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The magnetic properties of ultrathin Fe films are determined as a function of temperature in the framework
of a functional-integral itinerant-electron theory. The environment-dependent electronic structure is derived
from a realistic d-band model and a real-space recursive expansion of the local Green’s functions. The statis-
tical average of spin fluctuations is performed within the static approximation and a layer-resolved alloy
analogy by treating disorder in the virtual crystal approximation and in the coherent potential approximation.
Results are given for the temperature dependence of the local moments, layer magnetizations Ml�T�, and spin
fluctuation energies of ultrathin bcc �001� films. These are compared with the corresponding bulk results in
order to quantify the role of dimensionality. Strain and local environment effects are quantified by varying the
interatomic bond length d. A strong nonmonotonous dependence of Ml�T� as a function of d is revealed, which
can be correlated with the environment dependence of the electronic structure and with the resulting changes
in the ground-state magnetic moments and spin fluctuation energies. Finally, goals, limitations, and possible
extensions are briefly discussed.
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I. INTRODUCTION

The magnetic properties of low-dimensional systems,
nanoparticles, and nanostructures are a subject of central in-
terest from both fundamental and technological
standpoints.1,2 In the case of transition metals �TMs� having
delocalized itinerant electrons it is well-known that the local
environment of the atoms and the dimensionality of the sys-
tem play a crucial role in defining the most important mag-
netic properties at temperature T=0, for example, the mag-
netic moments, magnetic order, or magnetic anisotropy. This
strong sensitivity of magnetism on the atomic environment
has been exploited to develop new materials by controlling
the system size, shape, and lattice structure or by manipulat-
ing strain and proximity effects at the interfaces between
different magnetic and nonmagnetic elements.1,2

A similarly strong environmental dependence of the mag-
netic behavior is expected at finite temperatures, as already
demonstrated by previous experimental3–12 and theoretical
studies.13–24 However, simple general trends on the stability
of magnetism at finite T, for example, as a function of local
coordination number zl and nearest-neighbor �NN� distance
d, are difficult to infer a priori. On the one side, one gener-
ally observes that the local magnetic moments Ml and d-level
exchange splittings ��Xl

d =�l↓
d −�l↑

d at T=0 are enhanced as zl
is reduced or as the interatomic distances are increased.25 On
these grounds one would then expect that the stability of
ferromagnetism, as given by the low-temperature decrease of
M�T� or by the Curie temperature TC, should be stronger in
low-dimensional systems than in the periodic solid. How-
ever, on the other side, when zl is reduced, it should be en-
ergetically easier to disorder the local magnetic moments by
flipping or canting them. If the latter effect dominates, the
Curie temperature would tend to decrease with decreasing
coordination.

In order to derive reliable conclusions concerning the en-
vironmental dependence of the magnetization curves and Cu-
rie temperatures, one requires an electronic theory that takes
into account both the fluctuations of the magnetic moments
and the itinerant character of the d electron states. Simple
spin Hamiltonians, for example based on the Heisenberg, xy
or Ising models, are not expected to be very predictive, at
least until they incorporate the electronic effects responsible
for the environmental dependence of the interactions be-
tween the magnetic moments.

The electronic structure calculations based on density
functional theory or realistic model Hamiltonians have been
very successful in describing a wide variety of experimental
results on the magnetic properties of low-dimensional sys-
tems and nanostructures, particularly concerning the spin
moments, orbital moments, and magnetic anisotropy at low
temperatures.1,2,26 In contrast, a detailed understanding of the
magnetism of TM nanostructures at finite temperature re-
mains an open problem.14,15,17–21 Most of the studies so far
have been performed by means of k-space approaches14 or
simplified model Hamiltonians.15,17,20 For instance, Razee et
al. calculated the Curie temperature of Fe and Co films as a
function of thickness by using a method that separates spin
fluctuations from electronic hoppings on the basis of their
different characteristic times.14 The relevant spin excitations
are treated as classical spins by taking into account the
changes in the orientation of the magnetic moments. Wu et
al. studied the magnetic reorientation transitions in thin films
by using a modified alloy analogy in the framework of the
single-band Hubbard Hamiltonian.20 In addition, Pajda et al.
showed that it is necessary to go beyond mean-field approxi-
mations in order to obtain the correct Curie temperature in
systems with a large susceptibility to fluctuations.18 Besides
these findings, the theoretical description of systems having a
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reduced dimensionality and symmetry remains a major chal-
lenge. One of the central issues is to understand the correla-
tion between the temperature dependence of the magnetic
behavior and the parameters that characterize the morphol-
ogy and composition of the system, which can be controlled
in experiment. This concerns properties such as the Curie
temperature, the critical exponents characterizing M�T�, as
well as possible changes in the nature of the relevant spin
excitations as a function of dimensionality.

The purpose of this paper is to investigate the interplay
between local environment and the stability of ferromag-
netism at finite temperatures by determining the local mag-
netization curves Ml�T� and spin fluctuation energies of ul-
trathin Fe films. In Sec. II we present the method used for the
calculations, which is based on Hubbard and Hasegawa’s
spin fluctuation theory for the periodic solid,27,28 as recently
extended in the context of cluster magnetism.29 The tempera-
ture dependence of the local moments, layer magnetizations
Ml�T�, and spin fluctuation energies of ultrathin bcc �001�
films is presented and discussed in Sec. III. Comparison is
made with the corresponding bulk results in order to quantify
the role of dimensionality. Strain and local environmental
effects are quantified by varying the interatomic distances d.
Finally, Sec. IV summarizes the main conclusions by point-
ing out goals, limitations, and some possible extensions.

II. THEORY

In the following we present the functional-integral theory
used for the calculations of the magnetic properties of TM
films.29 For simplicity, we consider a d-band Hamiltonian
since the magnetic properties of the transition metals are
dominated by the 3d-electron states. For instance, the contri-
bution of s- and p-electrons to the spin magnetic moment is
less than 4%.30,31 This is mainly a consequence of the much
stronger Coulomb interactions and higher density of states of
the d electrons, as compared to the s and p states. Moreover,
notice that the contribution of the sp electrons and sp-d hy-
bridizations to the itinerant nature of the d states is taken into
account effectively in our model through the d-band filling
and bandwidth, which do not depend strongly on temperature
in the relevant range. Consequently, it is a very good ap-
proximation to consider only the d electrons when comput-
ing the temperature dependence of the magnetization. The
d-electron Hamiltonian is written as25

Ĥ = Ĥ0 + ĤI. �1�

The first term

Ĥ0 = �
l,�,�

�l
0n̂l�� + �

l�m

�,�,�

tlm
��ĉl��

† ĉm�� �2�

describes the single-particle electronic structure of the va-
lence d electrons in the tight-binding approximation.32 As
usual, ĉl��

† �ĉl��� refers to the creation �annihilation� operator
of an electron with spin � at the orbital � of atom l ��
�xy, yz, zx, x2−y2, and 3z2−r2�, and n̂l��= ĉl��

† ĉl�� is the
corresponding number operator. �l

0 stands for the bare d-level

energy of the isolated atom and tlm
�� for the hopping integrals

between atoms l and m. The second term

ĤI =
1

2 �
l,�,�

�,��

�U���n̂l��n̂l��� �3�

approximates the interactions among electrons by an intra-
atomic Hubbard-like model. The Coulomb repulsions U���
between electrons of spin � and �� are the average direct
Coulomb integral U↑↓=U↓↑=F�0� and U↑↑=U↓↓=U↑↓−J,
where J= �F�2�+F�4�� /14 refers to the average exchange inte-
gral. The F�i� with i=0, 2, and 4 stand for the radial
d-electron Coulomb integrals allowed by atomic symmetry.33

These are obtained by taking the ratios F�0� /F�2� and F�4� /F�2�

from atomic calculations34 and by fitting the value of F�2� to
reproduce the bulk Fe spin moment at zero temperature. No-
tice that Eq. �3� does not respect spin-rotational symmetry
since the exchange terms of the form Hxy =
−�l,���J���Sl�

− Sl�
+ +Sl�

+ Sl�
− � have been dropped.35 Neverthe-

less, this is not expected to be a serious limitation in the
present work because we are interested in studying the spin
fluctuations on top of broken-symmetry ferromagnetic
ground states.

A. Partition function and thermodynamic properties

The finite temperature properties are determined by ap-
plying the functional-integral formalism developed by Hub-
bard and Hasegawa for periodic solids.27,28 The many-body
interaction can be written as

ĤI = �
l
�U

2
N̂l

2 − JŜlz
2� , �4�

where N̂l=���n̂l�� is the electron number operator at atom l,

and Ŝlz= �1/2����n̂l�↑− n̂l�↓� is the z component of the spin
operator. U= �U↑↓+U↑↑� /2 represents an average direct Cou-
lomb repulsion. Notice that Eq. �4� includes the self-
interaction terms U↑↑n̂l��

2 /2=U↑↑n̂l�� /2 which are canceled
out by redefining the d-energy levels as �l

0−U↑↑ /2. For the
calculation of the partition function Z, the quadratic terms in
Eq. �4� are linearized by means of a two-field Hubbard-
Stratonovich transformation within the static approximation.
This corresponds to decoupling the electronic hoppings from
the relatively slower spin fluctuations. A charge field �l and
an exchange field �l are introduced at each site l, which rep-
resent the local finite-temperature fluctuations of the
d-electron energy levels and exchange splittings, respec-

tively. Using the notation �� = ��1 , . . . ,�n� and ��
= ��1 , . . . ,�n� for an n-sites system, Z is given by

Z 	� d�� d�� Z����,�� � , �5�

where

Z����,�� � = exp�− �F���,�� �	 �6�

GARIBAY-ALONSO, DORANTES-DÁVILA, AND PASTOR PHYSICAL REVIEW B 73, 224429 �2006�

224429-2



=exp
−
�

2 �
l
�U�l

2 +
J

2
�l

2�
 
 Tr�exp�− ��Ĥ� − �N̂�	� .

�7�

F��� ,�� � can be regarded as a free energy which depends on

the fields �� and �� . The static approximation is exact in the
atomic limit �tlm

��=0, "l�m� where no fluctuations are
present, and in the noninteracting limit �U���=0�. For non-

trivial cases Ĥ� describes the dynamics of the d electrons as
if they were independent particles moving in a random alloy
with energy levels �l�� given by

�l�� = �l
0 + Ui�l − �

J

2
�l. �8�

The thermodynamic properties of the system are obtained as
a statistical average over all possible distributions of the en-
ergy levels �l�� throughout the system. From Eqs. �6� and �7�
one obtains

�F���,�� �
��l

=
J

2
��l − 2�Ŝlz���,��

� � �9�

and

�F���,�� �
��l

= U��l + i�N̂l���,��
� � , �10�

where

�N̂l���,��
� = �

−�

+�

�
��


l�����f���d� �11�

and

2�Ŝl���,��
� = �

−�

+�

�
��

�
l�����f���d� . �12�

Here, �¯�� indicates average with respect to the single-
particle Hamiltonian H�, f��� refers to the Fermi function,
and 
l����� to the local density of states �DOS� at the orbital
l��.29 Notice that by setting Eqs. �9� and �10� equal to zero
one recovers the usual self-consistent mean-field equations
for �l and �l at T=0.25 The present formulation is therefore a
natural extension of a widely used ground-state mean-field
approach.

Since we are mainly interested in the magnetic properties
and since J�U, we neglect the thermal fluctuations of the
charge fields �l by setting them equal to the exchange-field-

dependent saddle-point values i�l=�l= �N̂l���
�. This amounts

to a self-consistent determination of the charge distribution

for each exchange-field configuration ��. In this way

Z 	� d�� Z̃����� , �13�

where

Z����� = exp�− �F����	 �14�

=exp
�

2 �
l
�U�l

2 −
J

2
�l

2�
 
 Tr�exp�− ��Ĥ� − �N̂�	�

�15�

depends now only on the exchange variables �� that describe
the relevant fluctuations of the spin degrees of freedom. Thus

F���� represents the free energy associated to the exchange-

field configuration ��.36

The integrand exp�−�F����	 is interpreted as proportional

to the probability P���� for a given exchange-field configura-

tion ��. The thermodynamic properties are obtained by aver-

aging over all possible �� with exp�−�F����	 as weighting fac-
tor. For example, the local magnetization at atom l is given
by

Ml�T� =
1

Z
� d�� exp
�

2 �
l
�U�l

2 −
J

2
�l

2�


Tr�2Ŝl

z exp�− ��Ĥ� − �N̂�	� �16�

=
1

Z
� d��2�Slz���

�e−�F�����, �17�

where �Slz���
� is the average spin moment corresponding to the

effective single-particle Hamiltonian H� which depends on

the fluctuating ��. Taking into account that �F /��l=J��l

−2�Ŝlz���
�� /2 and integrating Eq. �17� by parts one obtains

Ml�T� =� �lPl���d� , �18�

where we have introduced the probability

Pl��� =
1

Z
exp�− �Fl���	 �19�

=
1

Z
� �

m�l

d�m exp�− �F��1, . . . ,�l−1,�,�l+1, . . . ,�n�	 .

�20�

Thus the temperature dependent local magnetization is equal
to the average of the local exchange field. Equation �18�
justifies the intuitive association between the fluctuations of

the local moment 2�Ŝlz� at atom l and those of the exchange
field �l. Besides the local magnetizations Ml�T� it is interest-
ing to compute the average module of the local moments �l
which are given by

�l = 2��Ŝlz
2 � = �−

2

�J
+� �l

2Pl��l�d�l�1/2

. �21�

As in the case of Ml, �l is given by a statistical average over
the probability distribution Pl���.

B. Alloy analogy approximation

Equations �18�–�21� show that the magnetic properties at
finite temperature can be determined in a similar way as in
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an alloy where the energy levels depend on the configuration

of the exchange fields ��, which occurs with a probability

P����. The simplest method for calculating alloy averages is
the single-site virtual crystal approximation �VCA�. For each
layer l one determines the local Green’s function assuming
that the site l is embedded in an effective medium character-
ized by the average of the energy levels.37 The effective me-

dium is characterized by the Hamiltonian Ĥeff= Ĥ0+ �ĤI�� and

its corresponding Green’s function Ĝeff���. Ĥeff depends on
the average values ��l� and ��l� which are calculated self-
consistently by taking into account the fluctuations of � at
site l. The free energy is obtained by integrating

�F��l�
��l

=
J

2
��l − 2�Ŝlz��l

� . �22�

The average spin moments �Ŝlz��l
are calculated from Eq.

�12� where 
l�� is the local DOS at site l having an exchange
field �l embedded in the average effective medium. The per-

turbed Hamiltonian Ĥp is then given by

Ĥp = Ĥeff + V̂l, �23�

where

V̂l = �
��

�U��l − ��l�� − �J/2��l − ��l���n̂l��. �24�

Finally, the local Green’s function at site l, from which 
l��

is derived, is obtained using the Dyson equation.
A more accurate though numerically more involved de-

scription of disorder is obtained with the coherent potential
approximation �CPA� which treats scattering effects self-
consistently. In the CPA the effective medium is character-

ized by a complex self-energy �̂��� that matches self-
consistently �for each energy �� the average of the perturbed
Green’s function associated to �l and the Green’s function

Ĝeff of the surrounding medium.37 The effective Hamiltonian

is written as Ĥeff= Ĥ0+ �̂, and the perturbed Hamiltonian is
given by Eq. �23� with the perturbation

V̂l = �
��

�U�l − �J/2�l�n̂l�� − �̂l. �25�

Finally, the self-consistent equation for the self-energy reads

�̂l = ��1̂l − Ĝl effV̂l�−1�V̂l + �̂l�� . �26�

Notice that the probability distribution of the exchange fields
is determined self-consistently. As in the VCA, the free en-
ergy F��l� is calculated by integrating Eq. �22� and the local
DOS in Eq. �12� are obtained by applying the Dyson equa-
tion.

III. RESULTS

The parameters used for the calculations on Fe bulk and
films are the same as in Ref. 25, namely, bulk d-band width
W=6.0 eV, direct Coulomb integral U=6.0 eV, and ex-

change integral J=0.70 eV, which reproduce the bulk spin
moment �b=2.21 �B at T=0. The Green’s functions of the
effective medium are computed by using Haydock-Heine-
Kelly’s recursion method.38 In the following sections we
present and discuss our results for bulk bcc Fe and for �001�
ultrathin films. The calculations are performed by using the
VCA and the CPA. It is of considerable interest to compare
the VCA results with the more accurate self-consistent CPA.
In fact, comparing VCA and CPA gives some insight on the
effects of the disorder induced by the spin fluctuations on the
electronic structure and on the resulting magnetization
curves. Moreover, the simplicity of the VCA makes it an
attractive tool to explore complex low-symmetry nanostruc-
tures.

A. Fe bulk

In order to quantify the effects of reduced dimensionality
and as a reference for further discussion, it is useful to con-
sider the case of the periodic solid in some detail. The tem-
perature dependence of the magnetization Mlz�T� and of the

local magnetic moment 2��Ŝlz
2 � of bulk Fe are shown in Fig.

1. Figures 1�a� and 1�b� refer to calculations by using the
VCA and the CPA, respectively. First of all, one observes
that the temperature dependence of Ml�T� is qualitatively
similar to the experimental one. Notice that for T�TC we

find nonvanishing 2��Ŝlz
2 � with a weak temperature depen-

dence, which agrees with previous calculations.39 Moreover,
the values obtained for TC are close to those found in recent
first principles calculations.13 However, notice that the calcu-
lated TC is appreciably larger than the experimental value
TC

exp=1043 K. The effects of additional spin excitations like
spin-waves, short-range order, possible noncollinear spin
moments, and correlations beyond the static approximation40

should tend to reduce TC and improve the quantitative agree-
ment.

It is interesting to observe that the VCA and the CPA yield
similar behaviors. Moreover, the VCA and CPA results are in

FIG. 1. Temperature dependence of the magnetization M for
bulk bcc Fe �dots� as obtained by using �a� the VCA and �b� the
CPA. The open circles are the corresponding local magnetic mo-
ment as given by Eq. �21�.
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qualitative agreement with the main trends observed in ex-
periment and in previous calculations using ab initio meth-
ods and dynamical mean field theory.13 However, there are
two main differences that deserve to be mentioned. First, in
the VCA, the form of Ml�T� for T→TC approaches zero

more slowly and in general 2��Ŝlz
2 � is larger than in the CPA.

Second, the value of TC is about 15% smaller in the CPA
than in the VCA. This can be understood by recalling that the
VCA works best in the dilute limit �i.e., T→0�. As the tem-
perature increases, the negative exchange-fields are not taken
properly into account by the average effective medium. This
results in an overestimation of TC as compared to the CPA
which takes into account large spin fluctuations more accu-
rately close to the critical point.37 However, it is important to
remark that for T→TC both approximations fail to describe
the correct critical behavior of the phase transition since the
present single-site alloy analogy does not correctly describe
the long range fluctuations of the order parameter.

In order to complete the discussion of bulk Fe we show in
Fig. 2 the average local spin fluctuation energy �F��� as a
function of �. The average over spin fluctuations in the sur-
rounding medium is performed using the VCA and the CPA.
The temperature dependence of �F��� is illustrated by con-
sidering three representative reduced temperatures t=T /TC
=0, 0.88, and 1. At T=0 one observes a single well-defined
minimum at �=�0+�0 and an inflexion point at �=�0−�0
with ��0−���0+. As T increases and approaches TC, a second
minimum starts to develop out of the saddle point at �0− and
at the same time one observes a small decrease of �0− �see
Fig. 2�. Finally, for T�TC, �F��� becomes symmetric,
showing that the positive and negative � occur with the same
probability. The Curie temperature can be regarded as the
temperature at which it costs no free energy to flip an ex-
change field. A similar behavior has been obtained in previ-
ous studies.27 It is interesting to observe that the VCA and
the CPA yield very similar results, which suggests that in first
approximation �F��� is dominated by local effects. Notice

that the energy barrier between the two minima at T�TC is
appreciably smaller than kBTC �e.g., in the VCA F�0�
−F��0+��0.08 eV for kBT=kBTC

VCA=0.18 eV�. One con-
cludes that in bulk Fe not only the changes of sign of �
around �0+ and �0− but also the fluctuations of the size of the
exchange splittings are very important at finite T. This be-
havior is a characteristic of itinerant magnetism which con-
trasts with the simpler fluctuations of the direction of local-
ized magnetic moments. As it will be discussed below, low
dimensional systems and in particular ultrathin films show a
somewhat different behavior with a stronger tendency to fa-
vor localized spin excitations.29

B. Fe thin films

In this section, we consider a bcc �001� monolayer and a
five-layer Fe film as representative examples of low dimen-
sional systems. The interplay between local environment and
magnetic properties is investigated by varying the NN dis-
tances around the values corresponding to the bulk and to
some relevant substrates.

Figure 3 shows the VCA results for Ml�T� for several
values of r=d /dbulk. Starting from small values of r we ob-
serve an increase of the ground-state magnetization Ml�0�
with increasing r up to the saturated value Ml�0�= �10−nd�.
This is due to the narrowing of the d band with increasing
NN distance. As it will be discussed below, the changes of
Ml�0� play an important role on the behavior of Ml�T� as a
function of r. Notice that for 0.92�r�1 the temperature
dependence of the magnetization in the monolayer follows
qualitatively the same form as in the bulk �see Fig. 1�. How-
ever, for small r �r�0.88�, the decrease of the magnetization
with temperature becomes almost linear for intermediate T.
This indicates that the spin-flip excitations are more likely to
occur, since the magnetic moments are smaller �see Fig. 3 for
r=0.866�. On the other side, for large values of r �r�1.15�,
the more localized character of the electrons allows strong
spin fluctuations only close to TC. This changes the form of
Ml�T� with respect to the case 0.86�r�1 �see Fig. 3�.

The results obtained for the monolayer within the CPA
show several main trends in common with the VCA �see
Figs. 3 and 4�. However, comparison with the bulk results

FIG. 2. Local spin-fluctuation energy �F���=F���−F��0+� in
bulk bcc Fe, where F��0+� refers to the minimum of the free energy
for ��0. The average of spin fluctuations in the surrounding me-
dium is performed using �a� the VCA and �b� the CPA. The consid-
ered reduced temperatures t=T /TC are indicated in the inset.

FIG. 3. Temperature dependence of the magnetization of a �001�
Fe monolayer calculated by using the VCA. Results are given for
several values of the nearest-neighbor bond length d �r=d /dbulk�.
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discussed in the previous section reveals a remarkable quan-
titative difference. In the bulk, the CPA yields a TC about
15% smaller than the one obtained with the VCA, while in
the case of the monolayer this reduction is about 35%. This
is related to the changes in the nature of the spin excitations
as the coordination number decreases. As it will be discussed
below, in the monolayer the dominant spin fluctuations are
changes of sign of � so that the probability distribution P���
resembles a binary alloy. In this case the limitations of the
VCA are known to be relatively important. One concludes
that the VCA becomes less accurate as the dimensionality
decreases.

In order to provide further physical insight into the behav-
ior of Ml�T� for the �001� monolayer, we show in Fig. 5 the
spin-fluctuation energies �F��l�=F��l�−F��l

0+� calculated in
the VCA, where �l

0+ indicates the position of the minimum of
the free energy for �l�0. Results are given for several rep-
resentative temperatures T and NN distances. One observes
for all the curves a two minima structure with a well-defined
second minimum at �l

0�0. In contrast, the T=0 bulk curve
displays only an inflexion point in the same range of ��0.
This indicates that in the monolayer the spin-flip excitations
�changes of sign of �� are likely to occur even at relatively
low T. Consequently, one finds a binarylike distribution for
all the considered NN distances. In addition, let us recall as
already shown in Fig. 3 that the largest Curie temperature is
found for r=d /dbulk=1. This is consistent with the fact that
for r=1 the spin-flip energies are the largest, e.g., �F±
=F��l

0+�−F��l
0−��0.75 eV at T=0 �see Fig. 5�. Once the

fluctuation effects become important �t�0.9�, �F±�0� de-
creases rapidly, with increasing T and vanishes at the Curie
temperature. It is also interesting to notice that the larger TC
is, the slower the spin-flip energy changes with temperature
�see Fig. 5�. This reinforces the physical picture that the Cu-
rie temperature is not given by the energy necessary to flip a
spin at T=0 but it is rather the temperature at which it costs
no free-energy to flip one.

As r decreases, e.g., for r=0.881 and 0.866 in Figs. 5�c�
and 5�d�, the dependence of �F±�T� with temperature
changes. For r=0.881 and 0.866, �F±�T� increases in the
low temperature range �t�0.55�, while for high values of
t�t�0.9�, �F±�T� decreases. This implies that for r=0.881
and 0.866 there is a tendency to favor negative values of �

�even at low T�. Rather than a finite temperature effect, this
is mainly related to the electronic structure.

It is interesting to contrast the role of the local environ-
ment on the ground state and finite temperature properties
and to establish correlations between them. For this purpose
we present in Fig. 6 the VCA and CPA results for the mag-
netization Ml�0� at T=0 and for the Curie temperature TC as
a function of the nearest-neighbor distance d. In this way the
interplay between kinetic and Coulomb energies can be ex-
plored, since shorter NN distances yield larger d-band widths
which correspond to larger coordination numbers. One first
observes that the ground-state moment grows rapidly with
increasing d as the density of states as the Fermi energy
increases �Stoner criterion�. At some point Ml�0� reaches the
saturation value Msat=10−nd beyond which Ml�0� is inde-
pendent of d. The Curie temperature, which measures the
stability of ferromagnetism at finite T, shows a much more
interesting nonmonotonous behavior that can be qualitatively
interpreted in terms of a mean-field Heisenberg model for the
atomic spins. In this framework kBTC�zJHMl�0�2 /3, where
z is the coordination number, JH is the effective Heisenberg
coupling between NN spins, and Ml�0� is the T=0 moment.
Three different regimes can be distinguished. First, for
0.866�d /db�0.912 TC increases due to the increase of the
local moments and the associated enhancement of the ex-
change splitting ��x

d �see Figs. 6�a� and 6�b��. In this range
Ml�0� and ��x

d increase significantly, which dominates over
the effects of the reduction of the NN hoppings on the mag-
netic order. In fact the effective Heisenberg coupling JH
�3kBTC / �zMl�0�2� increases with d, for example, in the
CPA, from JH�4.5 meV/�B

2 for d /dbulk=0.88 to JH

FIG. 4. Temperature dependence of the magnetization of a �001�
Fe monolayer calculated by using CPA. Results are given for sev-
eral values of the nearest-neighbor bond length d �r=d /dbulk�.

FIG. 5. Local spin-fluctuation energy �F��l�=F��l�−F��l
0+� in a

bcc �001� Fe monolayer with different NN distances d: �a� r
=d /db=1, �b� r=0.91, �c� r=0.88, and �d� r=0.87. F��l

0+� refers to
the minimum of the free energy ��0. The considered reduced tem-
peratures t=T /TC are indicated in the inset. The VCA is used for the
average of spin fluctuations in the surrounding medium.
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�8.3 meV/�B
2 for d /dbulk=0.91. The subtle effects of itiner-

ant magnetism become even more evident for 0.9�d /dbulk
�1 where Ml�0� is constant and still TC increases. Notice
that in this range the mean-field exchange splitting at T=0 is
also constant so that the enhancement of TC must be ascribed
to changes in the electronic structure in the presence of spin
fluctuations �random alloy�. Finally, for d /dbulk�1 the be-
havior changes and the effective JH decreases with increas-
ing d. In this case the electronic hoppings and the kinetic
energy of the electrons are small and the spin fluctuations
have a more localized character. Consequently, as d increases
the spin-fluctuation energies decrease, since the perturbations
introduced by disorder are less significant. In summary, the
distance dependence of the finite-temperature properties are
the result of a subtle competition between localized and itin-
erant aspects of magnetism. Interesting phenomena can also
be expected as a function of other variables such as the local
coordination number which affects the relative importance of
kinetic and Coulomb contributions.

The geometry of thicker films introduces very interesting
additional effects resulting from the interaction between
magnetic moments in different local environments. As a rep-
resentative example we consider in Fig. 7 the layer-resolved
magnetization curves Ml�T� of a five-layer bcc �001� Fe film
in the VCA. For the sake of comparison the corresponding
bulk magnetization curve is also shown. The temperature
dependence of Ml�T� at the surface layers is quite different
from that of the inner layers. At low temperatures the surface
shows a rapid linear decrease of M1�T� which indicates that
the spin-fluctuation energies are lower despite the larger
ground-state moments. A similar linear decrease of M�T� has

been found in experiments10,11 and calculations16 on Fe sur-
faces. In contrast, the form of Ml�T� and the local moments
at T=0 of the inner layers �l=2 and 3� are similar to those of
the bulk. One actually observes that Ml�T� for l=2 and 3
scales with the ground moment Ml�0�. This is not the case
for l=1. The surface-layer magnetization curve is similar to
the one found for a free-standing monolayer but having a
shorter interatomic distance d /dbulk=0.87. In this case, the
ground-state moment is enhanced with respect to the bulk by
a comparable amount as it is found at the surface of the
five-layer film �see Fig. 3�. Let us recall that in the mono-
layer with d /dbulk=0.87 the reduction of the spin-fluctuation
energies dominates in front of the enhancement of the local
moments, both consequences of the reduction of z, thus
yielding a smaller TC than in the bulk.

The contributions of the inner layers dominate the mag-
netic behavior of the film as a whole. In fact, the Curie tem-
perature of the five-layer film is only 5% lower that the bulk
one. This appears to be the result of compensation between
the contributions of surface and inner layers. On the one
side, the surface layers show a very rapid decrease of M1�T�
that seems to point to a TC smaller than the bulk. And on the
other side, the ferromagnetic order is more stable at the inner
layers which have a complete NN shell �l=2 and 3�. In par-
ticular close to TC, the coupling between inner and surface
layers tends to stabilize the magnetization in the latter.

IV. CONCLUSION

The finite-temperature magnetic properties of bulk Fe and
of ultrathin Fe films have been determined in the framework
of a functional-integral itinerant-electron theory. The effects
of disorder due to spin fluctuations have been taken into
account by considering two different approaches, namely, the
virtual crystal and coherent potential approximations. The
stability of ferromagnetism has been studied as a function of
the local environment of the atoms. A remarkable nonmo-
notonous dependence of the magnetization curves has been
obtained by varying the interatomic distances �strain effects�
and by considering different positions of the atoms within
the film �layer dependence�. Moreover, the reduction of the

FIG. 6. �a� Ground-state magnetization Ml�0� and �b� Curie tem-
perature TC of a bcc �001� Fe monolayer as a function of the
nearest-neighbor distance d. Dots �crosses� refer to VCA �CPA�
results.

FIG. 7. Layer magnetization Ml�T� of a five-layer bcc �001� Fe
film in the VCA. l=1 �dots� refers to the surface layers, l=2 �open
circles� to the layers below the surface, and l=3 �crosses� to the
central layer. The dashed curve shows the corresponding bulk
results.
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system dimensions, from 3D to 2D, enhances the localized
character of the spin fluctuations. These trends have been
correlated with the environmental dependence of the elec-
tronic properties and with the resulting changes in the
ground-state magnetic moments and spin-fluctuation ener-
gies. The electronic structure contributions and the itinerant
character of the d electrons are crucial for determining the
magnetic behavior of low-dimensional systems at finite tem-
peratures.

Several important aspects of the problem still remain to
be addressed. The magnetic properties of TM nanostructures
are conditioned by the interplay between kinetic and Cou-
lomb energies. The former is responsible for electron delo-
calization and band formation, as well as for the coupling
between the spins at different atoms, while the latter is the
driving force stabilizing the formation of local magnetic mo-
ments. Therefore the relative importance of these two contri-
butions depends strongly on the system geometry and on the
local atomic environment. The present electronic model and
the local approach to the electronic structure are well-suited
to investigate more complex systems with reduced symme-
try, such as clusters and nanostructures on surfaces or sub-
strate effects on thin films. Moreover, a number of method-

ological improvements are worthwhile. For instance,
noncollinear magnetic order and fluctuations of the exchange
fields are likely to affect the magnetization curves and prob-
ably reduce the calculated value of TC. The effects of inter-
faces with nonmagnetic substrates should be incorporated in
order to achieve a more realistic comparison with experi-
ment. In addition the model can be readily extended to take
into account spin-orbit interactions,26 and dipole-dipole inter-
actions which are responsible for the magnetic anisotropy
and for the spin reorientation transitions as a function of
temperature and structure.8,9,41,42 Finally, it remains a major
challenge to improve on the treatment of many-body effects
beyond the static approximation, since the electronic corre-
lations are expected to become increasingly important as the
system dimension decreases.
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