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We study the effect of site occupation in two-dimensional quantum spin systems at finite temperature in a
�-flux state description at the mean-field level. We impose each lattice site to be occupied by a single SU�2�
spin. This is realized by means of a specific prescription. We consider the low-energy Hamiltonian which is
mapped into a QED3 Lagrangian of spinons. We compare the dynamically generated mass to the one obtained
by means of an average site occupation constraint.
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I. INTRODUCTION

Quantum electrodynamics QED�2+1� is a common frame-
work aimed to describe strongly correlated systems such as
quantum spin systems in 1 time and 2 space dimensions, as
well as related specific phenomena like high-Tc
superconductivity1–4. A gauge field formulation of antiferro-
magnetic Heisenberg models in d=2 dimensions leads to a
QED3 action for spinons, see Ghaemi and Senthil2 and
Morinari.3 This description raises the problem of the mean-
field solution and the correlated question of the confinement
of test charges which leads to the impossibility to determine
the quantum fluctuation contributions through a loop expan-
sion in this approach.5–7

We consider here the �-flux state approach introduced by
Affleck and Marston.8,9 The occupation of sites of the system
by a single particle is generally introduced by means of a
Lagrange multiplier procedure.10,11 In the present work we
implement a strict site occupation. It can be constructed by
means of constraints imposed through a specific projection
operator which introduces an imaginary chemical potential.
This has been proposed by Popov and Fedotov12 for SU�2�
spins and generalized by Kiselev et al.13 to SU�N� semifer-
mionic Hamiltonians. It is our aim in the present work to
confront the outcome of the two approaches.

Here we concentrate on the behavior of the spinon mass
which is generated dynamically by an U�1� gauge field. Ap-
pelquist et al.14,15 showed that at zero temperature the origi-
nally massless fermion can acquire a dynamically generated
mass when the number N of fermion flavors is lower than the
critical value Nc=32/�2. Later Maris16 confirmed the exis-
tence of a critical value Nc�3.3 below which the dynamical
mass can be generated. Since we consider only spin-1 /2 sys-
tems, N=2 and hence N�Nc.

At finite temperature Dorey and Mavromatos17 and Lee18

showed that the dynamically generated mass vanishes at a
temperature T larger than the critical one Tc.

We shall show below that the imaginary chemical poten-
tial introduced by Popov and Fedotov12 modifies noticeably
the effective potential between two charged particles and
doubles the dynamical mass transition temperature, in agree-
ment with former work at the same mean-field level.19

The outline of the paper is the following. In Sec. II we
recall the projection procedure introduced by Popov and Fe-

dotov �PFP� leading to a rigorous constraint on the lattice
site occupation. In Sec. III we derive the Lagrangian which
couples a spinon field to a U�1� gauge field. Section IV is
devoted to the comparison of the effective potential con-
structed with and without strict occupation constraint. In Sec.
V we present the calculation of the mass term using the
Schwinger-Dyson equation of the spinon.

II. SITE OCCUPATION CONSTRAINT FOR QUANTUM
SPIN SYSTEMS AT FINITE TEMPERATURE

Heisenberg quantum spin Hamiltonians of the type

H =
1

2�
i,j

JijS� iS� j , �1�

with �Jij��0 can be projected onto Fock space by means of
the transformation

Si
+ = f i,↑

† f i,↓,

Si
− = f i,↓

† f i,↑,

Si
z = 1

2 �f i,↑
† f i,↑ − f i,↓

† f i,↓� , �2�

where �f i,�
† , f i,�� are anticommuting fermion operators which

create and annihilate spinon with �= ±1/2.
This transformation is not bijective because the dimen-

sionality of Fock space is larger than the dimensionality of

the space in which the spin operators �S� i� are acting. Indeed,
in Fock space, each site i can be occupied by 0, 1, or 2
fermions corresponding to the states �0,0�, �1,0�, �0,1�, �1,1�
where �0,0� is the particle vacuum, �1,0�= �+1/2�, �0,1�= �
−1/2� and �1,1�= �+1/2 ,−1/2� in terms of spin 1/2 projec-
tions. Since one wants to keep states with one fermion per
site the states �0,0� and �1,1� have to be eliminated. This can
be performed on the partition function for a system at inverse
temperature �

Z = Tr	e−�H


where the trace is taken over the whole Fock space by the
introduction of a projection operator
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Z = Tr	e−��H−�N�
 , �3�

where N is the particle number operator and �= i� /2� an
imaginary chemical potential.12 Indeed, the presence of the
states �0,0�i and �1,1�i on site i leads in Z to phase contribu-
tions which eliminate each other

ei*0 + ei*� = 0,

and hence the contributions of these spurious states are can-
celed as a whole. The application of the Hamiltonian defined
in terms of the fermion operators introduced in �2� on the
states with fermion number 0 and 2 leads indeed to a cancel-
lation of their contributions.

This result is valid at zero temperature since the partition
function Z can be written as Z=Tr	e−�Hei��/2�N
 which
shows that there is a smooth connection from finite to zero
temperature.

The common alternative approximate projection proce-
dure would be to introduce a chemical potential in terms of
real Lagrange multipliers ��i�

Z = Tr�e−�H�
i
 d�ie

�i�ni−1�� ,

where ni is the particle number operator on site i and the ��i�
are fixed by means of a saddle point procedure.

III. SPIN STATE MEAN-FIELD ANSATZ
IN TWO-DIMENSIONAL

In two-dimensional �2D� space the Heisenberg Hamil-
tonian given by Eq. �1� can be written in terms of composite
nonlocal operators �Dij� �“diffusons”�10 defined as

Dij = f i,↑
† f j,↑ + f i,↓

† f j,↓.

If the coupling strengths are fixed as

Jij = J�
��

	�r�i − r� j ± �� � ,

where �� is a lattice vector �a1 ,a2� in the Ox� and Oy� direc-
tions the Hamiltonian takes the form

H = − J�
�ij�

�1

2
Dij

†Dij −
ni

2
+

ninj

4
� , �4�

where i and j are nearest neighbor sites.
The number operator products �ninj� in Eq. �4� are quartic

in terms of creation and annihilation operators in Fock space.
In principle the formal treatment of these terms requires the
introduction of a mean field procedure. One can however
show that the presence of this term has no influence on the
results obtained from the partition function. Indeed these
terms lead to a constant quantity under the exact site-
occupation constraint and hence are of no importance for the
physics described by the Hamiltonian �4�. As a consequence
we leave it out from the beginning as well as the contribution
corresponding to the �ni� terms.

A. Exact occupation procedure

Starting with the Hamiltonian

H = −
J

2�
�ij�

Dij
†Dij − �N , �5�

the partition function Z can be written in the form

Z = �
i,�

D��
i,�
* ,
i,���e−A��
i,�

* ,
i,���,

where the �
i,�
* ,
i,�� are Grassmann variables corresponding

to the operators �f i�
† , f i�� defined above. They depend on the

imaginary time � in the interval 	0,�
. In the continuum
limit the action A is given by

A��
i,�
* ,
i,��� = 

0

�

d���
i,�


i,�
* �����
i,����

+ H„�
i,�
* ���,
i,�����…� ,

where

H��� = H��� − �N��� , �6�

and N��� is the total particle number operator. A Hubbard-
Stratonovich transformation on the corresponding functional
integral partition function in which the action contains the
occupation number operator as seen in Eq. �6� eliminates the
quartic contributions generated by Eq. �2� and introduces the
mean fields ��ij�. The Hamiltonian takes then the form

H =
2

�J���ij� �̄ij�ij + �
�ij�

	�̄ijDij + �ijDij
† 
 − �N . �7�

The fields ��ij� and their complex conjugates �̄ij can be
decomposed into a mean-field contribution and a fluctuation
term

�ij = �ij
mf + 	�ij .

The field �ij
mf can be chosen as a complex quantity �ij

mf

= ��ij
mf �eiij

mf
.

The phase ij
mf is fixed in the following way. Consider a

square plaquette ���i�, i�+e�x , i�+e�y , i�+e�x+e�y� where e�x and

e�y are the unit vectors along the directions Ox� and Oy� start-

ing from site i� on the lattice. On this plaquette we define

 = �
�ij���

ij
mf ,

which is taken to be constant. If the gauge phases ij
mf fluc-

tuate in such a way that  stays constant the average of �ij
mf

will be equal to zero in agreement with Elitzur’s theorem.20

Mean-field Hamiltonians �7� can be defined arbitrarily by
choosing different ij

mf configurations over the plaquette.
However these choices may not show the same symmetries
of the mean-field Hamiltonian, the flux through the plaquette
may break the SU�2� invariance down to U�1� or Z2 gauge
structure.21 We would like to keep the original spin SU�2�
invariance of �1� intact in the mean-field Hamiltonian �7�. In
order to guarantee the SU�2� symmetry of the mean-field
Hamiltonian along the plaquette we follow21,8,9,11,22 and in-
troduce the configuration
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ij
mf = �

�

4
�− 1�i, if r� j = r�i + e�x

−
�

4
�− 1�i, if r� j = r�i + e�y ,

where e�x and e�y join the site i to its nearest neighbors j. Then
the total flux through the fundamental plaquette is such that
=� which guarantees that the SU�2� symmetry of the
plaquette is respected.23

At the mean-field level the partition function reads

Zmf = e−��Hmf−�N�,

where

Hmf =
2

�J���ij� �̄ij
mf�ij

mf + �
�ij�

	�̄ij
mfDij + �ij

mfDij
† 
 − �N , �8�

as read immediately from Eq. �7�.
After a Fourier transformation the Hamiltonian �8� takes

the form

Hmf = Nz
�2

�J�
+ �

k��SBZ

�
�

�fk�,�
† fk�+�� ,�

† �	H̃
� fk�,�

fk�+�� ,�
� , �9�

with

	H̃
 = �− � + � cos
�

4
z�kx,ky

− i� sin
�

4
z�kx,ky+�

+ i� sin
�

4
z�kx,ky+� − � − � cos

�

4
z�kx,ky

� ,

where ����mf�. The spin brillouin zone �SBZ� covers half
of the Brillouin zone �see Fig. 1� which originates from the
bipartite structure of the antiferromagnetic spin lattice and
describes the Fourier space of the sublattice spin excitations.
The �k�’s are defined by

�k� =
1

z
�
��

eik�·�� =
1

2
�cos kxa1 + cos kya2� .

B. The �-flux Dirac action

As already shown in earlier work by Ghaemi and Senthil2

and Morinari3 the spin liquid Hamiltonian �9� for systems at
low energy can be described by four-component Dirac
spinons in the continuum limit. The Dirac action of spin
liquid in �2+1� dimensions is derived in Appendix A. In
Euclidean space this action reads

SE = 
0

�

d� d2r��
�

�̄r��	�0��� − �� + �̃�k�k
�r��, �10�

where �̃=2� cos �
4 is the “light velocity,” and ���� are the

Dirac � matrices in �2+1� dimensions. Spinons move in a
“gravitational” field and the metric can be handled in a

Minkowskian �or Euclidean� metric24 assuming �̃=1 without
altering the physics of the problem.

Since the Heisenberg Hamiltonian �1� is gauge invariant
in the transformation �→eig�� the Dirac action has to be
written in the form

SE = 
0

�  d2r��−
1

2
a�	��	�� + �1 − �������
a�

+ �
�

�̄r��	����� − iga��
�r��� . �11�

Here g is the coupling strength between the gauge field a�

=��� and the Dirac spinons �. In �11� the first term corre-
sponds to the “Maxwell” term − 1

4 f��f�� of the gauge field a�

where f��=��a�−��a�, � is the parameter of the Faddeev-
Popov gauge fixing term25 −����a��2 and 	�� the Kronecker

	. �=��
2+�� 2 is the Laplacian in Euclidean space time. This

form of the action originates from a shift of the imaginary
time derivation ��→��+� and leads to a new definition of
the Matsubara frequencies only for the fermion fields �12

which read then

�̃F,n = �F,n − �/i =
2�

�
�n + 1/4� .

This modification will induce substantial consequences as
it will be shown in the following.

IV. THE “PHOTON” PROPAGATOR AT FINITE
TEMPERATURE

Integrating over the fermion fields � leads to a pure gauge
Lagrangian La= 1

2a����
−1a� where ��� is the dressed photon

propagator from which we shall extract an effective interac-
tion potential V�R� between two test particles and extract a
dynamically generated fermion mass.

The finite temperature photon propagator in Euclidean
space �imaginary time formulation� verifies the Dyson equa-
tion

���
−1 = ���

�0�−1 + ���. �12�

The detailed calculation of the polarization function ��� is
given in Appendix B.

FIG. 1. The two-dimensional spin Brillouin Zone �black area�
and the lattice Brillouin Zone �whole square�.
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Since the system is at finite temperature and “relativistic”
covariance should be kept the polarization function may be
put in the form26

��� = �AA�� + �BB��,

where �A and �B are related to �̃k by �A=�̃1+�̃2 and

�B=�̃3. The expressions of �̃1, �̃2, and �̃3 are explicitly
worked out in Appendix B. A�� and B�� generate an orthogo-
nal tensor basis transversal to the photon momentum q�

A�� = �̃�� −
q̃�q̃�

q̃2 ,

B�� =
q2

q̃2 ū�ū�,

A�� + B�� = 	�� −
q�q�

q2 ,

with �̃��=	��−u�u�, ū�=u�−
�q.u�

q2 q�, and q̃�=q�− �qu�u�.
Here u�= �1,0 ,0� is the three vector of the thermal bath.

The dressed photon propagator ��� is obtained by the
summation of the geometric series shown in Fig. 2 and reads

��� =
A��

q2 + �̃1 + �̃2

+
B��

q2 + �̃3

− �1 − 1/��
q�q�

�q2�2 . �13�

A. Effective potential between test particles

The effective static potential between two test particles of
opposite charges g at distance R is given by

V�R� = − g2
0

�

d��00��,R� = − g2 1

2�
 d2q�

�2��2�00�q0

= 0,q��eiq� ·R� = −
g2

2�


0

�

dqqJ0�qR�
1

q2 + �̃3�m = 0�
,

where J0�qR� is the zero order Bessel function. The polariza-

tion contribution �̃3�q0=0 ,q�� is equal to
�

���0
1dx log 2�cosh �q�x�1−x�� when taking the PFP imagi-

nary chemical potential into account. This has to be com-
pared to the expression 2�

���0
1dx log 2	cosh �

2 q�x�1−x�

when the Lagrange multiplier method for which �=0 is
used.17

For small momentum q→0, �̃3�m=0� can be identified
as a mass term 	M0

PF���
2. For R� �M0
PF�−1 the effective

potential reads

V�R,�� � −
g2

2�


0

�

dq
qJ0�qR�

q2 + M0
PF2 = −

�

N
� 1

8�RM0
PFe−M0

PFR,

where N=2 since we consider only S=1/2 spins.

Figure 3 shows the effective potential between two oppo-
site test charges at distance R� �M0

PF�−1. The screening ef-
fect is smaller when the imaginary chemical potential � is
implemented rather than the Lagrange multiplier �. By in-
spection one sees that �M0

PF�−1=�2�M0
�=0�−1. At zero tem-

perature and at large distances the well known logarithmic
potential is screened by the vacuum polarization and reduces
to a Coulombic form independently of the PFP. Temperature
adds screening effects and leads to the exponential decay of
the effective potential at large distances.17

V. DYNAMICAL MASS GENERATION

We show now how the PFP doubles the “chiral” restoring
transition temperature of the dynamical mass generation. The
Schwinger-Dyson equation for the spinon propagator at finite
temperature reads

G−1�k� = G�0�−1�k� −
g

�
�
�̃F,n

 d2P�

�2��2��G�p�����k − p���,

�14�

where p= �p0= �̃F,n , P� �, G is the spinon propagator, �� the
spinon-“photon” vertex which will be approximated here by
its bare value g�� and ��� is the dressed photon propagator
�13�. The second term in �14� is the fermion self-energy �,
�G−1=G�0�−1−��. Performing the trace over the � matrices in
Eq. �14� leads to a self-consistent equation for the self-
energy

��k� =
g2

�
�
�̃F,n

 d2P�

�2��2����k − p�
��p�

p2 + ��p�2 . �15�

In the low energy and momentum limit m���=��k�
���0� Eq. �15� simplifies to

1 =
g2

�
�
�̃F,n

 d2P�

�2��2����− p�
1

p2 + m���2 . �16�

If the main contribution comes from the longitudinal part

�00�0,−P� � of the photon propagator �16� goes over to

FIG. 2. The dressed photon propagator. Wavy lines correspond
to the photon and solid loops to the fermion insertions.

FIG. 3. Effective static potential with �full line� and without
�dashed line� the Popov-Fedotov imaginary chemical potential for
the temperature T= �0.001,0.05,0.5�.
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1 =
g2

�
�
�̃F,n

 d2P�

�2��2� 1

P� 2 + �̃3�m = 0�

1

�̃F,n
2 + P� 2 + m���2� .

�17�

Performing the summation over the fermion Matsubara fre-
quencies �̃F,n the self-consistent equation takes the form

1 =
�

4�N


0

�

dP� Ptanh ��P� 2 + m���2

	P� 2 + �̃3�m = 0�
�P� 2 + m���2
� .

�18�

Equation �18� can be solved numerically with a cutoff �
fixed at � in an analytical calculation. By inspection of Eq.
�18� and the corresponding result obtained by Dorey and
Mavromatos17 and Lee18 one sees that the imaginary chemi-
cal potential used which fixes rigorously one spin per lattice
site of the original Hamiltonian �1� doubles the transition
temperature. This result is coherent with the results obtained
elsewhere19 where spinons are massless.

Since the mass can be identified with a superconducting

gap one can evaluate the parameter r=
2m�0�

kBTc
where m�0� is

the mass at zero temperature and Tc the transition tempera-
ture for which the mass becomes zero. Dorey and
Mavromatos17 obtained r�10 and Lee18 computed the mass
by taking into account the frequency dependence and ob-
tained r�6. We have shown above that the imaginary
chemical potential doubles the transition temperature so that
the parameter r is �4.8 for � /�=� to compare with the
result of Dorey and Mavromatos and r�3 to compare with
Lee’s result. Recall that the BCS parameter r is roughly
equal to 3.5 and the YBaCuO parameter r�8 as given by the
experiment.27

The dynamical mass generation can be identified as the
spontaneous breaking of SU�2� spin symmetry.28 In this case
the mass term can be interpreted as a Néel-like order param-
eter. The present results are in agreement with previous
work.19

VI. CONCLUSION

We mapped a Heisenberg 2D Hamiltonian describing an
antiferromagnetic quantum spin system into a QED�2+1� La-
grangian coupling a Dirac spinon field with a U�1� gauge
field. In this framework we showed that the implementation
of the constraint which fixes rigorously the site occupation in
a quantum spin system described by a 2D Heisenberg model
leads to a substantial quantitative modification of the transi-
tion temperature at which the dynamically generated mass
vanishes in the QED�2+1� description. It modifies conse-
quently the effective static potential which acts between two
test particles of opposite charges.

The imaginary chemical potential12 reduces the screening
of this static potential between test fermions when compared
to the potential obtained from standard QED�2+1� calculations
by Dorey and Mavromatos17 who implicitly used a Lagrange
multiplier procedure in order to fix the number of particles
per lattice site11,29 since �=0 at the mean-field level.

We showed that the transition temperature to “chiral”
symmetry restoration corresponding to the vanishing of the
spinon mass m��� is doubled by the introduction of the
Popov-Fedotov imaginary chemical potential. The trend is
consistent with earlier results concerning the value of Tc.

19 It

reduces sizably the parameter r=
2m�0�

kBTc
determined by Dorey

and Mavromatos17 and Lee.18

Since only gauge configurations of the flux states belong-
ing to the Z2 symmetry �±�� are allowed. As shown by
Marston,23 the flux through the plaquette is restricted to 
= ±�. In order to remove “forbidden” U�1� gauge configu-
ration �which are all configurations for which � ±�� of the
antiferromagnet Heisenberg model a Chern-Simons term
should be naturally included in the QED3 action and fix the
total flux through a plaquette. When the magnetic flux
through a plaquette is fixed the system becomes 2� invariant
in the gauge field a� and instantons appear in the system.
This is the case when the present noncompact formulation of
QED3 is replaced by its correct compact version30 and leads
to fundamental and open problems.6,7

It is our next aim to implement a Chern-Simons term31 in
a system constrained by a rigorous site occupation.
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APPENDIX A: DERIVATION OF THE EUCLIDEAN QED
ACTION IN „2+1… DIMENSIONS

At low energy near the two independent points k�

= �± �
2 , �

2
�+k� of the spin Brillouin zone �see Fig. 1� the

Hamiltonian �9� can be rewritten in the form

FIG. 4. Temperature dependence of the dynamical mass gener-
ated with �full line� and without �dashed line� the use of the Popov-
Fedotov procedure.

STRICT SITE-OCCUPATION CONSTRAINT IN TWO-¼ PHYSICAL REVIEW B 73, 224443 �2006�

224443-5



H = �
k��SBZ

�
�

�f1,k�,�
† f1,k�+�� ,�

† f2,k�,�
† f2,k�+�� ,�

† �

��− �I + �2��− kx��3 0

0 �3
� − kyI�

+ �2��− kx��2 0

0 − �2
� + kyiI���

f1,k�,�

f1,k�+�� ,�

f2,k�,�

f2,k�+�� ,�

� ,

with �� = �� ,�� the Brillouin vector. �1, �2, and �3 are Pauli
matrices

�1 = �0 1

1 0
�, �2 = �0 − i

i 0
�, �3 = �1 0

0 − 1
� .

f1,k�,�
† and f1,k�,� �f2,k�,�

† and f2,k�,�� are fermion creation and

annihilation operators near the point � �
2 , �

2
� ��− �

2 , �
2

��.
Rotating the operators

fk� = 1
�2

�fa,k� + fb,k��,

fk�+�� = 1
�2

�fa,k� − fb,k�� ,

leads to

H = �
k��SBZ

�
�

�k��
† �− �I + �̃k+��1 0

0 �2
�

− �̃k−��2 0

0 �1
���k��,

where k+=kx+ky and k−=kx−ky, �̃=2� cos �
4 and

�k�� =�
f1a,k��

f1b,k��

f2ak��

f2bk��

� .

In the Euclidean metric the action reads

SE = 
0

�

d� �
k��SBZ

�
�

�k��
† ��3 0

0 �3
����� − ����3 0

0 �3
�

+ i�̃k+��2 0

0 − �1
� + i�̃k−��1 0

0 − �2
���k��.

Through the unitary transformation

�k�� → �1 0

0 ei��/4��3
��1 0

0 − �1
��k��

and writing k+=k2 and k−=k1

SE = 
0

�

d� �
k��SBZ

�
�

�̄k��	�0��� − �� + �̃ik1�1 + �̃ik2�2
�k��,

where �̄=�†�0 and the � matrices are defined as

�0 = ��3 0

0 − �3
�, �1 = ��1 0

0 − �1
� ,

�2 = ��2 0

0 − �2
� .

Using the inverse Fourier transform �k��=�d2r��r��eik�·r� the
Euclidean action finally reads

SE = 
0

�

d� d2r��
�

�̄r��	�0��� − �� + �̃�k�k
�r��.

With a “light velocity” v�= �1, �̃ , �̃�. The covariant deriva-
tive which takes v� into account24 reads

D� = �� + 1
8��,ab	�a,�b
 ,

where ��,ab=ea
����e�b−���

� e�b�, ea
� are the vierbein32 for

which the metric is defined as g��=�mnem
�en

�=v�	�� with

�00=−1, �ij =	ij, and � is the Christoffel symbols. Since �̃ is
constant we see clearly that the vierbein are also constant,
��,ab=0 in a dilated flat space-time with the Euclidean met-
ric g��=v�	��.

APPENDIX B: DERIVATION OF THE PHOTON
POLARIZATION FUNCTION AT FINITE TEMPERATURE

The Fourier transformation of the spinon action given by
Eq. �11� reads

SE	�
 = �
�

�
�̃F,1,�̃F,2

 d2k�1

�2��2  d2k�2

�2��2 �̄��k1�� i��k�

�2��2�

�	�k1 − k2� −
ig��a��k1 − k2�

�2��2�
�2

���k2� ,

with k= (�̃F� 2�
� �n+1/4� ,k�). Integrating over the fermion

field � and keeping the second order in the gauge field leads
to the effective gauge action

Sef f	a
 = 1
2 Tr	GFig��a�
2

with Tr= �
�F�

� d2k��

�2��2 �
�F�

� d2k��

�2��2 tr. The trace tr extends over the �

matrix space, and GF
−1�k1−k2�= i

��k�

�2��2�
	�k1−k2�. The pure

gauge action comes as

Sef f	a
 = − g2 1

2�
�
�

�
�F,1

 d2k�1

�2��2

1

�
�
�F�
 d2k��

�2��2

�tr���k1,�

k1
2 ��a��k1 − k��

��k��

k�2 ��a��− �k1 − k���� .

With the change of variables k1−k�=q and k1=k

Sef f = −
g2

2�
�
�B

 d2q�

�2��2 a��− q�����q�a��q� ,

where q= ��B= 2�
� m ,q�� and the polarization function is given

by
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����q� =
g2

�
�

�F,�
 d2k�

�2��2 tr���k�

k2 ���� �k� + q��
�k + q�

��� .

Then using the Feynmann identity

1

ab
= 

0

1

dx
1

	ax + �1 − x�b
2 .

��� can be rewritten as

����q� =
g2

�
�
�

�
�F

 d2k�

�2��2

�tr	��������
.
0

1

dx
k��k� + q��

	�k + q�2x + �1 − x�k2
2 .

By means of a change of variables k→k�−xq and using
the identity

tr	��������
 = 4		��	�� − 	��	�� + 	��	��
 ,

one obtains

����q� = 4�
0

1

dx
1

�
�
�F�
 d2k��

�2��2�	2k��k�� + �1 − 2x��k��q�

+ q�k��� − x�1 − x�2q�q�

 − 		���
�

�k��
2 + �1

− 2x�k��q� − x�1 − x�q�
2�
/	k�2 + x�1 − x�q2
2,

where �=g2��=1
N=21. Following Dorey and Mavromatos,17

Lee,18 Aitchison et al.33 and Gradshteyn34 we define

S1 = �
n=−�

�
1

	k�2 + x�1 − x�q2


=
�2

4�Y
� sinh�2�Y�

cosh�2�Y� − cos�2�X��,

S2 = �
n=−�

�
1

	k�2 + x�1 − x�q2
2 = −
�2

8�2

1

Y

�S1

�Y
,

S* = �
n=−�

�
�F�

	k�2 + x�1 − x�q2
2 = −
�

4�

�S1

�X
,

with X=xm+1/4 and Y = �
2�

�k�� 2+x�1−x�q2. The polariza-
tion can be expressed in terms of these sums and reads

�00 =
�

�


0

1

dx d2k��

�2��2 �S1 − 2	k�� 2 + x�1 − x�q0
2
S2

+ �1 − 2x�q0S*� ,

for the temporal component and

�ij =
�

�


0

1

dx d2k��

�2��2 	2x�1 − x��q2	ij − qiqj�S2

− �1 − 2x�q0	ijS
*
 ,

for the spatial components.

Integrating over the fermion momentum k�� one gets

�00 = �̃3 −
q0

2

q2�̃1 − �̃2,

�ij = �̃1�	ij −
qiqj

q2 � + �̃2	ij ,

where

�̃1 =
�q

�


0

1

dx�x�1 − x�
sinh �q�x�1 − x�

D�X,Y�
,

�̃2 =
�m

�


0

1

dx�1 − 2x�
cos 2�xm

D�X,Y�
,

�̃3 =
�

��


0

1

dx log 2D�X,Y� ,

and D�X ,Y�=cosh	�q�x�1−x�
+sin�2�xm�.
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