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We study a generalized multichannel single-impurity Kondo model, in which the impurity spin is described
by a representation of the SU�N� group that combines bosonic and fermionic degrees of freedom. The impurity
spin states are described by Abrikosov pseudofermions, and we make use of a method initiated by Popov and
Fedotov that allows a proper handling of the fermionic constraint. The partition function is derived within a
path integral approach. We use renormalization group techniques to calculate the � scaling function perturba-
tively in powers of the Kondo coupling constant, which is justified in the weak coupling limit. The truncated
expansion is valid in the overscreened �Nozières-Blandin� regime, for an arbitrary SU�N� group and any value
of the parameters characterizing the impurity spin representation. The intermediate coupling fixed point is
identified. We derive the temperature dependence of various physical quantities at low T, controlled by a
unique critical exponent, and show that the physics of the system in the overscreened regime governed by the
intermediate coupling fixed point is characterized by a non-Fermi liquid behavior. Our results are in accordance
with those obtained by other methods, as Bethe ansatz and boundary conformal field theory, in the case of
various impurity spin symmetries. We establish in a unified way that the Kondo models in which the impurity
spin is described successively by a fundamental, symmetric, antisymmetric, and mixed symmetry representa-
tion yield all the same low-energy physics in the overscreened regime. Possible generalizations of the analysis
we present to the case of arbitrary impurity spin representations of SU�N� are also discussed.

DOI: 10.1103/PhysRevB.73.224445 PACS number�s�: 75.20.Hr, 71.27.�a, 71.10.Hf

I. INTRODUCTION

In spite of its 25 years of history, the multichannel Kondo
model1,2 is still a subject of current interest in several fields
of study of condensed matter physics. Indeed, this simple
impurity model exhibits a non-Fermi liquid �NFL� behavior.
Originally introduced to describe metallic systems contain-
ing dilute magnetic impurities, its applications have been
considerably extended. For instance, it is related to two-level
systems.3–5 It has been proposed6 that materials such as
Pb1−xGexTe and K1−xLixCl could be modeled using a multi-
channel version of the Coqblin-Schrieffer model,7 i.e., a
SU�N��SU�K� Kondo model. Here N indicates the number
of spin degrees of freedom, and K is the number of channels
for the conduction electrons. The multichannel Kondo model
is also believed to be relevant to the problem of mesoscopic
quantum dots.8,9 Several additional possible realizations con-
cern the context of heavy-fermion compounds. Recent ex-
periments in such systems have shown the existence of a
quantum phase transition10 from a magnetically disordered to
a long-range magnetic ordered phase, driven by a change in
chemical composition, pressure, or magnetic field. One can
cite the alloy CeCu5.9Au0.1,

11 the behavior of which in the
disordered phase close to the quantum critical point is
clearly of the NFL type: the specific heat C depends on T as
C /T�−ln�T /T0�, the magnetic susceptibility as ��1−��T,
and the T-dependent part of the resistivity as ���T instead
of C /T�const, ��const, and ���T2, as predicted by the
Fermi liquid theory.12 Similar types of behavior have been
observed in other systems such as CePd2Si2 �Ref. 13� and

YbRh2Si2,14 among others �for an extensive survey of the
experimental situation concerning heavy-fermion com-
pounds, the reader is referred to the review article of
Stewart15�. The experimentally observed breakdown of the
Fermi liquid theory addresses fundamental questions about
the possible formation of novel electronic states of matter
with new types of elementary excitations resulting from the
presence of strong correlations among electrons.

Since it has been proposed, the multichannel Kondo
model has been studied intensively by a variety of theoretical
methods, such as the numerical renormalization group
�RG�,16,17 Bethe ansatz,18,19 conformal field theory,20–23 and
perturbative RG.24,25 Detailed discusssions concerning the
various experimental applications and theoretical aspects of
the multichannel Kondo model can be found in the book of
Hewson,26 and the review article of Cox and Zawadowski.27

Recent experiments performed in the heavy-fermion com-
pound CeCu5.9Au0.1 by inelastic neutron scattering have
shown the existence of an anomalous � /T scaling law for the
dynamical spin suceptibility at the antiferromagnetic wave
vector that persists over the entire Brillouin zone.28,29 Such a
result indicates that the spin dynamics are critical, not only at
large length scales, as studied in the traditional itinerant mag-
netism picture,30–34 but also at atomic length scales. It
strongly suggests the presence of locally critical modes be-
yond the standard spin-fluctuation theory. An approach that
has been put forward to describe such a local quantum criti-
cal point is based on extended dynamical mean field theory,
with encouraging results like the prediction of a scaling law
for the dynamical spin suceptibility.35 Another theory is
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based on the generalization of the spin operators symmetry,
from SU�2� to SU�N�, to describe the Kondo impurity spin in
terms of a mixed fermionic-bosonic representation.36 The
idea behind this mixed formulation is to account for both the
extended quasiparticle excitations and the locally critical
modes using the fermionic and the bosonic part of the spin,
respectively.

In order to fix ideas, let us start with the antiferromagnetic
single-channel SU�2� Kondo impurity model. It is well
known that within a RG analysis,37–40 the flow takes the
Kondo coupling JK all the way to strong coupling �i.e., to
infinity�. An important aspect in the discussion of the break-
down of the Fermi liquid theory is related to the question of
the stability of the strong coupling �SC� fixed point. In this
case the system flows to a SC fixed point that is stable and
the associated behavior of the system is that of a local Fermi
liquid.41–43 The situation is rather different when one consid-
ers several channels of conduction electrons. In the case of a
spin S interacting antiferromagnetically with the spin of con-
duction electrons belonging to K different channels, Nozières
and Blandin1 have shown that the multichannel Kondo
model can lead to two very different situations depending on
how K compares to 2S. Their calculation is based on a sec-
ond order perturbation theory in the hopping amplitude of
the conduction electrons, around the SC fixed point. They
analyze their results by deriving an effective coupling be-
tween the spin of the composite formed by the impurity
dressed by the conduction electrons in the SC limit, and the
spin of the conduction electrons on the neighboring sites. On
the one hand in the underscreened regime, when K	2S, the
effective coupling is found to be ferromagnetic and the SC
fixed point is stable. In this regime an effective spin �S
−K /2� is formed, resulting from the screening of the impu-
rity spin by the conduction electrons located on the same
site. The system, described by the SC fixed point, behaves as
a local Fermi liquid. On the other hand, in the overscreened
regime, when K
2S, the effective coupling is found to be
antiferromagnetic and hence the SC fixed point is unstable.
The instability of the SC fixed point in this regime consti-
tutes a hint for the existence of an intermediate coupling �IC�
fixed point, characterized by a finite critical value of the
Kondo coupling and leading to a NFL excitation spectrum.

In a previous work44,45 using a second order perturbation
theory similar to the analysis of Nozières and Blandin, we
have considered an antiferromagnetic single-channel SU�N�
Kondo model involving a generalized impurity spin, realized
by a combination of 2S bosonic and q fermionic degrees of
freedom. Preceding studies46 have shown that the SC fixed
point associated with this model includes two regimes, one
of them characterized by an instability for a certain class of
mixed symmetry impurity spins. More precisely in the large-
N limit,47 the SC fixed point is stable and describes the low-
energy physics of the one conduction channel model when
q	N /2, but becomes unstable for q
N /2. This result sug-
gests that the instability of the SC fixed point can arise from
the symmetry properties of the impurity spin, without any
introduction of additional degrees of freedom like conduc-
tion electron channels, coupling anisotropy, or otherwise. We
have investigated how the system behaves, in particular,
when the number of conduction electrons �filling� on the

neighboring site of the impurity located at the origin varies.
We have expressed our results in terms of an effective
Hamiltonian describing the interactions between the impurity
dressed by the conduction electrons at the origin �as obtained
in the SC limit�, and the conduction electrons located on the
neighboring site. By determining the effective couplings, we
have shown that the SC instability, resulting from the change
in sign of the effective spin interaction, is related to the
change from repulsive to attractive of the effective charge
interaction.

In the present work we consider the multichannel version
of the model described previously, i.e., a SU�N��SU�K�
Kondo model, in order to achieve an even richer situation. In
the overscreened regime, the magnetic degrees of freedom of
the impurity are completely quenched, and the SC fixed
point is unstable.1 We present a method allowing the identi-
fication and the characterization of the IC fixed point in the
overscreened regime. Our study is based on a perturbative
RG method pioneered by Anderson, the “poor man’s scaling”
approach.26,37 Its basic principle is to reduce the conduction
electron band width, D, by integrating out the high-energy
intermediate states, and letting the low-energy physics prop-
erties unchanged. The main difficulty for the description of
spin systems is that spin operators obey neither Fermi nor
Bose statistics, leading to the absence of a Wick’s decompo-
sition theorem in this context. Consequently, conventional
perturbative methods such as a Feynman’s diagram approach
are prohibited. The Gaudin theorem48 existing for SU�2� gen-
erators does not allow the construction of simple diagram-
matic techniques directly for spin operators. We tackle this
problem by making use of a method initiated by Popov and
Fedotov.49 In the framework of a fermionic description of the
impurity spin states, this powerful approach allows a proper
handling of the fermionic constraint. It introduces a set of
auxiliary chemical potentials, which eliminates the unphysi-
cal Hilbert subspace without removing the true spin states.
The overscreened regime of the Kondo model has been stud-
ied intensively by several methods, for various impurity spin
representations in both the SU�2�24,25,50–52 and SU�N�9,53–56

spin groups. Our work considers several of these impurity
spin representations as particular limits of the mixed symme-
try formulation, enabling direct comparisons with the results
obtained by other methods.

This paper is organized as follows. In Sec. II the model is
introduced, and we present the formalism leading to the deri-
vation of the partition function within a path integral ap-
proach. We adopt the Abrikosov pseudofermion formulation
to describe the impurity spin states. The handling of the fer-
mionic constraint, performed by making use of the Popov-
Fedotov method, is discussed. In Sec. III we use a diagram-
matic method to derive the conduction electron self-energy
perturbatively in powers of the Kondo coupling constant,
i.e., in the weak coupling limit. The imaginary part of the
conduction electron self-energy is proportional to the elec-
tronic scattering rate, which is invariant under RG transfor-
mation as any physical quantity. This invariance is exploited
in Sec. IV to compute the � scaling function by making use
of perturbative RG arguments, including the Callan-
Symanzik equation. This leads to the identification of the IC
fixed point in the overscreened regime. The temperature de-
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pendence of various physical quantities at low T, controlled
by a unique critical exponent, is derived. The NFL nature of
the physics governed by the IC fixed point is also discussed,
and our results are compared with those of previous works.
In Sec. V we give a summary of the method and main re-
sults, and is devoted to conclusions.

The Appendices contain the technical details of the calcu-
lations. In Appendix A we give some properties followed by
the SU�N� group generators. In Appendix B we briefly ex-
plain the principle of the method pioneered by Popov and
Fedotov. This method requires a particular derivation of the
conduction electron and impurity spin pseudofermion free
propagators, which is performed in Appendix C. Appendix D
contains the calculation of the first order term spin factors
showing up in the conduction electron self-energy expansion.
In Appendix E we show exhaustively how to compute the
contribution to the electronic self-energy for a given example
of the diagrams. The other diagrams can then be calculated
in a similar way.

II. GENERALIZED KONDO MODEL AND FORMALISM

In this section we present the model and the methods used
to derive the partition function that is obtained in the func-
tional integration formalism. In the language of Young tab-
leaux, the impurity spin is described by an L-shaped repre-
sentation, as shown in Fig. 1. The bosonic degrees of
freedom correspond to the horizontal line �the first row� con-
taining 2S boxes, while the fermionic ones are included in
the q boxes of the vertical line �the first column�.

A. Generalized multichannel SU„N… single-impurity
Kondo model

The Hamiltonian describing the Kondo model we con-
sider is

HK = H0 + VK, �1�

where H0 is the free electronic part and VK gives the inter-
action between the generalized impurity spin and the con-
duction electrons. A SU�N� �for N�2� spin degeneracy is
required for both the impurity and the conduction electron
spins, and we suppose that there exists K ��1� electronic
conduction channel�s�:

H0 = �
k

�
�=1

N

�
=1

K

�kck,�,
† ck,�,, �2�

where ck,�,
† is the creation operator of a conduction electron

with momentum k and energy �k, �, and  are the spin and

channel indices, respectively. The second term,

VK = JKSi · Se�0� , �3�

corresponds to the antiferromagnetic Kondo interaction JK
��0� between the impurity spin Si located at the origin �site
0� and the spin of the conduction electrons Se�0� located at
the same site.57

The impurity spin states corresponding to the irreducible
representation ��� can be expressed in terms of Abrikosov
pseudofermions.58 We denote the dimension of ��� by d���.
Its general expression is given in Appendix A. Each impurity
spin state is described by a fermion. Therefore we have d���
species of pseudofermions located at the origin that are, re-
spectively, created and destroyed by the following operators:

f�
†, f�, 1 � � � d���. �4�

The number of pseudofermions at the impurity site is subject
to the standard constraint

n̂f = �
�=1

d���

f�
† f� = 1. �5�

According to the structure of the SU�N� Lie group,59 the
impurity spin operator owns �N2−1� components,

Si = �Si
A	1�A�N2−1,

with

Si
A = �

�,��=1

d���

f��
†

���,�
A f�, �6�

where �A corresponds to the �N2−1� generators of the SU�N�
spin group. A crucial technical aspect has to be pointed out
here. Due to the shape of the generalized impurity spin that
we consider that is not in the fundamental SU�N� represen-
tation �i.e., a single box representation in the language of
Young tableaux�, and to the Abrikosov pseudofermion for-

malism that we adopt, the ��̃A�1�A�N2−1 SU�N� generators
are not expanded as �N�N� matrices as usual, but as
�d����d���� ones. Such a situation already occurs in the
SU�2� group if instead of considering a spin 1/2 correspond-
ing to the SU�2� fundamental representation, we work with a

spin 1, 3 /2 , . . . .60 The properties of the ��̃A� matrices that
we will need are given in Appendix A. It is to be noted that
this way of writing the impurity spin states, although equiva-
lent, is completely different from the method that we used in
our previous work.44,45 In the latter case, the impurity spin
states were obtained as a combination of �2S+q−1� par-
ticles, each box of the L-shaped representation being de-
scribed by either one boson or one fermion, and the SU�N�
generators we had to consider corresponded to the funda-
mental representation. However, the approach we now con-
sider in terms of pure pseudofermions is much more appro-
priate to the functional integration formalism we develop.

As shown in Fig. 2, each conduction electron is described
by the fundamental representation of SU�N�. The spin of the
conduction electrons at the origin Se�0� is given by

FIG. 1. A Young tableau description of the L-shaped irreducible
representation ��� associated with the mixed symmetry impurity
spin, realized by a combination of bosonic and fermionic degrees of
freedom.

INTERMEDIATE COUPLING FIXED POINT STUDY IN¼ PHYSICAL REVIEW B 73, 224445 �2006�

224445-3



Se�0� = �Se
A�0�	1�A�N2−1,

with the �N2−1� spin components given by

Se
A�0� = �

�,��=1

N

�
=1

K

c��,
† �0����,�

A c�,�0� ,

where �A corresponds to the �N2−1� generators of the
SU�N� spin group. In the previous expression c��,

† �0� is the
creation operator of a conduction electron of spin color �� in
the channel  at the impurity site, which can be rewritten in
the momentum space as

c��,
† �0� =

1

�Ns
�

k
ck,��,

† , �7�

where Ns is the number of sites of the lattice. Using Eq. �7�,
the different components of the conduction electron spin can
be expressed as

Se
A�0� =

1

Ns
�
k,k�

�
�,��=1

N

�
=1

K

ck�,��,
† ���,�

A ck,�,. �8�

The SU�N�� generators for the conduction electron spin cor-
respond to the fundamental representation, therefore the cor-
responding traceless Hermitian matrices ��̃A�1�A�N2−1 have
�N�N� components and satisfy the following normalization
equation:

Tr��̃A�̃B	 =
1

2
�AB.

In the well known SU�2� and SU�3� groups, �̃A= �̃A /2,
where ��̃A� are the Pauli and Gell-Mann matrices, respec-
tively.

By making use of Eqs. �2�, �3�, �6�, and �8�, we obtain the
Hamiltonian related to the multichannel SU�N��SU�K�
single-impurity Kondo model for an L-shaped Young tableau
representation of the impurity spin

HK = �
k

�
�=1

N

�
=1

K

�kck,�,
† ck,�,

+
Jk

Ns
�
A=1

N2−1 
�
k,k�

�
�,��=1

N

�
=1

K

ck�,��,
† ���,�

A ck,�,�
� 
 �

�,��=1

d���

f��
†

���,�
A f�� . �9�

B. Functional integration method—Handling of the fermionic
constraint

The partition function corresponding to HK �9� is

Z = Trspin exp�− �HK	 , �10�

with �=1/kBT. The difficulty in computing Z comes from
the constraint expressed in Eq. �5�, which requires us to per-
form the trace Trspin over the physical states involving one
pseudofermion at the impurity site only. However, the Pauli
principle allows the number of pseudofermions at the origin
to vary between 0 and d���. More explicitly, the representa-
tion of the impurity spin with pseudofermion operators en-
larges the dimensionality of the Hilbert space in which these
fields are acting, compared with the physical space appropri-
ate for the true spin operators. The unphysical states dis-
played in the pseudofermion formulation are then eliminated
with the aid of the constraint. Therefore the evaluation of the
trace in Eq. �10� cannot be simply performed using standard
perturbation approaches, for instance, but requires the use of
further techniques.

In order to settle this problem, we adopt a method pio-
neered by Popov and Fedotov.49 As explained in Appendix
B, one can introduce a set of auxiliary �imaginary� chemical
potentials �i�n�1�n�d���

governed by a discrete distribution

function P���,

P��� =
1

d���
�
n=1

d���

exp�i��n	��� + i�n� ,

i�n =
i�

�d���
�2n − 1� . �11�

A crucial property arising from Eq. �11� is that the imaginary
chemical potentials depend on temperature. The partition
function can be rewritten as

Z =� D� P���TrFock exp�− ��HK − �n̂f�	 , �12�

where the trace TrFock is performed over the entire Fock
space corresponding to the fermionic impurity spin operators
without any constraint, namely including any number of
pseudofermion�s� allowed by the Pauli principle. The contri-
butions of the unphysical states �nf �1� to the partition func-
tion automatically cancel out one with the other by making
use of the imaginary chemical potentials. With Eqs. �11� and
�12�, we get

Z =
1

d���
�
n=1

d���

exp�i��n	TrFock exp�− ��HK + i�nn̂f�	 .

�13�

In the latter equation, in contrast with Eq. �10� of Z, the trace
showing up in the calculation has to be performed in the
grand canonical ensemble, which allows us to use standard
techniques, namely the functional integration, Green’s func-
tion method, and diagrammatic expansion. In a path integral
formalism at finite temperature,61,62 each Fock trace is given
by

FIG. 2. A Young tableau description of the fundamental �irre-
ducible� representation ��� associated with each conduction
electron.
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TrFock exp�− ��HK + i�nn̂f�	

=� Dc̄*Dc̄D f̄*D f̄ exp
− �
0

�

d��Ln��� + HK����� ,

�14�

where c̄*, c̄, f̄*, f̄ are Grassmann variables associated with
the fermionic operators c†, c, f†, f , respectively, and Ln��� is
the Lagrangian of free particles, expressed as

Ln��� = �
k

�
�=1

N

�
=1

K

c̄k,�,
* �����c̄k,�,���

+ �
�=1

d���

f̄�
*������ + i�n� f̄���� . �15�

One can notice from Eq. �15� that a direct consequence of the
introduction of the auxiliary chemical potentials is a shift of
the Matsubara frequencies related to the pseudofermions by a
value of �−i�n�.

Using Eqs. �14� and �15�, we finally obtain the expression
of the partition function,

Z =
1

d���
�
n=1

d���

exp�i��n	 � Dc̄* Dc̄ D f̄* D f̄

�exp
− �
0

�

d��Ln��� + HK����� . �16�

III. CALCULATION OF THE CONDUCTION ELECTRON
SELF-ENERGY

In this section, we expand the conduction electron self-
energy perturbatively in powers of the Kondo coupling con-
stant JK. This means that we consider the weak coupling
limit. We closely follow the method developed by Gan
et al.24,25 in the special case of the SU�2��SU�K� Kondo
model, involving an impurity of spin 1/2. We use diagram-
matic techniques.63,64

A. Construction of the electronic self-energy diagrams

Here we summarize the rules allowing us to derive the
self-energy of the conduction electron, using a diagrammatic
perturbative expansion of the partition function in JK. A de-
tailed method to build the diagrams associated with the elec-
tronic self-energy in the framework of the Kondo model is
given by Silverstein and Duke,65 following Abrikosov.58 Al-
though the final results will be given at T=0, we work in the
space of �fermionic� Matsubara frequencies for technical
simplicity. The rules are the following.

�i� In order to get the contribution at the mth order in the
Kondo interaction JK, i.e., O��JK�m	, we draw all the topo-
logically distinct diagrams linking m vertices.

�ii� Each conduction electron propagator �C12� is repre-
sented by a solid line,

�iii� Each impurity spin pseudofermion propagator �C13�
is drawn as a dashed line

�iv� Each vertex

contributes by a factor

−
JK

�Ns
�m1

e+m1
i ,m2

e+m2
i �

A=1

N2−1

��2,�1

A ��2,�1

A . �17�

�v� The independent internal momentums, frequencies,
and spin indices have to be summed over.

�vi� Each conduction electron loop gives a factor �−K�.
�vii� Each pseudofermion loop contributes by a factor

�−1�.
�viii� Each diagram O��JK�m	 exhibits a combinatorial

symmetry factor fsym. This factor results from the noncom-
pensation between the number of permutations of the vertex
and the contribution �1/m!� due to Wick’s theorem.66 We
show it explicitly in Figs. 3–5, when its value is not equal to
1.

B. Contributions of the leading order terms to the conduction
electron self-energy

In Figs. 3–5 we show the diagrams that will allow us to
compute the � scaling function perturbatively. As discussed
in Sec. IV, these digrams are sufficient to derive the critical
exponent of the model. The two subscripts in each term of

FIG. 3. Feynman diagram for the conduction electron self-
energy at the second order in a perturbation theory in JK.

FIG. 4. Feynman diagrams for the conduction electron self-
energy at the third order in a perturbation theory in JK.
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the self-energy expansion indicate the corresponding powers
of JK and K, respectively. Each diagram is factorized along
two main terms. The first one is the spin factor; it results
from the summation over the internal spin degrees of free-
dom. In Appendix D we present the method of calculation of
these spin factors for all the diagrams we consider. It requires
some knowledge about the properties �detailed in Appendix

A� of the SU�N� generators ��̃� and ��̃� associated with the
impurity and the electronic spins, respectively. The second
quantity is obtained by summing over the internal momen-
tum and frequency degrees of freedom. Due to the presence
of the imaginary chemical potentials �i�n�1�nd���

, this part

has to be computed carefully. In particular, the free propaga-
tors associated with the conduction electron and impurity

spins have to be redefined, which is done in Appendix C. In
Appendix E, we detail the calculation of the third order dia-
gram ��3,0�a

�,� displayed in Fig. 4. The other diagrams can be
computed in the same way.

The single-impurity Kondo model can be used for the
study of real systems of dilute �low concentration� impuri-
ties. For that purpose, we adopt the random impurity
averaging,58 the principle of which is the following. A num-
ber Ni of impurity spins are randomly distributed in the sys-
tem. We only keep the linear contribution in the impurity
density ni=Ni /Ns. Since the interactions between impurities
are completely neglected, we recover a single-impurity

Kondo model. To summarize, each of the contributions ��j,l��
�,��

to the conduction electron self-energy corresponding to a
diagram of Figs. 3, 4, or 5 can be written as a factorized
expression as follows:

��j,l��
�,�� = �− 1�bpf · �− K�l · �Ni� · fsym · Spin���j,l��

�,�� 	 · F�j,l��,

�18�

where bpf and l are the numbers of pseudofermion and con-
duction electron loop�s�, respectively, Ni is the number of
impurities in the system, fsym is the combinatorial symmetry

factor of the diagram, Spin���j,l��
�,�� 	 is the spin term corre-

sponding to the contribution of the spin operators that in-
volves the summation over the internal spin degrees of free-
dom, and F�j,l�� is the factor resulting from the contribution
of the fermionic propagators which is obtained by perform-
ing the summations over the internal momentum and Mat-
subara frequencies.

We shall exclusively work at T=0, allowing us to calcu-
late the integrals in energy analytically as well as the sum-
mations over imaginary chemical potentials included in the
impurity spin free propagator �C13�. We follow the conven-
tional cutoff scheme: a cutoff in energy is introduced for the
conduction electron band, i.e., −D��k�D, with a density of
states � per spin and per channel assumed to be constant.

At zero temperature after analytical continuation to the
real axis, we obtain the contributions of the first perturbative
order terms to the imaginary part of the electronic
self-energy,

Im���2,0�
�,����,���	 = − 
 �N + 2S − 1�!

�2S�!�q − 1�!�N − q�!
·

2S

4N2 �2S�N − 1� − q�N + 1� + �N2 + 1�	�
� �JK�2� · ni · 
d��� − 1

�d���	2 � · Im�
−D

+D

d�1
1

�� − �1 + i0+�� · ��,�� · ��� − ��� , �19�

Im���3,0�a
�,�� ��,���	 + Im���3,0�b

�,�� ��,���	

= − 
 �N + 2S − 1�!
�2S�!�q − 1�!�N − q�!

·
2S

4N
�2S�N − 1� − q�N + 1� + �N2 + 1�	��JK�3�2 · ni · 
d��� − 1

�d���	2 �
�Im�

−D

+D

d�1 d�2
nFD��2�

�� − �1 + i0+���1 − �2�� · ��,�� · ��� − ��� , �20�

FIG. 5. Feynman diagrams for the conduction electron self-
energy at the fourth order in a perturbation theory in JK.
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Im���4,1�a
�,�� ��,���	 + Im���4,1�b

�,�� ��,���	 + Im���4,1�c
�,�� ��,���	

= 
 �N + 2S − 1�!
�2S�!�q − 1�!�N − q�!

·
2S

8N
�2S�N − 1� − q�N + 1� + �N2 + 1�	� · �JK�4�3 · ni · K · 
d��� − 1

�d���	2 �
�Im�

−D

+D

d�1 d�2 d�3
nFD�− �1�nFD��2�nFD�− �3� + nFD��1�nFD�− �2�nFD��3�

�� − �1 + i0+��� − �1 + �2 − �3 + i0+���2 − �3� � · ��,�� · ��� − ��� , �21�

where nFD is the Fermi-Dirac distribution function.
In a perturbative RG analysis, we are only interested in

the energy range 0	��D. Consequently in the previous
expressions �19�–�21� the terms in powers of �� /D� are ne-
glected, and we only keep the factors generating logarithmic
contributions in ln�� /D�, which are sufficient to derive the
two leading order terms of the � scaling function, as dis-
cussed in Sec. IV A. Whenever necessary, we keep only the
principal part of the denominator exhibiting a pole. The in-
tegrals in energy are computed in this limit following the
method detailed by Gan,25 we get

Im�
−D

+D

d�1
1

�� − �1 + i0+�� = − � , �22�

Im�
−D

+D

d�1 d�2
nFD��2�

�� − �1 + i0+���1 − �2�� = � ln��/D� ,

�23�

Im�
−D

+D d�1 d�2 d�3

�� − �1 + i0+��� − �1 + �2 − �3 + i0+�
1

��2 − �3�

��nFD�− �1�nFD��2�nFD�− �3�

+ nFD��1�nFD�− �2�nFD��3�	� = � ln��/D� . �24�

By incorporating the integrals �22�–�24� into Eqs. �19�–�21�,
we obtain

Im�����
�,����,���	 = �
 �N + 2S − 1�!

�2S�!�q − 1�!�N − q�!

��2S�N − 1� − q�N + 1� + �N2 + 1�	 ·
2S

4N
�

�
d��� − 1

�d���	2 ��JK�2� · ni · ��,�� · ��� − ���

·  1

N
− �JK��ln��/D�

+
1

2
�JK��2K · ln��/D�� . �25�

IV. PERTURBATIVE RENORMALIZATION GROUP
APPROACH

In this section we use a perturbative RG method, the
Anderson’s “poor man’s scaling” approach.26,37 The interme-
diate coupling �IC� fixed point associated with the model is
identified, for various limits characterized by the shape of the
��� representation. We start by deriving the � scaling func-
tion, as a function of �JK��. A fixed point corresponds to a
zero of the � function. A simple analysis of the scaling func-
tion properties around a fixed point allows us also to deter-
mine its stability.67 In the case of a stable IC fixed point, a
rich physics characterized by a non-Fermi liquid behavior of
the system �namely, anomalous temperature dependence of
the specific heat, magnetic susceptibility,¼� can be expected.

A. Derivation of the scaling function from the conduction
electron self-energy

In Sec. III B, we have calculated the first order terms of
the conduction electron self-energy in a perturbative ap-
proach. This yields the leading terms of the � scaling func-
tion,

��JK�� =
d�JK��
d�ln D�

. �26�

The connection between both results from RG arguments,
more precisely the Callan-Symanzik equation,68,69 as ex-
plained later.

Without mentioning the spin dependence, we rename the
imaginary part of the conduction electron self-energy

Im�����
�,��	, Eq. �25�, as ����� , to have shorter notation in what

follows. Following Gan et al.,24,25 ����� can be expressed in
the most general way up to the fourth order in perturbation
theory as

����� ��,D,JK�� =
a

�
�P0�JK��2 + P1 ln��/D��JK��3

+ P2 · K · ln��/D��JK��4 + P3 · K · �JK��4

+ P4 ln2��/D��JK��4 + O��JK��5	� , �27�

where a , P0 , . . . , P4 are coefficients independent of �, D, and
JK�. ������ is the dimensionless scattering rate �i.e., inverse
of the quasiparticle lifetime�. The key point of the RG theory
is that the underlying physics must be independent of the
renormalization scheme, namely the cutoff D. Therefore the
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scattering rate is invariant under RG transformation. The
Callan-Symanzik equation resulting from this property is
then


 �

��ln D�
+ ��JK��

�

��JK��������� ��,D,JK�� = 0. �28�

The � scaling function is taken in its most general expansion
up to the third order in powers of JK�,

��JK�� = �1�JK��2 + �2 · K · �JK��3 + �3�JK��3 + O��JK��4	 .

�29�

Equations �27� and �29� incorporated into Eq. �28� give

�2�1P0 − P1	�JK��3 + �2�2P0 − P2	K · �JK��4 + 2�3P0�JK��4

+ �3�1P1 − 2P4	ln��/D� · �JK��4 + O��JK��5	 = 0. �30�

Equation �30� generates logarithmic series valid for any cou-
pling constant JK. Therefore the coefficients in front of the
terms of successive orders in JK� are identically 0. The result
is

�1 =
P1

2P0
, �31�

�2 =
P2

2P0
, �32�

�3 = 0, �33�

P4 =
3

2
�1P1. �34�

The coefficients P0, P1, and P2 are obtained from the imagi-
nary part of the conduction electron self-energy, Eq. �25�,

P0 =
1

N
, �35�

P1 = − 1, �36�

P2 =
1

2
. �37�

We point out here that the coefficients given by Eqs.
�35�–�37� are exact at this stage for any value N, 2S, and q,
without any restriction. As far as the consistency equation
�34� is concerned, it has been checked by Gan25 for an im-
purity spin in the fundamental representation of the SU�2�
group. At each order of perturbation our study leads to the
same integrals in energy displayed in Eqs. �22�–�24�. The
only difference between Gan’s work and our generalized ap-
proach is contained in spin factors that depend on the con-
sidered group and representation describing the impurity.
Since we have calculated these spin factors in an exact way,
we conclude that the previous consistency equation is auto-
matically satisfied for any group and any impurity represen-
tation we are interested in: the explicit calculation of P4 for
the generalized ��� representation is not required.

B. Analysis of the intermediate coupling fixed point

Following the results of Sec. IV A, the � scaling function
�26� obtained in a perturbative theory calculation in JK up to
the third order is given by

��JK�� = −
N

2
�JK��2 +

NK

4
�JK��3 + O��JK��4	 . �38�

One of the main results of this work is that Eq. �38� is valid
for any value of the parameters 2S and q characterizing the
L-shaped representation of the impurity spin, provided that
the perturbative expansion in JK is valid, as discussed in the
next paragraph.

The critical value J* taken by the Kondo coupling at the
IC fixed point is obtained from the zero of the � function,
i.e., ��J*��=0. We get

J*� =
2

K
+ O� 1

K2� . �39�

The latter expression for J* allows one to determine the do-
main of validity of the perturbative expansion. The RG per-
turbative approach we use is valid in the weak coupling re-
gime only. The IC fixed point has to be in the vicinity of the
free electron fixed point of the system. Consequently, the
perturbative expansion of the � function is trustworthy ex-
clusively when J* is close to 0, which means by using Eq.
�39�, K�1. Since each conduction electron loop that gives a
factor of �−K� contains two interacting vertices at least, and
each term J*� contributes by a factor of 1 /K, we conclude
that the diagrams displayed in Figs. 3–5 include all the con-
tributions to the electronic self-energy up to the order
O�1/K3	 at the IC fixed point. This argument allows one to
check the self-consistency of the calculation. Another restric-
tion is due to the domain of validity of the perturbative ex-
pansion. As previously noticed by Abrikosov-Migdal70 and
Affleck-Ludwig,52 the fourth order term in the expansion of
the � function, O��JK��4	, contains a coefficient proportional
to the eigenvalue of the quadratic Casimir operator �A11�
related to the impurity spin representation. In order that the
latter contribution that has not been taken into account here
remains negligible compared to the second and third order
contributions, we must also suppose that N, 2S, and q are
small compared to K. To summarize, the domain of validity
of the scaling function perturbative expansion is given by

K � 1, N � K, 2S � K, q � K . �40�

Consequently, the IC fixed point describes an overscreened
impurity, as discussed originally by Nozières and Blandin.1

The single-channel case turns out to be out of reach of the
present study.

In addition to the value of J*, another key quantity that
can be drawn from the � function is its slope � at the IC
fixed point, namely,

� = 
 d�

d�JK��
�

JK=J*
=

N

K
+ O� 1

K2� . �41�

In the limit given by Eq. �40� that we consider, � is auto-
matically positive therefore the IC fixed point is stable.67 The
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slope � determines the critical exponent of the model. It is a
strong mark of the universality concept characteristic of the
Kondo effect in the low-energy regime.71,72 This regime de-
scribes the system at temperatures that are low compared to
the bandwidth D. In that case the physics of the system is
governed by a stable IC fixed point, and the temperature
dependence of the various physical quantities at low T obeys
a power law in T /TK that is entirely controlled by � �TK
being the Kondo temperature�.

The Kondo temperature is the only relevant energy scale
in the problem; it is generated dynamically by the interac-
tions with the impurity spin. It plays an essential role in the
Kondo effect: TK characterizes a crossover between the weak
coupling regime and the low-energy regime. This tempera-
ture scale is invariant under the scaling process. One can
easily derive it by inverting and integrating the � function
expression.26 By using Eqs. �26� and �38�, we get

kBTK � D�JK��K/N exp
−
2

N�JK��
� . �42�

As mentioned previously, the results we have obtained are
valid in the overscreened regime for any value of the param-
eters N, 2S, and q, provided that Eq. �40� is satisfied. The
impurity spin representations that are adressed by the present
study are displayed in Fig. 6. We conclude that all the Kondo
models defined by these different impurity spin representa-
tions belong to the same universality class in the over-
screened regime, which is characterized by the following
low-temperature behaviors:25 resistivity due to Kondo scat-
tering:

��e�T� = �e�T = 0� − �
 T

TK
��

;

impurity specific heat:

Cimp�T� � 
 T

TK
�2�

;

magnetic susceptibility:

�imp�T� �
1

T

 T

TK
�2�

.

We can notice that the system described by an IC fixed point
exhibits non-Fermi liquid properties. As in the original
single-channel Kondo model characterized by an exactly
screened spin 1/2 impurity, the resistivity increases when the
temperature is lowered. Denoting by Sef f the effective spin of
the impurity screened by the conduction electrons and � � the

thermal average, we have26 ��Sef f�2��T�imp�T��T2�→0 as
T→0, which indicates that the IC fixed point is associated
with a ground state corresponding to a spin singlet. In the
overscreened regime the impurity spin is completely
quenched by conduction electrons.

The value of the universal critical exponent � we have
obtained in Eq. �41� is in agreement with the result of Gan
et al., who considered a spin 1/2 in the SU�2� group.24,25 The
case of larger spins �S
1/2� in the SU�2� group has also
been studied,50,51 leading to similar results. Equation �41�
allows one to recover the overscreened limit of the exact
solution of the multichannel Kondo model, obtained by using
the Bethe ansatz for the symmetric impurity spin representa-
tions of SU�N�,9 and boundary conformal field theory in the
case of an arbitrary impurity spin representation of the
SU�2�52 and SU�N�53 groups. It also corroborates the large-N
studies of the SU�N��SU�K� Kondo model involving either
the fundamental55 or the antisymmetric56 impurity spin rep-
resentations, although the K�N limit considered in these
works is different from ours.

V. SUMMARY AND CONCLUSIONS

In this paper, we have studied a multichannel SU�N�
Kondo model, involving a mixed symmetry impurity spin
representation. Namely, the generalized impurity spin is re-
alized by a combination of 2S bosonic and q fermionic de-
grees of freedom, in the presence of K conduction electron
channels. The study has been carried out by making use of a
perturbative renormalization group technique, the Anderson
“poor man’s scaling” approach. The main difficulty for the
description of spin systems is that spin operators obey nei-
ther Fermi nor Bose statistics, leading to the absence of
Wick’s decomposition theorem in this context. Consequently,
conventional perturbative methods are prohibited. We have
used the Abrikosov pseudofermion formulation to describe
the impurity spin states, and tackled the problem by making
use of a method initiated by Popov and Fedotov. Its basic
principle consists in introducing a set of auxiliary chemical
potentials that eliminates the unphysical Hilbert subspace,
keeping the physical spin states only, and therefore enables a
proper handling of the fermionic constraint.

The partition function has been obtained within a path
integral approach. The general expression of the conduction
electron self-energy imaginary part has been derived pertur-
batively in powers of the Kondo coupling constant, i.e., by
considering the weak coupling limit. At each order of a per-
turbative calculation the derivation involves two steps,
namely, the calculation of the spin factor and the computa-
tion of the fermionic propagator contribution, which includes
the Popov-Fedotov auxiliary chemical potentials. The imagi-
nary part of the conduction electron self-energy is propor-
tional to the electronic scattering rate, which is a physical
quantity and therefore is invariant under renormalization
group transformation. The Callan-Symanzik equation can be
applied, and yields the derivation of the two leading terms of
the � scaling function, i.e., up to the order O�1/K2	. We have
established that this truncated expansion of the � function is
valid in the overscreened �Nozières-Blandin� regime, for any

FIG. 6. Irreducible SU�N� representations of the impurity spin
considered in the present work: �a� L shaped; �b� fundamental,
2S=q=1; �c� symmetric, q=1; and �d� antisymmetric, 2S=1.
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value of N, 2S, and q, provided that these parameters remain
small compared with K. The intermediate coupling �IC� fixed
point describing the low-energy physics of the model has
been identified in the overscreened regime. The critical ex-
ponent �, corresponding to the slope of the � function to-
wards JK� at the IC fixed point, is given by

� =
N

K
+ O� 1

K2� .

� governs the temperature dependence of the various physi-
cal quantities at low T that are of the non-Fermi liquid type,
as discussed in Sec. IV. The IC fixed point describes the
system in its ground state that is a spin singlet: in the over-
screened regime the impurity spin is completely quenched by
the conduction electrons located on its site.

Several types of impurity spin representations have been
considered in previous works and can be viewed as special
limits of the mixed symmetry formulation we have used.
Hence direct comparisons with our study have been made
possible. Our results are in agreement with those obtained by
other methods, like Bethe ansatz and boundary conformal
field theory. We have established that the Kondo models de-
fined successively by fundamental, symmetric, antisymmet-
ric, and mixed symmetry impurity spin representations yield
exactly the same low-energy physics in the overscreened re-
gime. To summarize, the present work gives a unified view
of the overscreened Kondo regime, for a large set of repre-
sentations of the impurity spin. It is also possible to consider
arbitrary impurity spin representations, beyond the cases
mentioned here. For example, one can think about represen-
tations of the SU�N� group with rectangular-shaped Young
tableaux, as discussed in Ref. 54. The method we present can
be generalized to study the case of an arbitrary SU�N� rep-
resentation. No additional conceptual difficulty has to be ex-
pected. The spin factors associated with such a representa-
tion, which are present in the conduction electron self-
energy, have to be computed following the derivation

displayed in Appendix D. The traces over �̃ matrices we
have to consider involve products of two or three generators
in the impurity spin representation, and therefore the spin
factors can be derived exactly for any irreducible represen-
tation of SU�N�.80,81,89 However the computation of these
spin factors as a function of the Young tableau parameters
describing a completely arbitrary impurity spin representa-
tion certainly requires extremely lengthy algebra, as the com-
plexity of Eqs. �D9�, �D11�, and �D13�, which are restricted
to the L-shaped case we consider, suggests it easily.

Finally, we mention the case of the single-channel SU�N�
Kondo model involving a mixed symmetry impurity spin,
which we considered in a previous work.44,45 In such a case,
the L-shaped impurity exhibits a rather surprising duality: it
is exactly screened if one considers the fermionic compo-
nent, but underscreened toward the bosonic one. An interest-
ing problem remains. Namely, the understanding of the low-
energy physics in the regime characterized by an instability
of the strong coupling fixed point turns out to be out of reach
of the present work. This issue deserves further investiga-
tions. It might have important future applications for the

Kondo lattice problem,73 with potential implications for the
description of heavy-fermion compounds. In order to gain
some insight it would be interesting to carry out a non-
perturbative study. Unfortunately it is quite a difficult task.
Indeed well-known methods usually efficient to study the
Kondo problem, as numerical renormalization group or Be-
the ansatz techniques, have severe limitations in the context
of the mixed symmetry representation. For example, the sim-
plest impurity that displays an IC fixed point in the single-
channel case implies a large Hilbert space which restricts the
efficiency of a numerical renormalization group study. The
difficulties encountered by the Bethe ansatz are of a different
nature: due to the mixed symmetry properties of the impurity
spin representation, the model with Kondo coupling only is
not integrable.74
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APPENDIX A: PROPERTIES OF THE SU„N… GENERATORS

In this appendix we give some properties of the genera-

tors ��̃� and ��̃�, in the case of the two types of irreducible
representations we have to consider in the SU�N� group. The
first one concerns the conduction electron, it is the funda-
mental �single-box� representation ��� displayed in Fig. 2. Its
dimension is

d��� = N , �A1�

and the eigenvalue of the quadratic Casimir operator corre-
sponding to ��� is

C2����� =
N2 − 1

2N
, �A2�

which in the case of a spin S in SU�2� takes the usual value
S�S+1�. The associated traceless Hermitian matrices
��̃A�1�A�N2−1 obey the following properties:60

– multiplication law:

�̃A�̃B =
1

2N
�ABĨ��� +

1

2 �
C=1

N2−1

�dABC + ifABC��̃C; �A3�

– normalization relation:

Tr��̃A�̃B	 =
1

2
�AB; �A4�

– completeness relation:

�
A=1

N2−1

��,�
A ��,�

A =
1

2

��,���,� −

1

N
��,���,�� , �A5�

where A, B, and C label the SU�N� generators matrices

�1�A ,B ,C�N2−1�, Ĩ��� is the �N�N� identity matrix, �,
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�, �, and � label electronic spin colors �1�� ,� ,� ,��N�,
and dABC and fABC are the structure constants related to the d̃

and f̃ Gell-Mann tensors, respectively.75 The structure con-
stants are characteristic of the underlying Lie algebra. These
tensors follow the rules:

– d̃ is totally symmetric:

dABC = dBAC;

– f̃ is totally antisymmetric:

fABC = − fBAC;

– d̃ and f̃ are traceless tensors:

�
B

dABB = �
B

fABB = 0.

In SU�2�, d̃=0 and f̃ = �̃, the totally antisymmetric �Levi-
Civita� tensor of rank 3. In further calculations, we use the
following identities:76,77

�
B,C

dACBdGBC =
N2 − 4

N
�AG, �A6�

�
B,C

fACBfGBC = − N�AG, �A7�

�
B,C

dACBfGBC = 0. �A8�

The second representation of interest deals with the impu-
rity spin. It is an L-shaped representation denoted by ���,
and characterized by 2S boxes in the first row �horizontal
line� and q boxes in the first column �vertical line�, as dis-
played in Fig. 1. Its dimension can be derived by the use of
Robinson’s formula78

d��� =
2S

2S + q − 1
CN+2S−1

2S CN−1
q−1 , �A9�

and the eigenvalue of the quadratic Casimir operator associ-
ated with ��� is given by79

C2����� =
1

2�2S + q − 1��N2 − �2S + q − 1�	
N

+ �
j=1

N

mj�mj + 1 − 2j�� , �A10�

where mj is the number of boxes in the jth row �1� j�N� of
the Young tableau describing ���. Finally

C2����� =
2S + q − 1

2

2S − q + N −

2S + q − 1

N
� .

�A11�

We give now useful identities satisfied by the �d����d����
components of the ��̃A� matrices. The normalization relation
is80

Tr��̃A�̃B	 =
d���C2�����

d���C2�����
Tr��̃A�̃B	 =

d���C2�����

d���C2�����
�AB

2
.

�A12�

The generators in the ��� representation obey also some par-
ticular multiplication laws for the contracted indices close to
each other,81

�
B

�̃B�̃A�̃B = C2����� −
C2��Adj��

2
��̃A, �A13�

�
B

�̃C�̃B�̃B�̃A = C2������̃C�̃A, �A14�

where C2��Adj�� is the eigenvalue of the quadratic Casimir
operator associated with the adjoint representation of SU�N�.
Due to the choice of normalization given by Eq. �A4�, we
have C2��Adj��=N.

APPENDIX B: POPOV AND FEDOTOV METHOD

In this appendix we briefly explain a method pioneered by
Popov and Fedotov,49 in order to handle the constraint �5�
fixing the number of pseudofermions on the impurity site.
Originally formulated for spins 1/2 and 1 of the SU�2�
group, this powerful method has been developed for arbitrary
spin in SU�2�82 and generalized to SU�N�.83 It has already
been used to study the Heisenberg model,84 the Kondo
lattice,85 and disordered systems.86,87

The principle is to express the partition function of a spin
system in terms of partition functions of a corresponding
fermionic system, pseudofermions being used to describe the
spin states. The problem is to incorporate the fermionic con-
straint properly, namely to eliminate the unphysical Hilbert
subspace without removing the true spin states. This can be
done by noticing that the Kondo Hamiltonian �9� without
imposing any constraint is disconnected in the peudofermion
charge sectors. Consequently, the trace over the full Fock
space �i.e., without constraint� can be rewritten by applying
the Pauli principle as

TrFock exp�− ��HK − �n̂f�	 = �
nf=0

d���

Trnf
exp�− ��HK − �n̂f�	 ,

�B1�

where Trnf
is the local subtrace over the states with a fixed

number nf of pseudofermion�s� on the impurity site. The
physical partition function Z �10�, which includes the fermi-
onic constraint, is, together with Eq. �B1�,

Z = ��nf − 1� · TrFock exp�− ��HK − �n̂f�	 . �B2�

By using the identity

��nf − 1� =
1

d���
�
n=1

d���

ei��2n−1�/d���ei��1−2n�nf/d���,

incorporated into Eq. �B2�, we obtain
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Z =� D� P���TrFock exp�− ��HK − �n̂f�	 , �B3�

with

P��� =
1

d���
�
n=1

d���

exp
 i�

d���
�2n − 1�� � �
� +

i�

�d���
�2n − 1�� ,

�B4�

which is exactly Eq. �11�.

APPENDIX C: DERIVATION OF THE FREE
PROPAGATORS

In order to compute the conduction electron self-energy at
the first orders in a perturbative theory in JK, the first step
consists in deriving the free propagators associated with the
conduction electrons and the pseudofermions. It is performed
in this appendix. Due to the presence of the imaginary
chemical potentials �11� in the partition function Z �16�, we
should determine the free propagators carefully. For that pur-
pose we use the technique of the generating function.61,88

Let us denote by J*, J, and �*, � the external sources
coupled to the conduction electron c̄, c̄* and impurity fer-
mion f̄ , f̄* variables, respectively. These external sources are
Grassmann numbers. The generating function is

ZG�J,J*,�,�*	 =� Dc̄* Dc̄ D f̄* D f̄� 1

d���
�
n=1

d���

exp�i��n	 · exp
− �
i�m

�
k,�,

�c̄k,�,
* �i�m��− i�m + �k�c̄k,�,�i�m�

− Jk,�,
* �i�m�c̄k,�,�i�m� − c̄k,�,

* �i�m�Jk,�,�i�m��

− �
i�m

�
�

� f̄�
*�i�m��− i�m + i�n� f̄��i�m� − ��

*�i�m� f̄��i�m� − f̄�
*�i�m����i�m���� . �C1�

If each source is put to 0, one can see immediately that ZG is identical to the free partition function Z0, describing the system
in the absence of the Kondo interaction. The free propagators are given by the thermal averages

�c̄k0,�0,0
�i�m0

�c̄k0,�0,0

* �i�m0
��0 = � 1

Z0

�2ZG�J,J*,�,�*	

�Jk0,�0,0
�i�m0

��Jk0,�0,0

* �i�m0
�� J=J*=0

�=�*=0

, �C2�

� f̄�0
�i�m0

� f̄�0

* �i�m0
��0 = � 1

Z0

�2ZG�J,J*,�,�*	

���0
�i�m0

����0

* �i�m0
�� J=J*=0

�=�*=0

. �C3�

We use then the following identity for Gaussian integrals over Grassmann fields:

� Dc̄* Dc̄ D f̄* D f̄ exp
− �
i�m

�
k,�,

�c̄k,�,
* �i�m��− i�m + �k�c̄k,�,�i�m� − Jk,�,

* �i�m�c̄k,�,�i�m� − c̄k,�,
* �i�m�Jk,�,�i�m��

− �
i�m

�
�

� f̄�
*�i�m��− i�m + i�n� f̄��i�m� − ��

*�i�m� f̄��i�m� − f̄�
*�i�m����i�m���

= exp��
i�m

�
k,�,

Jk,�,
* �i�m�
 − 1

i�m − �k
�Jk,�,�i�m�� + �

i�m

�
�
��

*�i�m�
 − 1

i�m − i�n
����i�m���

�� Dc̄* Dc̄ D f̄* D f̄ exp�− �
i�m

�
k,�,

�c̄k,�,
* �i�m��− i�m + �k�c̄k,�,�i�m�� − �

i�m

�
�

� f̄�
*�i�m��− i�m + i�n� f̄��i�m��� .

�C4�
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By using Eq. �C4� one can easily obtain the derivatives of
the generating function ZG �C1� with respect to the sources,
allowing us to get the thermal averages

� 1

Z0

�2ZG�J,J*,�,�*	

�Jk0,�0,0
�i�m0

��Jk0,�0,0

* �i�m0
�� J=J*=0

�=�*=0

= −
1

i�m0
− �k0

,

�C5�

� 1

Z0

�2ZG�J,J*,�,�*	

���0
�i�m0

����0

* �i�m0
�� J=J*=0

�=�*=0

= −

1

d���
�

n

ei��n
 1

i�m0
− i�n

�Z0
f �i�n�

1

d���
�

n

ei��nZ0
f �i�n�

, �C6�

where Z0
f is the free fermionic part of the partition function,

associated with the imaginary chemical potential �i�n�

Z0
f �i�n� =� D f̄* D f̄

�exp
− �
i�m

�
�

� f̄�
*�i�m��− i�m + i�n� f̄��i�m��� .

�C7�

In Eq. �C7�, we recover the partition function of free
fermions61 of “energy” �i�n�

Z0
f �i�n� = �

�=1

d���

�1 + e−i��n	 = �1 + e−i��n	d���. �C8�

Due to the particular form of the imaginary chemical poten-
tials, one can derive some identities with the help of simple
trigonometric properties, which will be useful to perform the
calculations involving the pseudofermion propagators �see
Appendix E�:

�
n=1

d���

ei��n�1 + e−i��n	d��� = �d���	2, �C9�

�
n=1

d���

�1 + e−i��n	d���−1 = d���, �C10�

�
n=1

d���

ei��n�1 + e−i��n	d���−1 = d����d��� − 1� . �C11�

Using Eqs. �C2� and �C5� we get for the free conduction
electron propagator

�c̄k0,�0,0
�i�m0

�c̄k0,�0,0

* �i�m0
��0 = −

1

i�m0
− �k0

. �C12�

The expressions �C3�, �C6�, �C8�, and �C9� yield the free
propagator associated with the impurity spin pseudofermion,

� f̄�0
�i�m0

� f̄�0

* �i�m0
��0

= −
1

�d���	2 �
n=1

d��� 
 1

i�m0
− i�n

�ei��n�1 + e−i��n	d���.

�C13�

APPENDIX D: COMPUTATION OF THE SPIN FACTORS
PRESENT IN THE CONDUCTION ELECTRON

SELF-ENERGY

In this appendix, we present the method of calculation of
the spin factors necessary to obtain the electronic self-energy
perturbatively. The properties of the SU�N� generators given
in Appendix A will be used intensively. We will detail the
contribution of each diagram of Figs. 3–5. A general remark
one can make is that the impurity spin propagators form a

closed loop in each diagram. Therefore the ��̃A� matrices
will always appear as a trace over products of generators in
the ��� representation.

1. Spin multiplicative factor in the second order term of the
perturbation calculation of the conduction electron self-

energy

After summation over the internal spin degrees of free-
dom, the spin factor contribution of the second order term to
the electronic self-energy is given by

Spin���2,0�
�,��	 = �

A,B=1

N2−1

Tr��̃A�̃B	 · ��̃B�̃A	���. �D1�

The SU�N� generators in the ��� representation obey the fol-
lowing normalization relation:80

Tr��̃A�̃B	 =
d���C2�����

d���C2�����
Tr��̃A�̃B	 , �D2�

which gives, by making use of Eqs. �A1�, �A2�, �A4�, �A9�,
and �A10�,

Tr��̃A�̃B	 =
�N + 2S − 1�!

�2S�!�q − 1�!�N − q�!
·

2S

2N�N2 − 1�

��2S�N − 1� − q�N + 1� + �N2 + 1�	�AB,

�D3�

where 2S and q are the parameters of the Young tableau
associated with the L-shaped representation, as shown in Fig.
1.

Using Eqs. �D3� and �A5�, we obtain finally the spin mul-
tiplicative factor of the second order term,

Spin���2,0�
�,��	 =

�N + 2S − 1�!
�2S�!�q − 1�!�N − q�!

·
2S

4N2

��2S�N − 1� − q�N + 1� + �N2 + 1�	��,��.

�D4�
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2. Spin multiplicative factors in the third order term of the
perturbation calculation of the conduction electron

self-energy

After summation over the internal spin degrees of free-
dom, the first spin contribution of the third order term is

given by the diagram corresponding to ��3,0�a
�,�� ,

Spin���3,0�a
�,�� 	 = �

A,B,C=1

N2−1

Tr��̃A�̃C�̃B	 · ��̃B�̃C�̃A	���.

�D5�

The calculation of Tr��̃A�̃C�̃B	 for the L-shaped repre-
sentation in the SU�N� group is rather technical. Fortunately
this kind of algebraic object has already been intensively
studied in the field of particle physics. We can express it with
the aid of a symmetrized trace, which defines a symmetric
invariant tensor associated with ���,81

Tr��̃A�̃C�̃B	 = STr���
ACB +

i

2

d���C2�����

N2 − 1
fACB, �D6�

where STr���
ACB is the third order symmetrized trace,

STr���
A1A2A3 =

1

3!�� Tr��̃A��1��̃A��2��̃A��3�	 .

In the previous expression the summation is performed over
all the permutations of the generator indices. STr���

ACB can be

calculated for any representation in SU�N� �N�3� by fol-
lowing the method developed by Okubo,89 that we summa-
rize here. The Young tableau in the standard arrangement of
the L-shaped representation is specified by N integers
�f i�1�i�N, f i being the number of boxe�s� in the ith row,

f1 = 2S ,

f i = 1, 2 � i � q ,

f i = 0, q + 1 � i � N .

We define the indices �� j�1�j�N by

� j = f j +
N + 1

2
− j −

1

N
�
i=1

N

fi =
N + 1

2
−

2S + q − 1

N
− �j − f j�;

then

STr���
ACB =

dACB

2
K����� , �D7�

with

K����� =
N

�N2 − 1��N2 − 4�
d����

j=1

N

�� j�3. �D8�

After lengthy algebra we get using Eqs. �A9�, �A10�, and
�D6�–�D8�,

Tr��̃A�̃C�̃B	 =
�N + 2S − 1�!

�2S�!�q − 1�!�N − q�!
·

2S

2�N2 − 1�

� 1

�N2 − 4�
�2S�2� 2

N
− 3 + N� + q2� 2

N
+ 3 + N� + 2S · q� 4

N
− N�

+ 2S�−
4

N
+ 3 −

7N

2
+

3N2

2
� + q�−

4

N
− 3 −

7N

2
−

3N2

2
�

+ � 2

N
+

7N

2
+

N3

2
��dACB

+
i

2

2S�1 −

1

N
� − q�1 +

1

N
� + �N +

1

N
�� fACB� . �D9�

We have checked the validity of the previous expression
�D9� by comparing it with the results of Okubo and Patera,90

who considered special L-shaped representations, i.e., with a
given value of 2S and q for general SU�N� groups. We get a
perfect agreement.

For the electronic part we can use

��̃B�̃C�̃A	��� =
1

2N
�BC��̃A	���

+
1

2 �
G=1

N2−1

�dBCG + ifBCG���̃G�̃A	���. �D10�

By combining Eqs. �A5�–�A8�, and the previous results
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�D9� and �D10�, we obtain

Spin���3,0�a
�,�� 	

=
�N + 2S − 1�!

�2S�!�q − 1�!�N − q�!
·

2S

8N3

���2S�2�2 − 3N + N2� + q2�2 + 3N + N2�

+ 2S · q�4 − N2� + 2S�− 4 + 3N − 4N2 + 2N3�

+ q�− 4 − 3N − 4N2 − 2N3�

+ �2 + 4N2 + N4�	��,��. �D11�

The second spin contribution of the third order term cor-

responds to the diagram ��3,0�b
�,�� ,

Spin���3,0�b
�,�� 	 = �

A,B,C=1

N2−1

Tr��̃A�̃C�̃B	 · ��̃C�̃B�̃A	���,

�D12�

which can be derived in a similar way. The result is

Spin���3,0�b
�,�� 	

=
�N + 2S − 1�!

�2S�!�q − 1�!�N − q�!
·

2S

8N3

���2S�2�2 − 3N + N2� + q2�2 + 3N + N2�

+ 2S · q�4 − N2� + 2S�− 4 + 3N − 3N2 + N3�

+ q�− 4 − 3N − 3N2 − N3� + �2 + 3N2�	��,��. �D13�

3. Spin multiplicative factors in the fourth order term of the
perturbation calculation of the conduction electron

self-energy

The first spin contribution resulting from the fourth order

term is given by the diagram corresponding to ��4,1�a
�,�� ,

Spin���4,1�a
�,�� 	

= �
A,B,C,D=1

N2−1

Tr��̃D�̃C�̃B�̃A	 · Tr��̃B�̃C	

���̃D�̃A	���. �D14�

With �A4� and �A14�, we get

�
B,C

Tr��̃D�̃C�̃B�̃A	 · Tr��̃B�̃C	

=
�N + 2S − 1�!

�2S�!�q − 1�!�N − q�!
·

2S�2S + q − 1�
8N2�N2 − 1�

��2S�N − 1� − q�N + 1� + �N2 + 1�	2�AD. �D15�

Using Eq. �A3�, we have

Spin���4,1�a
�,�� 	 =

�N + 2S − 1�!
�2S�!�q − 1�!�N − q�!

·
2S�2S + q − 1�

16N3

� �2S�N − 1� − q�N + 1� + �N2 + 1�	2��,��.

�D16�

The second spin contribution resulting from the fourth

order diagram ��4,1�b
�,�� is

Spin���4,1�b
�,�� 	 = �

A,B,C,D=1

N2−1

Tr��̃A�̃B	 · Tr��̃C�̃D	

�Tr��̃B�̃C	 · ��̃D�̃A	���. �D17�

By using Eqs. �A4�, �A5�, and �A12�, we get

Spin���4,1�b
�,�� 	

=  �N + 2S − 1�!
�2S�!�q − 1�!�N − q�!

·
2S

N

��2S�N − 1� − q�N + 1� + �N2 + 1�	�2

�
1

16N�N2 − 1�
��,��. �D18�

The last spin multiplicative factor showing up in the

fourth order diagram ��4,1�c
�,�� is given by

Spin���4,1�c
�,�� 	 = �

A,B,C,D=1

N2−1

Tr��̃A�̃C�̃D�̃B	

�Tr��̃B�̃C	 · ��̃D�̃A	���. �D19�

The expressions �A4� and �A13� lead to

FIG. 7. Feynman diagram of the third order in
perturbation for the conduction electron self-
energy �according to the notations defined in Sec.
III A�.
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�
B,C

Tr��̃A�̃C�̃D�̃B	 · Tr��̃B�̃C	

=
�N + 2S − 1�!

�2S�!�q − 1�!�N − q�!
·

2S

4N�N2 − 1�

�
2S + q − 1

2N
�2S�N − 1� − q�N + 1� + �N2 + 1�� −

N

2
�

� �2S�N − 1� − q�N + 1� + �N2 + 1�	�AD. �D20�

Using Eq. �A3�, we obtain

Spin���4,1�c
�,�� 	

=
�N + 2S − 1�!

�2S�!�q − 1�!�N − q�!
·

2S

16N3 · ��,��

���2S�N − 1� − q�N + 1� + �N2 + 1�	2

��2S + q − 1�

− �2S�N − 1� − q�N + 1� + �N2 + 1�	N2� .

�D21�

APPENDIX E: EXPLICIT CALCULATION OF A THIRD
ORDER PERTURBATIVE DIAGRAM

In this Appendix we show how to compute the contribu-

tion due to the diagram associated with ��3,0�a
�,�� in Fig. 4. All

the other diagrams can be treated in the same way. The spin
multiplicative factor resulting from the ��A� and ��A� matri-
ces has been calculated in Sec. D 2, it is given by Eq. �D11�.
Here we just show how its starting point �D5� can be de-
rived. Then we will focus on the frequency and momentum

part. In Fig. 7, the diagram associated with ��3,0�a
�,�� is repre-

sented, by including all the internal degrees of freedom.
Let us start with the spin contribution. According to the

rules defined in Sec. III A, we obtain by expliciting the dia-
gram shown in Fig. 7,

Spin���3,0�a
�,�� 	 = �

�1,�2=1

N

�
�1,�2,�3=1

d��� 
 �
A=1

N2−1

��1,�
A ��1,�3

A �
 �
B=1

N2−1

���,�2

B
��2,�1

B �
 �
C=1

N2−1

��2,�1

C ��3,�2

C � = �
A,B,C

��̃B�̃C�̃A	��� · Tr��̃A�̃C�̃B	 ,

�E1�

which is identical to Eq. �D5�.
We consider now the contribution including the frequencies and the momentum, denoted by F�3,0�a. Although our analysis

is restricted to the zero-temperature limit, the calculations are performed in the space of �fermionic� Matsubara frequencies for
reasons of simplicity. We shall use the properties of the free propagators presented in Appendix C. The rules defined in Sec.
III A combined with expressions �C12� and �C13� give

F�3,0�a = 
−
JK

Ns
�3

�
k1,k2


 1

�
�3

�
m1

e,m2
e

�
m1

i ,m2
i ,m3

i

�me+m3
i ,m1

e+m1
i · �m1

e+m2
i ,m2

e+m3
i · �m2

e+m1
i ,me�+m2

i

�
�− 1�

�i�m1
e − �k1

�
·

�− 1�
�i�m2

e − �k2
�

· 
−
1

�d���	2�
n1

ei��n1�1 + e−i��n1	d���

i�m1
i − i�n1

�
�
−

1

�d���	2�
n2

ei��n2�1 + e−i��n2	d���

i�m2
i − i�n2

� · 
−
1

�d���	2�
n3

ei��n3�1 + e−i��n3	d���

i�m3
i − i�n3

� . �E2�

After summation over the imaginary frequencies, we get

F�3,0�a = 
−
JK

Ns
�3

�
k1,k2

�me,me�
 1

�d���	2�
n1

ei��n1�1 + e−i��n1	d����
�
 1

�d���	2�
n2

ei��n2�1 + e−i��n2	d���� · 
 1

�d���	2�
n3

ei��n3�1 + e−i��n3	d����
��nFD��k1

� − nFD�i�n3
�	 · �nFD��k2

� − nFD�i�n2
�	

�
 nFD�i�me − �k1
+ i�n3

� − nFD�i�n1
�

�i�me − �k1
− i�n1

+ i�n3
���k1

− �k2
+ i�n2

− i�n3
�

+
nFD�i�me − �k2

+ i�n2
� − nFD�i�n1

�

�i�me − �k2
− i�n1

+ i�n2
��− �k1

+ �k2
− i�n2

+ i�n3
�� ,

�E3�

where nFD is the Fermi-Dirac distribution function. We see in Eq. �E3� that the poles of the free propagators are not on the real
axis, as usual. Resulting from the handling of the fermionic constraint �11�, the poles are shifted by the imaginary chemical
potentials i�n. By using the following contraction identity:
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�nFD��k1
� − nFD�i�n3

�	 · �nFD�i�me − �k1
+ i�n3

� − nFD�i�n1
�	 = − nFD�− �k1

�nFD�− i�n1
�nFD�i�n3

� − nFD��k1
�nFD�i�n1

�nFD�− i�n3
� ,

�E4�

we have

F�3,0�a = 2
 JK

Ns
�3

�
k1,k2

�me,me�
 1

�d���	2�
n1

ei��n1�1 + e−i��n1	d����
�
 1

�d���	2�
n2

ei��n2�1 + e−i��n2	d���� · 
 1

�d���	2�
n3

ei��n3�1 + e−i��n3	d����
��nFD��k2

� − nFD�i�n2
�	 · 
nFD�− �k1

�nFD�− i�n1
�nFD�i�n3

� + nFD��k1
�nFD�i�n1

�nFD�− i�n3
�

�i�me − �k1
− i�n1

+ i�n3
���k1

− �k2
+ i�n2

− i�n3
� � . �E5�

By examining the previous expression �E5� one can suspect a
technical difficulty in performing the summations over the
imaginary chemical potentials �labeled n1, n2 and n3�, due to
their presence in the denominator. However a simplification
occurs, because our study is restricted to the zero-
temperature limit. Indeed the auxiliary chemical potentials
are proportional to the temperature. Therefore their contribu-
tion to the denominator of Eq. �E5� cancels out at zero tem-
perature. Of course, such a simplification would not be valid
if it was applied before performing all the summations over
the Matsubara frequencies: it would simply mean that the
fermionic constraint �5� is neglected, i.e., the considered Hil-
bert space includes unphysical fermionic states. However,
once the summations over the Matsubara frequencies have
been computed, all the poles of the free propagators have
been taken into account. Consequently, the elimination of the
imaginary chemical potentials from the denominator at this
stage does not suppress any “hidden” property and is per-
fectly justified. We have to notice also in Eq. �5� that the
contributions of the imaginary chemical potentials remain at
zero temperature in the exponential factors, contrary to what
occurs in the denominator. Indeed, the terms ei��n are purely
trigonometric factors, independent of the temperature. It is
probably feasible to extend the study to the finite temperature
limit, for example, by performing the summations over the
imaginary chemical potentials numerically. This generaliza-
tion is left for further studies.

To obtain the expression of the physical self-energy, we
perform the analytical continuation to the real axis: i�me

→�+i0+. Using the identities �C9�–�C11� in order to calcu-
late the summations over the imaginary chemical potentials,
we obtain at T=0,

F�3,0�a = 2
 JK

Ns
�3

�
k1,k2

��� − ���
1

�� − �k1
+ i0+���k1

− �k2
�

��nFD��k2
�
d��� − 1

�d���	2 � − 
d��� − 1

�d���	3 �� , �E6�

where �� is substituted to i�me� after continuation to the real
axis. We have now everything in hand to write the contribu-
tion to the electronic self-energy, at zero temperature. We put
together the spin factor �D11� and the frequency-momentum
part �E6�, and multiply them by two additional factors:
�−1� due to the pseudofermion loop, and �Ni� the number of
impurity spins. We get

��3,0�a
�,�� ��,��� = �− 1� · �Ni� · Spin���3,0�a

�,�� 	 · F�3,0�a. �E7�

In the thermodynamic limit we adopt the standard cutoff
scheme26,37 in energy for the conduction electron band:
−D��k�D, and perform the following substitution:

1

Ns
�

k
→ ��

−D

+D

d� ,

where � is the density of states per spin and per channel,
taken as a constant. We obtain finally

��3,0�a
�,�� ��,���

= − 
��2S�2�2 − 3N + N2� + q2�2 + 3N + N2� + 2S · q�4 − N2� + 2S�− 4 + 3N − 4N2 + 2N3�

+ q�− 4 − 3N − 4N2 − 2N3� + �2 + 4N2 + N4�	
�N + 2S − 1�!

�2S�!�q − 1�!�N − q�!
·

2S

4N3�
��JK�3 · ni · ��,�� · ��� − ���

��2�
−D

+D

d�1�
−D

+D

d�2
1

�� − �1 + i0+���1 − �2��nFD��2�
d��� − 1

�d���	2 � − 
d��� − 1

�d���	3 �� , �E8�

where ni=Ni /Ns is the impurity density.
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