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We study universality in three-dimensional Ising spin glasses by large-scale Monte Carlo simulations of the
Edwards-Anderson Ising spin glass for several choices of bond distributions, with particular emphasis on
Gaussian and bimodal interactions. A finite-size scaling analysis suggests that three-dimensional Ising spin
glasses obey universality.
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I. INTRODUCTION

One of the cornerstones of the theory of critical phenom-
ena is the concept of universality, according to which the
values of many quantities, such as critical exponents, do not
depend on microscopic details but only on a few broad fea-
tures such as the dimensionality of space and the symmetry
of the order parameter. Universality follows from renormal-
ization group �RG� theory, according to which many interac-
tions that could be added to the Hamiltonian are “irrelevant,”
i.e., do not change the critical behavior. The “�-expansion”
implementation of RG has been very successful in predicting
which perturbations are actually relevant and which are irrel-
evant. At least for pure systems, and disordered systems
without frustration, numerical simulations seem to be consis-
tent with universality.

However, for systems with both frustration and disorder,
known as spin glasses,1 the situation is less clear. On the one
hand, �-expansion calculations as well as high-temperature
series expansions2 for spin glasses imply universality, and, in
the opinion of the authors of this paper, there is no a priori
reason why universality should be less valid for spin glasses
than for pure systems. However, as we shall see below, nu-
merical results so far have not been compelling in favor of
universality and some groups3–7 even claim explicitly that
universality is violated.8 Unfortunately, it is difficult to ob-
tain accurate critical exponents because there are significant
corrections to scaling, there are long equilibration times in
Monte Carlo simulations that limit the available system
sizes, and all quantities need to be averaged over many real-
izations of the disorder in order to have small enough error
bars.

According to universality, the range of the interactions is
irrelevant, as long as it is finite, and so, for example, adding
next-nearest-neighbor couplings to a nearest-neighbor model
will not change the critical behavior. However, random sys-
tems are characterized not just by the strength of first-
neighbor, second-neighbor, etc., interactions, but by the dis-
tributions of these �random� quantities. Hence, even if one
restricts oneself to nearest-neighbor interactions, there are
many different models characterized by different distribu-
tions which are expected to be in the same universality class.
In this paper we attempt to answer, through careful simula-
tions, whether this expectation is true for Ising spin glasses
in three dimensions.

Many groups have estimated critical exponents for spin
glasses for the Edwards-Anderson �EA� Ising spin glass9 in
three dimensions for different disorder distributions, mainly
the Gaussian and bimodal �±J� models. In Table I we present
a summary of these results. We also present results from a
recent study10 which uses a three-dimensional diluted Ising
spin glass �45% bond occupation�. The advantage of such a
model is that, due to the dilution, cluster algorithms11 can be
used to study larger system sizes and that corrections to scal-
ing seem to be small10 when the bonds are drawn from a
bimodal distribution. The data in Table I show clearly that
there is a large spread in the estimates of the different critical
exponents obtained using several different methods, such as
series expansions, nonequilibrium relaxation approaches, and
finite-temperature Monte Carlo methods combined with a
finite-size scaling �FSS� analysis. The spread in the different
estimates of the critical exponents � and � is easily visual-
ized in Fig. 1 where we plot � versus �. As mentioned above,
some groups claim universality is violated,3–7 but most of the
papers do not make this claim, probably because the error
bars on the data are usually large. In this paper we aim to test
universality in equilibrium more precisely by reducing the
error bars.

A major problem with reducing error bars in critical ex-
ponents is the presence of corrections to FSS, which means
that the scaling expressions used to determine exponents do
not work well for small system sizes. For pure systems, sev-
eral methods have been proposed in an attempt to reduce
errors caused by corrections to scaling.

First, try to eliminate the leading correction. In this ap-
proach, the model is altered until the operator which gives
the leading correction does not appear in the Hamiltonian.
This means that its effects will not be felt in any calculated
quantity. For the three-dimensional Ising ferromagnet, using
a “soft-spin” model rather than “hard” ±1 spins, and varying
the coefficient of the fourth-order term in the Hamiltonian, it
was possible to eliminate the leading correction to FSS and
obtain high-precision values for the critical exponents.29 We
have attempted to do this for the spin glass by �i� choosing
different disorder distributions, and �ii� using soft spins as
well as hard spins. However, the corrections to scaling for
small sizes always had the same sign. Consequently, we have
not found a model where we could set the leading correction
to zero by fine tuning a parameter in the Hamiltonian. We are
not claiming that such a model does not exist; only that we
were not able to find it.
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Second, include corrections to FSS in the analysis. Cor-
rection terms are characterized by an exponent, which is uni-
versal, and an amplitude which is not. Corrections to scaling
in a scaling plot, where one attempts to collapse data from
different sizes onto a single curve, occur for both the hori-
zontal and vertical axes, see e.g., Ref. 30. Thus, a large num-
ber of additional parameters have to be determined from the
data when corrections are included. For ferromagnets, where
extremely precise data can be obtained for a very large range
of sizes, this is possible.30 However, for spin glasses, the
range of system sizes is more limited because of slow dy-
namics, even though we have used state-of-the-art algo-
rithms and considerable computer time, and the statistics are
not as good because there are large variations between dif-
ferent realizations of the disorder. Hence our attempted fits

which included corrections to scaling did not determine the
parameters well and frequently the nominal “best” fit had
extremely large corrections to scaling and unphysical values
for the parameters.

Since attempts to eliminate �leading� corrections to scal-
ing and to explicitly incorporate them failed, we resorted to
the strategy of just including data for the larger sizes where
we expect corrections to be small, and neglecting corrections
to scaling. Our main conclusion is that in equilibrium uni-
versality is satisfied, since results for a particular observable
do not appear to depend on the disorder distribution. How-
ever, there are still some open questions since different ob-
servables for a single disorder distribution yield estimates of
critical exponents which differ by more than the estimated
�statistical� error bars. This discrepancy can probably only be

TABLE I. Selection of different estimates �chronologically sorted� of the critical temperature Tc as well as
the critical exponents computed by different groups for Gaussian �G� as well as bimodal �±J� random bonds.
The estimates show strong variations and often do not agree. Note that Tc is not universal, so the issue at hand
is whether or not the results for � and for � agree within the error bars. The results by Jörg �Ref. 10� are for
a bond-diluted ±J spin glass with 45% bond occupation, which is why the estimate of Tc is different than for
the standard bimodal spin glass. The results of Toldin et al. �Ref. 12� are for a random-anisotropy Heisenberg
model �RA� in the strong-anisotropy limit, which is expected to be in the same universality class as the Ising
spin glass in three dimensions. The last two rows describe results of the present study and will be described
in detail in what follows.

Authors Tc � �

Ogielski and Morgenstern �Ref. 13� ±J 1.20�5� 1.2�1�
Ogielski �Ref. 14� ±J 1.175�25� 1.3�1� −0.22�5�
McMillan �Ref. 15� G 1.0�2� 1.8�5�
Singh and Chakravarty �Ref. 16� ±J 1.2�1� 1.3�2�
Bray and Moore �Ref. 17� G 1.2�1� 3.3�6�
Bhatt and Young �Ref. 18� ±J 1.2�2� 1.3�3� −0.3�2�
Bhatt and Young �Ref. 19� G 0.95�5� 1.6�4� −0.4�2�
Kawashima and Young �Ref. 20� ±J 1.11�4� 1.7�3� −0.35�5�
Bernardi et al. �Ref. 3� ±J 1.165�10� −0.245�20�

G 0.88�5� −0.50�4�
Iñiguez et al. �Ref. 21� G 1.02�5� 1.5�3�
Berg and Janke �Ref. 22� ±J 1.12�1� −0.37�4�
Marinari et al. �Ref. 23� G 0.95�4� 2.00�15� −0.36�6�
Palassini and Caracciolo �Ref. 24� ±J 1.156�15� 1.8�2� −0.26�4�
Mari and Campbell �Ref. 4� ±J 1.20�1� −0.21�2�

G 0.86�2� −0.51�2�
Ballesteros et al. �Ref. 25� ±J 1.138�10� 2.15�15� −0.337�15�
Mari and Campbell �Ref. 5� ±J 1.190�15� −0.20�2�

G 0.920�15� −0.42�2�
Mari and Campbell �Ref. 26� ±J 1.195�15� 1.35�10� −0.225�25�
Nakamura et al. �Ref. 27� ±J 1.17�4� 1.5�3� −0.4�1�
Pleimling and Campbell �Ref. 7� ±J 1.19�1� −0.22�2�

G 0.92�1� −0.42�2�
Jörg �Ref. 10� ±J 0.663�6� 2.22�15� −0.349�18�
Campbell et al. �Ref. 28� ±J 2.72�8� −0.40�4�
Toldin et al. �Ref. 12� RA 0.93�4� 2.4�6� −0.24�4�
This study G 0.951�9� 2.44�9� −0.37�5�

±J 1.120�4� 2.39�5� −0.395�17�
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resolved by an analysis incorporating corrections to scaling.
Although this does not appear to be possible at present �since
the range of sizes is too small� it may be possible in the
future if more significantly efficient algorithms can be devel-
oped.

The paper is structured as follows: In Sec. II we introduce
the model as well as the measured observables and in Sec. III
we present details on the Monte Carlo method used. In Sec.
IV we discuss the method used to estimate unbiased error
bars for the different estimates of the critical parameters.
Results are presented in Sec. V, followed by concluding re-
marks in Sec. VI.

II. MODEL AND OBSERVABLES

A. Edwards-Anderson model

The Hamiltonian of the Edwards-Anderson Ising spin
glass1,9 is given by

H = − �
�i,j�

JijSiSj , �1�

where the sites i lie on a three-dimensional cubic lattice of
size N=L3 and the spins Si can take values ±1. The sum is
over nearest-neighbor pairs and the interactions Jij are inde-
pendent random variables. Periodic boundary conditions are
applied. In this work we mainly study two paradigmatic
cases of the EA model:

• Gaussian-distributed random bonds with zero mean and
standard deviation unity

P�Jij� =
1

�2�
e−Jij

2 /2. �2�

• Bimodal �±J� distribution of bonds in which Jij take the
values ±1 with equal probability

P�Jij� =
1

2
���Jij − 1� + ��Jij + 1�� . �3�

In all cases that we study the mean of the distribution is zero.
Since we set the standard deviation to be unity, the tempera-
ture is a dimensionless quantity.

B. Other models

We have also studied other models, although in less detail
than the Gaussian and ±J models, in order to see if, by tuning
parameters, we could eliminate the leading correction to
scaling in any of them. These attempts have been unsuccess-
ful; therefore we have collected less good statistics for these
models than for the Gaussian and ±J distributions. Hence we
shall not present results for these other models in detail, ex-
cept in Sec. V D where we will do a global comparison of all
the models studied to test for universality. These other mod-
els are

• Gaussian/bimodal distribution with ��i,j�Jij =0: This
model is the same as the model presented in Eqs. �2� and �3�,
but with the constraint that the sum of the Jij is exactly zero.

• Correlated bonds: In this model the nearest-neighbor
bonds have correlations. The probability distribution for the
bonds is taken to be

P�Jij� � exp	−
1

2 �
�i,j�

Jij
2 − ��

�,i
Ji1Ji2Ji3Ji4
 , �4�

where the last term involves the product of the four bonds
around an elementary plaquette of the lattice, and is summed
over all plaquettes. It is this term which generates correla-
tions in the bonds. We take Jij = ±1, for which the first term
in Eq. �4� is actually a constant. We generate correlated
bonds by first performing a Monte Carlo simulation on the
bonds using the Hamiltonian in Eq. �4�. The bonds are then
frozen and the spin simulation is carried out.

• Cosine disorder distribution: The bonds of the EA spin
glass are chosen according to

P�Jij� =
1

2
cos Jij 	−

�

2
	 Jij 	

�

2

 . �5�

• Soft spins: In this model the spins Si can take any length
from −
 to +
 and the Hamiltonian is given by29

H = − �
�i,j�

JijSiSj + �
i

Si
2 + ��

i

�Si
2 − 1�2, �6�

where the bonds Jij are Gaussian distributed and the param-
eter � controls the average length of the spins. For �→
 we
recover the Ising model with fixed-length spins.

C. Measured quantities

We measure different observables which, in the past, have
proven to show a good signature of the phase transition.

FIG. 1. �Color online� Graphical representation of different es-
timates of the critical exponents � and � �taken from Table I�. The
centers of the ellipses represent the different estimates, and the ma-
jor axes represent the error bars of the estimates. The data show a
considerable spread. The thick lines represent the estimates from
the current study. Note that the data from the current study for
bimodal �solid lines� and Gaussian �dashed lines� distributions
agree within error bars thus providing evidence for universality. The
dotted line represents data for a random-anisotropy Heisenberg
model in the strong-anisotropy limit �Ref. 12� which is expected to
be in the same universality class as the Ising spin glass.
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First, we study the Binder cumulant31 given by

g =
1

2
�3 −

��q4�T�av

��q2�T�av
2 � , �7�

where �¯�T represents a thermal average, �¯�av is a disorder
average, and q is the spin overlap given by

q =
1

N
�
i=1

N

Si
�Si

�. �8�

In the previous equation “�” and “�” represent two copies of
the system with the same disorder. The Binder ratio is di-
mensionless and thus has the simple scaling form

g = G˜�AL1/��� − �c�� , �9�

where �=1/T and �c is the inverse of the critical tempera-
ture. In addition to �c, the “metric factor”32 A is also non-
universal, but, since A is included explicitly, the resulting

scaling function G˜�x� is universal.32 For the models studied
here with no lattice anisotropy,33–35 a universality class for
finite-size scaling functions is specified by �i� the bulk uni-
versality class, �ii� the boundary conditions, and �iii� the
sample shape. In this work we always use the same boundary
conditions �periodic� and the same sample shape �cubic�, so

we expect the same function G˜�x� for models which lie in the
same bulk universality class. According to Eq. �9�, data for g
for different sizes should intersect at Tc. Furthermore, the

value of g at the intersection point, which is given by G˜�0� is

also universal since the whole function G˜�x� is universal.
In addition, we study the finite-size correlation length

L
24,25,36,37 defined by

L =
1

2 sin�kmin/2�	 �SG�0�
�SG�kmin�

− 1
1/2

, �10�

where kmin= �2� /L ,0 ,0� is the smallest nonzero wave vec-
tor. Here, the wave vector dependent spin-glass susceptibility
is given by

�SG�k� =
1

N
�
i,j

��SiSj�T
2�ave

ik·�Ri−Rj�. �11�

Like the Binder ratio, the finite-size correlation length di-
vided by the system size is a dimensionless quantity and so
scales as

L

L
= X˜�AL1/��� − �c�� , �12�

in which the metric factor A is the same32 as in Eq. �9�. The
reason the metric factors are the same is as follows: By hy-
pothesis, the argument of all FSS functions is really L /
,
with no metric factor, where 
 is the bulk correlation length.
In this form one has separate FSS functions for each side of
the transition because 1/
=B± �−�c� vanishes in a singu-
lar manner at criticality. For example,

L

L
= X̂±�L/
� �13�

=X̂±�B±L�� − �c��� �14�

=X̄±�B±
1/�L1/��� − �c�� , �15�

in which X̂± and X̄± are universal. Comparing Eq. �15� with
Eq. �12�, we see that there are universal, i.e., distribution
independent, factors c± such that

A = c+�B+�1/� = c−�B−�1/�, �16�

and therefore X˜ and X̄ are essentially the same functions, in
the sense that

X˜�u� =�X̄+�u/c+� �u � 0� ,

X̄−�u/c−� �u 	 0� .
�17�

If we repeat the argument for the Binder ratio g, we obtain

g = Ḡ±�B±
1/�L1/��� − �c�� , �18�

and choosing the same c± as in Eq. �16� we reproduce Eq. �9�
with the same value for A as in Eq. �12�.

The advantage of L /L over the Binder ratio g is that the
Binder ratio, being restricted to the interval g� �0,1�, does
not have much room to “splay out” below Tc. Presumably
because of this, the data for g in three dimensions depend
only very weakly on the system size in this region.20,23 How-
ever, the finite-size correlation length L /L does not have this
constraint, and so the data for it splays out better at low
temperatures, allowing for a more precise determination of
the critical parameters.

Both g and L /L allow one to determine Tc and the critical
exponent �. However, to fully characterize the critical behav-
ior of a system, a second critical exponent, e.g., �, is
required.38 Thus we also study the scaling of the spin-glass
susceptibility �SG��SG�k=0� given by Eq. �11� with k=0.
Near criticality we expect

�SG = DL2−�C˜�AL1/��� − �c�� �19�

therefore allowing us to determine the critical exponent �.
By separating out the nonuniversal amplitude D, the scaling

function C˜ is universal.

III. NUMERICAL DETAILS

The simulations are done using the parallel tempering
Monte Carlo method.39,40 For the Gaussian distribution we
have tested equilibration with the method introduced in Ref.
41 where the energy computed directly is compared to the
energy computed from the link overlap. The data for both
quantities approach a limiting value from opposite direc-
tions. Once they agree, and other observables are indepen-
dent of Monte Carlo steps, the system is in equilibrium. For
the bimodal disorder distribution we use a multispin coded
version of the algorithm which allows us to update 32 copies
of the system at the same time. The aforementioned equili-
bration test cannot be applied to the bimodal spin glass. In
this case we study how the results vary when the simulation
time is successively increased by factors of 2 �logarithmic
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binning�. We require that the last three results for all observ-
ables agree within error bars.

Parameters of the simulation are presented in Tables II
and III for the Gaussian and bimodal �±J� distributions, re-
spectively.

IV. STATISTICAL ANALYSIS OF THE DATA

For the Binder ratio and finite-size correlation length we
need to find the best choice of parameters, � and �c in order
to collapse the data onto the scaling predictions of Eqs. �9�
and �12�, respectively. To do so we assume that the scaling
function can be represented by a third-order polynomial
y�x�=c0+c1x+c2x2+c3x3 and do a global fit to the six pa-
rameters ci , �i=0, . . . ,3�, �c, and �. We also analyze results
for �SG, for which there is a seventh parameter, the critical
exponent �. We have performed these nonlinear fits in two
ways: �i� a code based on the Levenberg-Marquardt
algorithm,42 and �ii� the statistics package R.43 The same
results have been obtained from both approaches.

It is also necessary to obtain error bars on the fit param-
eters. One has to be careful because, for a given size, all
temperatures are simulated with the same disorder realization
in the parallel tempering Monte Carlo method.39,40 Hence the
fitted data are correlated. We therefore have applied the fol-

lowing procedure: For each system size L with Nsa disorder
realizations, a randomly selected bootstrap44 sample of Nsa
disorder realizations is generated. With this random sample,
an estimate of the different observables �with bootstrap error
bars� is computed for each temperature. We repeat this pro-
cedure Nboot=1000 times for each lattice size and then as-
semble Nboot complete data sets �each having results for ev-
ery size� by combining the i-th bootstrap sample for each
size for i=1, . . . ,Nboot. The finite-size scaling fit described
above is then carried out on each of these Nboot sets, thus
obtaining Nboot estimates of the fit parameters. Since the
bootstrap sampling is done with respect to the disorder real-
izations which are statistically independent we can use a con-
ventional bootstrap analysis to estimate statistical error bars
on the fit parameters. These are equal to the standard devia-
tion among the Nboot bootstrap estimates.

V. RESULTS

A. Gaussian-distributed random bonds

Figure 2 shows data for the finite-size correlation length
as a function of the inverse temperature for different system
sizes. The data for L�6 intersect at �or very close to� a
common point whereas the data for the smallest sizes, L=3
and 4 lie consistently too low in this region. The fact that
sizes L=3 and 4 do not intersect at a common point clearly
indicates that corrections to scaling are significant for these
sizes. We were hoping to find other models where the trend
would be the other way around �i.e., where the small-L data
are too high� so that by fine tuning of parameters we could
eliminate this correction to scaling. However, all the models
studied �see Sec. II� had corrections of the same sign as
shown in Fig. 2.

In scaling the data according to Eq. �12� in the way dis-
cussed in Sec. IV, we omit sizes L=3 and 4 because these

TABLE II. Parameters of the simulations for Gaussian distrib-
uted disorder. Nsa is the number of samples, Nsw is the total number
of Monte Carlo sweeps for each of the 2NT replicas for a single
sample, Tmin is the lowest temperature simulated, and NT is the
number of temperatures used in the parallel tempering method for
each system size L.

L Nsa Nsw Tmin NT

3 20000 32768 0.80 8

4 20000 20000 0.80 8

6 20000 40000 0.80 8

8 20000 50000 0.80 10

12 10000 655360 0.80 16

16 5000 1048576 0.80 33

TABLE III. Parameters of the simulations, defined in Table II,
for bimodal distributed disorder. The system sizes marked with an
asterisk have been simulated with the more efficient multispin
method.

L Nsa Nsw Tmin NT

3 40000 8000 0.82 16

4 40000 8000 0.82 16

6 40000 20000 0.82 16

8 30000 80000 0.82 16

12 15807 300000 0.82 18

16* 11360 128000 0.95 16

20* 9408 1280000 1.05 25

24* 8416 1280000 1.05 25

FIG. 2. �Color online� Finite-size correlation length L /L as a
function of inverse temperature � for the three-dimensional
Edwards-Anderson Ising spin glass with Gaussian disorder for sev-
eral system sizes L. The data cross at �c

−1�0.951. The dashed lines
represent the optimal values obtained from a finite-size scaling for
�c and L��c� /L.
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data are clearly affected by corrections to scaling, and Fig. 3
shows the resulting plot for sizes L�6. The overall fit is
very satisfactory and gives the critical parameters shown in
Table IV.

In Fig. 4 we show data for the Binder ratio, Eq. �7�, as a
function of the inverse temperature �. The data cross at
�c

−1�0.931. Note that for ���c the data do not splay very
well thus making it difficult to determine the critical tem-
perature accurately.

Using the analysis presented in Sec. IV we have obtained
the best fit, shown in Table IV, and present the scaling plot of
the Binder ratio in Fig. 5. For the analysis we have only
considered L�6.

Overall, we expect that the analysis of L /L gives more
accurate results than that for g, because the data for g do not
splay out much below Tc, and so our best results for Tc and �
are those for L /L, i.e.,

Tc = 0.951�9�, � = 2.44�9� �Gaussian� . �20�

We emphasize that the error bars quoted in this paper are
only statistical. There are also systematic errors, which are
hard to estimate for the range of sizes that can be studied. We
discuss systematic errors below in more detail, especially in
Secs. V C and VI. It is gratifying that the results obtained
from the analysis of g, namely, Tc=0.931�17�, �=2.67�17�
are �just� consistent with these. In addition to exponents, the
values of L /L and g at Tc are also expected to be universal.
These are given by the appropriate values of c0 in Table IV:

L�Tc�
L

= 0.635�9�, g�Tc� = 0.760�70� �Gaussian� .

�21�

Unfortunately, the situation for the analysis of the spin-
glass susceptibility data is less gratifying. The scaling plot
for the spin-glass susceptibility is shown in Fig. 6. For con-

sistency with the other plots the horizontal axis in this figure
is �. However, the method of fitting �third-order polynomial�
works best, in this case, for a fit using T. Hence Fig. 6 indi-
cates the fit parameters from the T fit.

The results of the fit are

Tc = 0.949�26�, � = 1.49�6�, � = − 0.37�5� . �22�

The value for Tc agrees within the error bars with those from
L /L and g, but the value for � is in strong disagreement.
Disagreements between exponents obtained in different ways
are presumably due to corrections to FSS, but the size of the
difference here is surprisingly large. In Sec. V C we shall
revisit the problem of the surprisingly low value for � ob-
tained from �SG.

B. Bimodal-distributed random bonds

We show data for L /L in Fig. 7. It is fairly similar to the
data for the Gaussian distribution in that the larger sizes
show a common intersection, but the data for the smaller

FIG. 3. �Color online� Finite-size scaling analysis of L /L for
the Ising spin glass with Gaussian bonds according to Eq. �12�. The
sizes are 6�L�16. The solid line is the third-order polynomial
used in the fit, see Sec. IV.

TABLE IV. Summary of critical parameters for a Gaussian dis-
order distribution estimated by scaling the data. Scaling has been
done in ��−�c� except for the spin-glass susceptibility for which
the data has been scaled with �T−Tc�. In the table below, Tc is the
critical temperature, and � and � are critical exponents. The quan-
tity c0 is the zeroth-order coefficient of the fitting polynomial and
corresponds to the value of a given observable at criticality. �2

represents the chi-squared value for the finite-size scaling fitting
function �Ref. 42�. For comparison the number of data points used
in the fit is 25. For the fit using the scaling form of Ref. 28 the value
of Tc is fixed to be that obtained from L /L.

L /L Estimate Error

c0 0.6346 0.0090

Tc 0.9508 0.0089

� 2.4370 0.0924

�2 11.7859 10.2696

g Estimate Error

c0 0.7600 0.0068

Tc 0.9310 0.0137

� 2.6761 0.1662

�2 17.7245 14.0111

�SG Estimate Error

Tc 0.9489 0.0264

� 1.4859 0.0602

� −0.3733 0.0483

�2 12.8776 8.0025

�SG �scaling as in Ref. 28� Estimate Error

Tc 0.9508 0.0089

� 2.7767 0.0249

� −0.3716 0.0055

�2 18.3403 12.6776
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sizes, L=3 and 4, are lower, showing that these sizes are
affected by corrections to FSS. Hence we only use sizes 6
�L�24 in the scaling plot which is shown in Fig. 8. Param-
eters obtained from the fits are shown in Table V.

Figure 9 shows data for the Binder ratio, Eq. �7�, for
different system sizes L as a function of the inverse tempera-
ture �. The corresponding scaling plot is shown in Fig. 10.

The fit parameters obtained from L /L are

Tc = 1.120�4�, � = 2.39�5� �±J� . �23�

Those obtained from g, namely, Tc=1.088�6�, �=2.79�11�
disagree somewhat, but, as also discussed above, we feel that

those for L /L are more reliable because the data for L /L
splay out more below Tc.

The values of L /L and g at Tc are given by the appropri-
ate values of c0 in Table V:

L�Tc�
L

= 0.627�4�, g�Tc� = 0.763�3� �±J� . �24�

A scaling plot for �SG is shown in Fig. 11. The best fit
�using T rather than �� gives

FIG. 4. �Color online� Binder ratio g, defined in Eq. �7�, as a
function of inverse temperature � for the three-dimensional
Edwards-Anderson Ising spin glass with Gaussian bonds. The data
cross at �c

−1�0.931. The dashed lines represent the optimal values
obtained from a finite-size scaling for �c and g��c�.

FIG. 5. �Color online� Finite-size scaling analysis of the data for
the Binder ratio g according to Eq. �9� for the three-dimensional
Ising spin glass with Gaussian disorder. The scaling analysis is per-
formed for L�6 and the solid line represents the best fit to the data
from the finite-size scaling analysis.

FIG. 6. �Color online� Finite-size scaling of the spin-glass sus-
ceptibility �SG according to Eq. �19� for Gaussian disorder. In fact,
the method of scaling worked better when using T rather than � and
the fit parameters shown are for the T fit. However, we show the
resulting scaling plot using � for consistency with the other plots.
The scaling analysis is performed for L�6.

FIG. 7. �Color online� Finite-size correlation length L /L as a
function of inverse temperature � for the three-dimensional
Edwards-Anderson Ising spin glass with ±J bonds for several sys-
tem sizes L. The data cross at �c

−1�1.12. The dashed lines represent
the optimal values obtained from a finite-size scaling for �c and
L��c� /L.
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Tc = 1.104�9�, � = 1.57�3�, � = − 0.395�17� . �25�

The value of Tc differs from that obtained from L /L, in Eq.
�23� by rather more than the error bars. If we fix Tc to be that
obtained from L /L we find

� = 1.527�8�, � = − 0.368�24� . �26�

The value of � obtained in this way is consistent with that in
the unconstrained fit in Eq. �25�. The value of � is slightly
different from that in Eq. �25�, but more importantly, both
these values of � obtained from �SG are considerably smaller
than those obtained from L /L and g. This is the same situ-
ation than found for the Gaussian distribution. Interestingly,
the values of � from �SG for the two distributions agree quite
well with each other.

We argue that the most reliable quantity to analyze is L /L
because this has clean intersections with significant splaying
out below Tc. The results for the exponent �, shown in Eqs.
�20� and �23�, for the Gaussian and ±J distributions agree
well within the error bars, which supports universality. Fur-
ther support for universality comes from the agreement in the
values of L /L and g at the critical point, shown in Eqs. �21�
and �24�. We also note the agreement in the values of � from
Eqs. �22� and �25� or �26�.

C. Alternative analysis of �SG

The main unresolved issue is the large difference in the
values of � obtained from the spin-glass susceptibility com-
pared with those obtained from L /L and g. Recently, Camp-
bell et al.28 have claimed that the difference is much dimin-
ished if one uses an alternative scaling form. They propose
that the scaling region will be larger, so one can incorporate
data for a larger range of temperature, if the behavior as T
→
 is consistent with the scaling function. To be precise,
they propose that

g = G˜��LT�1/��1 − �Tc/T�2�� , �27�

L

L
= X˜��LT�1/��1 − �Tc/T�2�� , �28�

�SG = �LT�2−�C˜��LT�1/��1 − �Tc/T�2�� , �29�

where we have not included explicitly the metric factors.
Asymptotically, for L→
 and �T−Tc�→0, these expressions
are equivalent to the standard forms that we have used, Eqs.
�9�, �12�, and �19�. Thus the difference between the expres-
sions proposed by Campbell et al. and the standard expres-
sions is only in the corrections to scaling.

In both the original scaling forms and the modified form
of Campbell et al., Tc is located by intersections of data for
L /L and g of different sizes. Thus we do not expect the
estimates of Tc to be very different in the two approaches.
Furthermore, if we restrict data to the region close to Tc, the
data collapse involves mainly the derivative of the data with
respect to temperature at Tc. For L /L and g, both the origi-
nal and modified form predict that the temperature derivative
is proportional to L1/�. Hence, for L /L and g, we also do not
expect very different values for � from the two scaling
forms. These expectations are confirmed by our analysis. Us-
ing Eqs. �27� and �28�, we find values for Tc and � which

TABLE V. Summary of critical parameters for a bimodal disor-
der distribution estimated by scaling the data. The scaling is done in
��−�c� except for the data for the spin-glass susceptibility where
the scaling is done in �T−Tc�. For further details see the caption of
Table IV. The number of data points used in the fits is 48. In the fit
for �SG using the scaling form of Ref. 28 the value of Tc is fixed to
be that obtained from L /L.

L /L Estimate Error

c0 0.6265 0.0036

Tc 1.1199 0.0037

� 2.3900 0.0514

�2 52.8369 28.3532

g Estimate Error

c0 0.7626 0.0029

Tc 1.0881 0.0062

� 2.7937 0.1103

�2 60.5020 30.2953

�SG Estimate Error

Tc 1.1040 0.0097

� 1.5721 0.0251

� −0.3954 0.0168

�2 88.2526 31.8466

�SG �scaling as in Ref. 28� Estimate Error

Tc 1.1199 0.0037

� 2.7376 0.0166

� −0.3663 0.0166

�2 83.6070 36.7894

FIG. 8. �Color online� Finite-size scaling analysis of L /L for
the Ising spin glass with ±J bonds according to Eq. �12�. The scal-
ing analysis is performed for L�6.
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agree, within the error bars, with those described above in
Secs. V A and V B which used the standard scaling forms. It
is possible that scaling may work for data over a larger range
of �T−Tc�, at least above45 Tc, using Eqs. �27� and �28�, but
we have not investigated this in detail.

However, the situation for �SG is quite different, because
of the factor of T2−� in front of the scaling function in Eq.
�29�, since

� 1

�SG

d�SG

dT
�

Tc

= aL1/� + b , �30�

where a and b depend on Tc and the value of the scaling
function and its derivative at zero argument, but not on L.

The factor of b arises from the T dependence of the prefactor
outside the scaling function in Eq. �29�, and does not occur
in the analogous expressions for L /L and g in Eqs. �28� and
�27�. For L→
, the L1/� term in Eq. �30� dominates and we
recover the same behavior as in the standard scaling form.
However, for the small sizes that can be studied numerically,
the factor of b gives a significant correction to scaling espe-
cially since 1/� is small. This is why Campbell et al.28 found
a large difference in the value of � obtained from �SG using
their scaling compared with conventional finite-size scaling.

We also find a large difference. If we fix Tc to be the value
obtained from L /L we obtain, from Eq. �29�

� = 2.777�25�, � = − 0.372�6� �Gaussian� , �31�

� = 2.738�17�, � = − 0.366�3� �±J� , �32�

see also Tables IV and V. These values for � are consider-
ably larger than those found from the standard analysis dis-
cussed in Secs. V A and V B. They are even somewhat larger
than those found from L /L, although they agree better with
the L /L values than those found from �SG using the standard
analysis. The fact that we, like Ref. 28, obtain very different
values for � from �SG depending on the form of the scaling
function used, tells us that corrections to scaling can be very
important in spin glasses for the range of sizes that can be
simulated. We note, however, that the two estimates in Eqs.
�31� and �32� agree well with each other, so we still find no
evidence for lack of universality.

D. Global comparisons of all the models

We have computed two dimensionless quantities L /L and
g, which intersect at a finite value at the critical temperature.
In the previous parts of this section, we have plotted both of

FIG. 9. �Color online� Binder ratio g as a function of inverse
temperature � for the three-dimensional Edwards-Anderson Ising
spin glass with ±J bonds for several system sizes L. The data cross
at �c

−1�1.088. The dashed lines represent the optimal values ob-
tained from a finite-size scaling for �c and g��c� /L.

FIG. 10. �Color online� Finite-size scaling analysis of the data
for the Binder ratio g according to Eq. �9� for the three-dimensional
Ising spin glass with ±J bonds. The sizes used are 6�L�24.

FIG. 11. �Color online� Finite-size scaling of the spin-glass sus-
ceptibility �SG according to Eq. �19� for the three-dimensional Ising
spin glass with ±J bonds. As for the corresponding plot for the
Gaussian distribution, Fig. 6, the fit is actually done in T, but the
plot is given as a function of � for consistency with the other plots.
The scaling analysis is performed for L�6.
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them against �. It turns out also to be useful to plot one of
them against the other.46,47 According to Eq. �12�, AL1/���
−�c�=X˜−1�L /L� and so, from Eq. �9�, we can write

g = Ĝ�L/L� , �33�

where Ĝ is a universal function. Note that there are no non-
universal metric factors in this expression. Hence data for all
the models described in Sec. II should collapse when g is
plotted against L /L. This works very well as shown in Fig.
12 which includes sizes L�6. Figure 12 provides additional
very strong evidence for universality in spin glasses.

VI. SUMMARY AND CONCLUSIONS

We have studied numerically the phase transition in a va-
riety of Ising spin-glass models in three dimensions, to test
for universality. Our most detailed simulations are on

nearest-neighbor models with Gaussian and ±J interactions,
and our results for them are summarized in Tables IV and V.
A comparison shows that corresponding estimates for the
exponents � and � agree well, as do the values of L /L and g
at criticality �labeled c0�. This supports universality, as does
the plot of g against L /L, Fig. 12, where data for all the
models studied �not just the Gaussian and ±J models� col-
lapse onto a single universal curve.

The main unresolved issue is the large difference between
the values for � obtained from L /L or g on the one hand and
�SG on the other. This is presumably due to systematic errors
coming from corrections to scaling, but unfortunately we
have not been able to incorporate corrections in our analysis
since we do not have data with sufficient precision over a
sufficiently large range of sizes. The errors quoted in this
paper are statistical errors only; systematic errors are not
included. Evidence for strong corrections was found explic-
itly in Sec. V C, where we used a scaling form for �SG pro-
posed in Ref. 28 which differs from the standard form only
in corrections to scaling. From this scaling form, we obtain
an estimate for � from our data for �SG which is very differ-
ent from that obtained from �SG using the standard analysis.
This large difference in the values of � from the two methods
of analysis does not occur, however, for our data for g and
L /L.

Overall, we have found no evidence for lack of universal-
ity, but have found evidence for strong corrections to scaling.
We suspect that the dynamical data of Refs. 3–7, which was
interpreted to show lack of universality, more likely shows
evidence for corrections to scaling.
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