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A two-leg spin-1/2 ladder with diagonal interactions is investigated numerically. We focus our attention on
the possibility of columnar dimer phase, which was recently predicted based on a reformulated bosonization
theory. By using density matrix renormalization group technique and exact diagonalization method, we calcu-
late columnar dimer order parameter, spin correlation on a rung, string order parameters, and scaled excitation
gaps. Carefully using various finite-size scaling techniques, our results show no support for the existence of
columnar dimer phase in the spin ladder under consideration.
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Much effort has been devoted to understanding the effects
of competing interactions on quasi-one-dimensional systems.
The possibility of unconventionally ordered phases has been
the focus of interest. For example, the one-dimensional ex-
tended Hubbard model �EHM� with nearest-neighbor repul-
sion V in addition to on-site repulsion U has been investi-
gated intensively.1–12 It had been considered for a long time
that the ground-state phase diagram at half filling has only
two phases, the spin-density-wave �SDW� and the charge-
density-wave �CDW� states.1–6 Moreover, the order of the
phase transition at U�2V can change from continuous to
first order at a tricritical point, which was speculated to exist
in the intermediate coupling regime.2–4 Later, by using the
level-spectroscopy method, Nakamura pointed out that there
exists also a novel spontaneously dimerized phase, the so-
called bond-order-wave �BOW� phase, in a narrow strip
between the SDW and the CDW phases in the weak coupling
region.7 While this phase is absent in standard one-loop
g-ology and bosonization calculations,1,4 its existence was
supported by a reformulated one,8 where higher-
order terms were included. The appearance of the BOW
phase was subsequently confirmed by quantum Monte
Carlo simulations,9,10 density matrix renormalization group
�DMRG� method,11 and functional renormalization group
calculations.12

Interestingly, same story may happen also in an antiferro-
magnetic two-leg spin ladder with diagonal frustrations. The
Hamiltonian of this model reads as follows:

H = J �
�=1,2

�
i

S�,i · S�,i+1 + J��
i

S1,i · S2,i

+ J��
i

�S1,i · S2,i+1 + S1,i+1 · S2,i� , �1�

where S�,i denotes a spin-1 /2 operator at site i of the �th leg.
J and J� are the exchange couplings on legs and rungs, re-
spectively. We set J�1 hereafter. J� denotes the next-
nearest-neighbor interchain coupling. This model has been
investigated for decades,13–20 and considerable amount of
knowledge has been accumulated. It has been believed that
the ground state phase diagram consists of only two phases,
the rung-singlet �RS� phase and the so-called Haldane phase.

The earlier bosonization study predicted a direct transition
between these two phases at J�=2J�.14 Various numerical
calculations, such as series expansions,18 DMRG,19 and
level-spectroscopy method,20 showed the phase boundary to
be shifted away from the J�=2J� line, with a larger RS
phase. Moreover, the phase transition seems to be of second
order at weak interchain couplings and becomes first order at
stronger couplings.18,19 Recently, it was suggested that there
exists an intermediate, spontaneously dimerized phase, the
so-called columnar dimer �DC� phase, lying between the
Haldane and the RS phases at weak interchain couplings.21

This remarkable proposal is based on a reformulated weak-
coupling field theory, which is similar in spirit to that in Ref.
8 with success in the study of one-dimensional EHM. Ac-
cording to Ref. 21, for a given J�, the DC phase occurs
within a narrow but finite region �J��c,T�J�� �J��c,S in the
phase diagram. Here �J��c,T=2J�−5J�

2 /�2 and �J��c,S

=2J�−J�
2 /�2 are two distinct critical points, given by van-

ishing mass gaps in the spin-triplet and the spin-singlet sec-
tors, respectively. As mentioned before, this intermediate DC
phase was not found in previous numerical calculations.18–20

Thus the existence of this spontaneously dimerized DC
phase is surprising and calls for thorough theoretical studies.

In this paper, we try to find numerical evidence for the
possibility of the DC phase in a two-leg spin ladder of Eq.
�1� in the vicinity of J�=2J�. Here we take J�=0.2.22 It is
smaller than the value J�=0.287, where the transition
changes to be first order.19 Thus the proposed region for the
DC phase becomes 0.38�J��0.396. The values of J� and
J� under consideration should be small enough in accor-
dance with the weak-coupling field theory in Ref. 21. Both
the DMRG technique23,24 under open boundary conditions up
to L=400 rungs and the Lánczos exact diagonalization
method with periodic boundary conditions up to L=16 are
used. In our DMRG calculations, 500 states per block are
kept, and the truncation error is of the order of 10−7. To
demonstrate the possibility of the DC phase, the most direct
way is to show the corresponding order parameter being non-
zero in the proposed region of the phase diagram. As far as
we know, this order parameter has not yet been measured for
the present model. We note that the critical point �J��c,T in
the spin-triplet sector is consistent with the phase boundary
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found previously.18–20 Therefore, another support of the pro-
posal in Ref. 21 is to show the existence of another critical
point at �J��c,S with vanishing mass gap in the spin-singlet
sector. Carefully using various finite-size scaling skills for
the DC order parameter and other physical quantities defined
below, our results fail to show the existence of the DC phase,
but instead they indicate a direct transition between the RS
and the Haldane phases.

By using the DMRG technique under open boundary con-
ditions, we first analyze the DC order parameter. As shown
in Ref. 25, due to the presence of open ends, weak dimeriza-
tion profiles can be induced near the boundaries. In order to
reduce the boundary effect, the DC order parameter is calcu-
lated by the difference of local spin correlation on legs

D � �� 1

2 �
�=1,2

�S�,i · S�,i+1 − S�,i+1 · S�,i+2��� , �2�

where only the bonds in the middle of finite open ladder with
length L are considered �i.e., i=L /2�. 	¯
 means the ground-
state expectation value. The DC order parameter in the ther-
modynamic limit is then D�� limL→�D. Our results of the
DC order parameter D for various J� with J�=0.2 are shown
in Fig. 1�a�. We find that D always decreases to zero in the
thermodynamic limit even for J�=0.39, which lies within
the suggested region for the DC phase. Figure 1�b� shows
ln D versus L for various values of J�. It is found that, for L
being large, D�c exp�−L /��, where c is a constant and � is
a kind of correlation lengths. Moreover, as shown in the inset
of Fig. 1�b�, 1 /�� �J�− �J��c� with �J��c�0.38, which
agrees with the value of the proposed critical point �J��c,T

=0.38 in the spin-triplet sector. This indicates that the long-
range DC phase may appear only at this phase boundary,
rather than for a finite region in the phase diagram. In addi-
tion, it shows no evidence for the additional second-order
quantum phase transition at J�= �J��c,S=0.396, since the
correlation length � diverges only at a single critical point
�J��c,T, rather than at two points.

To be sure if we miss the critical point �J��c,S in the above
analysis, a finite-size crossing method26 is used, which is
applicable to detect the critical points of second-order quan-
tum phase transitions. It is noted that one can always decom-
pose the Hamiltonian into two parts, i.e., H�H0+gV, and
consider the transition being driven by the parameter g.
Based on the finite-size scaling analysis, it is shown that the
curves of the mean value O�	V
 /L at two successive values
of size L as a function of g will cross at a single point gL

* near
each critical point gc.

26 The value of the critical point gc can
be found numerically by extrapolating the sequence gL

* to
L→�. In the present case, we take the driving parameter as
J�. Thus the corresponding transition-driving term becomes
V=�iS1,i ·S2,i, which gives O= 	S1,i ·S2,i
 by translational in-
variance if periodic boundary conditions are used. In case of
finite open ladders, to avoid boundary effects, sites in the
middle of ladders �i.e., i=L /2� are used. In Fig. 2, we plot
the curves of 	S1,i ·S2,i
 versus J� for various sizes L, which
are calculated by the DMRG technique. It is found that there
is only one crossing point J�

* �L� at L��L1+L2� /2 for the
curves at two subsequent sizes L1 and L2. This indicates that

there is only one, but not two, phase transition. Our conclu-
sion is consistent with the picture provided by previous
investigations,13–20 where the complete phase diagram con-
sists of only two phases with a single phase boundary. The
scaling behavior of the crossing points is shown in the inset
of Fig. 2. It is found that the crossing points converge to the
value �J��c�0.378 for the critical point. Our finding agrees
well with that obtained by previous DMRG calculation19 and
is consistent with the predicted value for �J��c,T.21 Again, our
results provide no support for the existence of another criti-
cal point at �J��c,S in the spin-singlet sector.

While our results show that there is no DC phase and
there are only two phases in the complete phase diagram, the
nature of these two phases has not yet been explored in the
present study. According to previous investigations, these
two phases should be the Haldane and the RS phases, and
they can be identified by two distinct string order parameters
Oodd and Oeven.

15–17,27 These two string order parameters are
given by

FIG. 1. �Color online� �a� Size dependence of the DC order
parameter D for various J� with J�=0.2. �b� ln D versus L for
various values of J� with J�=0.2. Labels for various J� are the
same as those in �a�. The inset shows the inverse of the correlation
length � for various values of J�.
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OP = − lim
�i−j�→�

�S̃P,i
z expi� �

l=i+1

j−1

S̃P,l
z �S̃P,j

z � , �3�

where P = odd, even. The composite spin operators are de-

fined as S̃odd,i
z =S1,i

z +S2,i
z and S̃even,i

z =S1,i
z +S2,i+1

z . Because of
spin isotropy, we calculate the string order parameters for the
z-component spins only. In case of finite ladders, it turns out
that the intersection of the curves of two distinct string order
parameters implies the critical point.17 In order to reduce the
undesirable boundary effects, we fix site j in Eq. �3� at the
center of the chain and let site i=20 in our calculations. Our
DMRG results of Oodd and Oeven for various sizes L as func-
tions of J� with J�=0.2 are shown in Fig. 3. For smaller J�,
one has Oodd�0 and Oeven=0, which implies the Haldane
phase; while Oodd=0 and Oeven�0 for larger J�, which im-
plies the RS phase. The finite size scaling procedure is used

to determine the thermodynamic limit of the value of the
critical point. As shown in the inset of Fig. 3, the crossing
points converge to the value of �J��c�0.378, which agrees
quite well with that found in the inset of Fig. 2.

Finally, we provide a further examination of the possibil-
ity of another critical point �J��c,S with vanishing gap in the
spin-singlet sector. According to the phenomenological
renormalization-group �PRG� method,28 second-order phase
transition points can be determined by the crossing points of
the curves of the scaled gaps L�E	 at two successive sizes L
and L+2, where �E	 denote the excitation gaps in the spin-
singlet and the spin-triplet sectors for 	=s and t, respec-
tively. Here the gaps are calculated by using exact diagonal-
ization method with periodic boundary conditions up to L
=16. In the present case, the ground state is unique for any
J� and J�, and it has total spin S=0 and momentum k=0.
The spin-triplet �-singlet� excitation gap �Et ��Es� is deter-
mined by the energy difference between the ground state and

FIG. 2. �Color online� Spin correlation on the �N /2�-th rung as
a function of J� for various sizes L with J�=0.2. The inset shows
the L−1 scaling behavior of the crossing points.

FIG. 3. �Color online� String order parameters for ladders with
various sizes L as functions of J� with J�=0.2. The inset shows the
L−1 scaling behavior of the crossing points.

FIG. 4. �Color online� Scaled gaps �a� L�Es for spin-singlet
excitation and �b� L�Et for spin-triplet excitation as functions of J�

for various sizes L with J�=0.2. Insets show the L−2 scaling behav-
ior of the left and the right crossing points represented by open and
solid circles, respectively. Dotted lines are guides to the eye. They
are straight lines fitted to the last few points.
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the lowest level with total spin S=1 �with total spin S=0 and
k=��. Our results for the scaled gaps L�E	 as functions of
J� for various sizes L with J�=0.2 are exhibited in Fig. 4.
For both cases of L�Es and L�Et, there are two crossing
points of the curves at subsequent sizes. However, it implies
only one, but not two, critical point, because the extrapola-
tion of the left and the right crossing points tend to a single
value in the thermodynamical limit as shown in the insets of
Fig. 4. The limiting values for the spin-singlet and the spin-
triplet sectors are almost the same, and both give �J��c

�0.38. Our findings indicate that only one phase transition
at �J��c�0.38 occurs in the present system, and then the
spin-singlet and the spin-triplet gaps vanish simultaneously.
We note that simple linear extrapolations from data of sys-
tems of small sizes may be somewhat dangerous. Neverthe-
less, because our results based on PRG are consistent with
that obtained by the above DMRG analysis and that given by
earlier DMRG calculation,19 they may lead to true physics in
the thermodynamical limit.

In summary, we study numerically a two-leg spin ladder
with diagonal frustrations for weak interchain couplings. All
our results indicate that the transition from the RS to the
Haldane phases is direct, without any phase in between. This
conclusion is consistent with the picture obtained by all pre-
vious investigations,13–20 except that proposed in Ref. 21
based on a reformulated weak-coupling field theory. It is not
clear why a reformulated bosonization analysis works for
one-dimensional EHM, but could fail for the present two-leg
spin ladder. Further theoretical investigations are necessary
to clarify this issue.
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