement46,47 and
ARPES,35,37 and of 7 km/s for LSCO obtained from the
measurements of magnetic field dependence of the specific
heat at the zero temperature limit.44 In the RMFT, vF /v2=1
at zero doping. As doping increases, vF /v2 increases rapidly.
The doping dependence is qualitatively consistent with the
data reported in the thermal conductivity measurements.46,47

In our theoretical calculation, despite of the great differ-
ence between the hopping integrals t� and t� for YBCO �Bi-
2212� and LSCO, the values of v2 are only slightly different.
This result is also in qualitative agreement with the thermal
conductivity measurements. In the next section we will use
our theoretical result of v2 and vF to extract some physical
observables and compare them with experimental results.

IV. NODAL PHYSICS

In HTSC, d-wave pairing symmetry leads to a dome-like
quasiparticle dispersion around the gap nodes. In the SC
state, the gapless quasiparticle excitations in the vicinity of
nodes dominate low-temperature physical properties. It is of
fundamental importance to explore physical properties of
these quasiparticle excitations.

In the clean limit, the density of states �DOS�, ����, of
low lying quasiparticles near the nodes is linear,

���� =
2

�

1

vFv2
� . �16�

The linear coefficient of ���� is inversely proportional to the
nodal velocities vF and v2. This linearity in energy of ����
leads to many unconventional physical behaviors such as the
quadratic electronic specific heat,35,37,41,49 the linear residual

FIG. 3. �Color online� Fermi velocity vF vs hole concentration
�. The results from variational theory in Ref. 9 were obtained with
the correction of order of O�J / t� included for the Hubbard model.
�1 eV Å�152 km/s�.

FIG. 4. �Color online� �a� and �b� “ Gap velocity” v2 vs hole
concentration �. For optimal doped YBCO �Bi-2212�, v2=10
�20 km/s was reported by various kinds of experiments �Refs. 35,
37, and 46�. The experimental data indicated in panel �a� is
achieved by measuring the magnetic field dependence of the spe-
cific heat on LSCO at the zero temperature limit �Ref. 44�. �c� and
�d� the ratio vF /v2 vs hole concentration �. The doping dependence
of the ratio vF /v2 is similar to that observed in the thermal conduc-
tivity experiments �see Fig. 6�.
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thermal conductivity,37,45,46,50 and the linear decreasing of
superfluid density.51,52 Experimental observations of these
behaviors have provided some of the early evidences for un-
conventional dx2−y2 pairing symmetry in HTSC. The nature
of the interactions of nodal quasiparticles is not so clear in
HSTC.35,49 Some have used a renormalization factor to de-
scribe the effect of quasiparticle interactions on the elec-
tronic specific heat and on the in-plane magnetic penetration
depth.35,49 In this paper, we shall neglect quasiparticle inter-
actions and set the renormalization factor to be unity.

A. Electronic specific heat

The linear low energy DOS ���� leads to a quadratic
temperature dependence of the low-temperature electronic
specific heat in the HTSC, given by

Cel = �T = �T2,� =
21.6

�

kB
3

�2

1

vFv2
. �17�

Figure 5 compares our theoretical results with the experi-
ments for LSCO and YBCO.40–42 The experimental result for
LSCO shows a general tendency to increase as doping in-
creases, and the rapid increase of � in the overdoped region
might be due to the Fermi level crossing of the flat band at
�� ,0�, which yields one additional channel to thermally ex-
cite quasiparticles. In our theoretical results, the doping de-
pendence of � is similar for LSCO and YBCO. The values of
� are about 0.01�0.03 mJ/mol K3 which are comparable to
the experimental value of YBCO,41,42 but much smaller than
the value of LSCO.40

B. Thermal conductivity

In the presence of a small amount of disorder or impuri-
ties, the nodal quasiparticles are delocalized and can carry
both heat and charge. For dilute nonmagnetic impurities,
there will be a residual normal fluid due to these delocalized
and conductive quasiparticles. The most striking property of
this conduction mechanism is the universal limit, i.e., the
quasiparticle transport is independent of the scattering rate as
T→0. With increasing the impurity concentration, the mean
free path is reduced, but the normal fluid density
increases.48,53 In the SC state with a random distribution of
impurities of an energy scale Eim�kBTc, the low-temperature
thermal conductivity is linear,48,53 and is given by

��0

T
�

T=0
=

kB
2

3�

n

d

vF

v2
+

v2

vF
� , �18�

where d /n, the stacking distance between two nearest-
neighboring CuO2 planes, has the values of 6.6, 5.8, and
7.72 Å for LSCO, YBCO, and Bi-2212, respectively. This
formula is obtained within the self-consistent T-matrix ap-
proximation, and it may break down if the impurity scatter-
ing gets too strong.54 This universal behavior of the thermal
conductivity provides a robust and direct measurement of
vF /v2 in the SC state.

Figure 6 shows our theoretical results of �0 /T�T=0 com-
pared with the experimental results for LSCO and YBCO
�Bi-2212�.37,46,47,50,55 Experimentally, above a critical doping
�pc, both LSCO and YBCO �Bi-2212� are thermal metals and
�0 /T�T=0 increases steadily as � in the underdoped regime
and very rapidly in the overdoped regime. Such observation
strongly supports the notion that there are well-defined nodal
quasiparticles in the clean limit. The difference of the re-
sidual thermal conductivity between LSCO and YBCO
�Bi-2212� is much smaller compared with the case for the
electronic specific heat shown in Fig. 5. In the lightly under-
doped regime ���pc, the low temperature behavior of �0 /T
remains unclear.50,55 However, it is clear that �0 /T→0 as
T→0 in LSCO.56,57 The thermal insulating behavior in
LSCO is probably caused by the localization of quasiparti-
cles due to disorder effects.

In our calculation, the SC state and the delocalized qua-
siparticles are assumed to prevail even in the heavily under-
doped region. The theoretical results deviate from the experi-
mental ones by a factor of 2–4. We attribute this discrepancy
to the overestimated gap velocity v2 in the theory.

C. In-plane magnetic penetration depth

The magnetic penetration depth ��T� is related to the su-
perfluid density �s by

FIG. 5. �Color online� The quadratic coefficient of the electronic
specific heat: �=Cel /T2 vs hole concentration �.

FIG. 6. �Color online� Linear residual thermal conductivity �0 /T
vs hole concentration �.
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�s�T�
m* =

�s�0�
m* −

�n�T�
m* =

c2

4�e2

1

�2 ,

where m* is the effective mass of the charge carriers and
assumed to be doping independent, �n is the normal fluid
density.51 At low temperatures, �n is contributed from the
thermally excited quasiparticles near nodes, and can be given
by

�n�T�
m* = 
2 ln 2

�
�nvF

dv2

kBT

�2 .

The linear temperature coefficient of �s�T� /m* is propor-
tional to vF /v2.

At low temperatures, the temperature dependence of ��T�
is very weak, and ��0� is about several thousands
angstroms.40,52,58–61 The first and second derivatives of the

penetration depth with respect to temperature can be ex-
pressed approximately as

�d��T�
dT

�
T→0

= �3�0�4 ln 2
e2

c2

kB

�2

n

d

vF

v2
, �19�

� d

dT
�−2�

T→0
= − 8 ln 2

e2

c2

kB

�2

n

d

vF

v2
. �20�

Panels �a� and �b� of Figs. 7–9 show the zero temperature
in-plane magnetic penetration depth ��0� and �−2�0�.
Experimentally, as � increases, ��0� in LSCO mono-
tonically decreases,40,61 while ��0� in YBCO and in
Bi2Sr2Ca1−xYxCu2O8+� increases with doping in the over-
doped region.62,63 The experimental results of �−2�0� in
LSCO and underdoped YBCO �Bi-2212� show a linear dop-
ing dependence, supporting the idea that the zero tempera-

FIG. 7. �Color online� In-plane
magnetic penetration depth in
LSCO vs hole concentration �.

FIG. 8. �Color online� In-plane
magnetic penetration depth in
YBCO vs hole concentration �.
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ture superfluid density �s�0� is proportional to the doping
concentration in the underdoped region. In our RMFT, in the
SC phase, �−2�0� is nearly linear with the hole doping and
��0� diverges at zero doping within the approximation that
all optical spectral weights are condensed to the zero energy
in the t-J model. Our theoretical results of ��0�
�−2�0�� agree
with the experimental data for LSCO and YBCO in the un-
derdoped region. In Bi2Sr2Ca1−xYxCu2O8+�, our theoretical
results show a discrepancy with experiments.

Panels �c� and �d� of Figs. 7–9 show the derivatives of the
penetration depth with respect to temperature, d��T� /dT and
d�−2 /dT. In the underdoped or slightly overdoped region,
d��T� /dT decreases with increasing doping in all three
compounds.40,52,58–61 In the heavily overdoped region
d��T� /dT increases with doping in both LSCO and
Bi2Sr2Ca1−xYxCu2O8+�. In LSCO, d�−2 /dT increases steadily
with doping.40,61 In YBCO, an opposite tendency was ob-
served in the underdoped region ��0.10.59 The anomalous
increase in the underdoped region was previously shown to
qualitatively agree with the behavior resulted from the
d-density wave state.59,64,65 In our RMFT, similar doping de-
pendence of d��T� /dT is obtained. However, there is a great
discrepancy on the absolute value between experiments and
our theoretical results. We argue that some other mechanisms
may be responsible for the large value of d��T� /dT observed
in experiments.26

V. OTHER PHYSICAL PROPERTIES

A. Drude weight

The Drude weight or the superfluid stiffness D is a mea-
surement of superfluid condensation. In the linear-response
theory, within the approximation that in the t-J model all
optical spectral weights are condensed to zero energy, the
Drude weight D can be given by66

D = 
 e2

4��0�2�−1
n

d
�−1 2

�
�

0

�

d� Re ���� = −
�Ekin�

2
.

�21�

D is related to the plasma frequency �p
* by ��p

*�2 /8
=�0

�d� Re ����. In optical reflectivity measurements, the
frequency dependent conductivities can be derived from the
reflectivity spectra. By integrating the spectral weight below
1.25 eV, ��p

*�2 was found to vanish linearly with the de-
crease of doping concentration in the low doping regime, and
for optimally doped YBCO ���p

*�2�4.5 eV, i.e., D
�145 meV, along the a axis �without the contribution from
the CuO chain�.67

Figure 10 shows the RMFT and VMC results for Drude
weight. Our results agree with those obtained with a finite
cut-off of the integration in Eq. �21� to get rid of the contri-

FIG. 9. �Color online� In-plane
magnetic penetration depth in
Bi2Sr2Ca1−xYxCu2O8+� vs hole
concentration �.

FIG. 10. �Color online� Drude weight D vs hole concentration �.
The results from the variational theory given in Ref. 9 are for the
Hubbard model with a finite cutoff to get rid of the contribution due
to transitions from the ground state to the “upper Hubbard band.” In
optical reflectivity measurements, the Drude weight is proportional
to ��p

*�2, for optimally doped YBCO ���p
*�2�4.5 eV, i.e., D

�145 meV, along the a axis �Ref. 67�.
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butions due to transitions from the ground state to the “upper
Hubbard band,” those results include the correction of order
of O�J / t�.9 The Drude weight increases almost linearly in the
underdoped regime. Around the optimal doping, our results
of the Drude weight is about 60 meV, in agreement with the
optical reflectivity experimental data given in Ref. 67.

B. The antinodal quasiparticle energy E„� ,0…

Around the antinodal point �� ,0�, the quasiparticle dis-
persion becomes flat. This flat band has been studied inten-
sively by experiments.18,32,68–70 In the RMFT study, the en-
ergy of quasiparticle excitations at �� ,0� is given by

E��,0� = ��− 4gtt� − 4gtt� − 	̃�2 + 4�2. �22�

Figure 11 shows the doping dependence of E�� ,0� obtained
in our calculation compared with the experimental
results.18,68 The experimental results obtained by angle-
integrated photoemission spectroscopy and ARPES agree
well with each other. In LSCO, the energy position of the flat
band lies about 200–300 meV below the Fermi energy for
lightly underdoped state, and is shifted up to the Fermi level
quickly with increasing doping, finally crosses the Fermi
level at optimal doping or slightly overdoping. In Bi-2212,
two branches of flat bands �bonding band and antibonding
band� were observed due to the bilayer splitting. They are
determined by the low and high binding energies of the peak-
dip-hump character. The average E�� ,0� of the two bands is
shown in Fig. 11�a�.68 The bonding band has the same dop-
ing dependence as that in LSCO. The antibonding band lies
much higher than the bonding band.

In our calculation, without taking the bilayer coupling
into consideration, our theoretical calculation of E�� ,0� in
Bi-2212 should correspond to the average E�� ,0�. It ap-
proaches to the Fermi level with increasing doping, but does
not get very close the Fermi level even in the overdoped
regime. Similar doping dependence has been observed ex-
perimentally for E�� ,0� in contrary to the approaching to the
Fermi level in LSCO.68 In VMC and PL1 simulation, the
value of E�� ,0� is much closer to E�� ,0� of Bi-2212 but is
much larger than in LSCO.

C. Chemical potential shift

Figure 12 shows the electron chemical potential shift 	̃,
compared with experimental data for LSCO and
Bi-2212.71,72 In the RMFT, 	̃ is given by

	̃ = 	 +
1

N

��H��0

��
. �23�

The experimental data were deduced from the shifts of pho-
toemission and inverse-photoemission spectra of the core
states of LSCO and Bi-2212. In LSCO the chemical potential
shift 	̃ was found to be pinned close to zero energy in un-
derdoped regime.71–73 In Bi-2212, the chemical potential
shift is not pinned at zero energy and shows a more rigid-
band-like behavior.71

In our calculations, the chemical potential shift agrees
qualitatively with the experimental data. It is also consistent
with the result obtained by the exact diagonalization of the
t-t�-J model.74 Furthermore, the shift is found to be larger in
Bi-2212 than in LSCO in the entire hole doping range, in
agreement with experiments.

D. Quasiparticle spectral weight

Figure 13 shows the nodal quasiparticle spectral weight Z.
In ARPES experiments the quasiparticle spectral weight Z
can be deduced from the spectral weight of the quasiparticle
coherent peak at the gap nodes33 or from the formula Z
=1/ �1+��,9 where the coupling constant � can be extracted
from the real part of self-energy Re
��k ,��� of the spectral
function.75 In the RMFT analysis, the nodal quasiparticle
spectral weight is equal to the renormalized factor of the
hopping term gt. Our theoretical results for the doping de-
pendence of Z agree well with the experimental results. The
nodal quasiparticle spectral weight grows almost linearly in

FIG. 11. �Color online� The quasiparticle energy E�� ,0� vs hole
concentration �.

FIG. 12. �Color online� Chemical potential shift 	̃ vs hole con-
centration �. The experimental data were deduced from the shifts of
photoemission and inverse-photoemission spectra of the core states
of LSCO and Bi-2212 �Ref. 71 and 72�.
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the whole doping region as shown. The results from VMC
are presented for a complementary comparison.9

E. Superconducting gap

Experimentally the maximal superconducting gap �m can
be measured by the thermal conductivity, ARPES, or other
techniques. For example, from the thermal conductivity,46

�m can be determined by assuming �m= �kFv2 /2 with “ uni-
versal” Fermi velocity vF �Ref. 39� and “weakly” doping
dependent kF.34 In ARPES, the midpoint shift of the leading
edge of the quasiparticle spectral at �� ,0� is approximately
equal to �m. One can also determine �m by fitting the gap
dispersion on the Fermi surface with the formula ����
=�mcos 2�, where � is the Fermi surface angle.72,76–79

In Figs. 14�a� and 14�c�, our theoretical results of �m
=��cos kx−cos ky��k=��,0� are shown and compared with the
experimental data.46,72,76,79 The doping dependence of �m
agrees with experiments, but the absolute values are about
twice larger than the experimental ones in YBCO �Bi-2212�.

Figures 14�b� and 14�d� compare the value of �SC=gt�
with the BCS gap �BCS�2.14kBTc obtained by assuming
Tc=Tc

max
1−82.6��−0.16�2� �Tc
max=95 K for Bi-2212, 35 K

for LSCO�.80 �SC and �BCS are roughly proportional to each
other.

VI. SUMMARY

In this paper we have made a systematic comparison be-
tween the plain vanilla RVB theory and a broad spectrum of
experimental data of low-energy physical properties in cu-

prates. In our theoretical calculations with both RMFT and
VMC, the only parameters are the spin coupling and the
hopping integrals of electrons on the CuO2 plane, which are
known quite accurately. We have found a qualitatively good
agreement between the theory and experiments on almost all
the quantities we have studied, including the specific heat,
the thermal conductivity, the in-plane magnetic penetration
depth, the antinodal quasiparticle energy, the Drude weight,
and the superconducting gap. The agreement on the doping
dependences of these properties is remarkable except in the
heavy overdoped regime. The major discrepancy is on the
absolute values of some quantities, which may be attributed
to the large value of v2 estimated in the theory. The compari-
son would be quite satisfactory quantitatively if one had used
a theoretical value of v2 by 2–4 times smaller, which indi-
cates a possibility of overestimate of the gap. �It is known
that the gap estimated in the VMC calculation is over-
estimated by a factor of 2 or more.� This discrepancy could
also be due to the simplification of the model Hamiltonian or
the approximate wave function. More investigation will be
needed to address these issues.
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FIG. 13. �Color online� Nodal quasiparticle weight Z vs hole
concentration �. Z=1/ �1+�� was estimated in Ref. 9, where � is
the coupling constant estimated from the spectra function in ARPES
�Ref. 75�. The results from VMC simulation is presented for a
complementary comparison �Ref. 9�. FIG. 14. �Color online� �a� and �c� The maximal superconduct-

ing gap �m vs hole concentration �. �b� and �d� Comparison of the
superconducting order parameter �SC=gt� in our RMFT calcula-
tion with the gap �BCS=2.14kBTc, where Tc is estimated from Tc

=Tc
max
1−82.6��−0.16�2� �Tc

max=35 K for LSCO and Tc
max=95 K

for Bi-2212� �Ref. 80�.
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