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We report on measurements of the magnetic response of the anisotropic CuO2 spin chains in lightly hole-
doped Lax�Ca,Sr�14−xCu24O41, x�5. The experimental data suggest that in magnetic fields B�4 T �applied
along the easy axis� the system is characterized by short-range spin order and quasistatic �quenched� charge
disorder. The magnetic susceptibility ��B� shows a broad anomaly, which we interpret as the remnant of a
spin-flop transition. To corroborate this idea, we present Monte Carlo simulations of a classical, anisotropic
Heisenberg model with randomly distributed, static holes. Our numerical results clearly show that the spin-flop
transition of the pure model �without holes� is destroyed and smeared out due to the disorder introduced by the
quasistatic holes. Both the numerically calculated susceptibility curves ��B� and the temperature dependence of
the position of the anomaly are in qualitative agreement with the experimental data.
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I. INTRODUCTION

The tendency of charge carriers for self-organization
seems to be an intrinsic property of hole-doped transition
metal oxides. One remarkable example which emphasizes
the interplay of charge order and antiferromagnetism is the
formation of spatial spin and charge modulations in the high-
Tc cuprates.1 Other examples for self-organization of holes in
low-dimensional magnets include the layered nickelates2,3

and manganites,4 and the doped CuO2 spin chain systems
such as Sr14−xCaxCu24O41 and Na1+xCuO2.5–8 On the other
hand, these observations also suggest that quenched disorder
plays an important role in such systems. In the case of the
half-doped manganites, the quenched structural A-site disor-
der was found to enhance the fluctuations of the competing
order parameters, i.e., between the charge/orbital order and
the metallic ferromagnetism.9 The example of the mangan-
ites shows that, in the case of competing phases, quenched
disorder can lead to properties that are very different from
those of a slightly impure material.10 Quenched disorder can
also significantly affect the properties of hole-doped layered
cuprates.11 For example, recent numerical results suggest that
disorder effects are important to describe the underdoped re-
gime of the layered cuprates and the pseudogap in these
compounds.12

In this paper, we report on experimental and numerical
studies of the magnetic response of a cuprate model system,
i.e., the lightly hole-doped CuO2 spin chains in
Lax�Ca,Sr�14−xCu24O41, with x�5. In these compounds,
two quasi-one-dimensional �1D� magnetic structures are
realized: Cu2O3 spin ladders and CuO2 spin chains. The
former exhibit a large spin gap of �gap�400 K.13 Hence
the magnetic response at low temperature, which is the
subject of our study, is due to the chains. The chains consist
of edge-sharing CuO4 plaquettes containing Cu2+ ions with
spin S=1/2 and nonmagnetic Zhang-Rice singlets. The
concentration of holes in the spin chains amounts to less
than 10% and the Cu spins in the hole-free chain segments

form predominantly ferromagnetic �FM� fragments since the
nearest-neighbor �NN� coupling is ferromagnetic. The NN
coupling is anisotropic, thereby causing an uniaxial aniso-
tropy perpendicular to the CuO4-plaquettes, i.e., along the
crystallographic b axis.14,15 In contrast, the magnetic cou-
pling of Cu spins via a hole is antiferromagnetic �AFM�, as
is known from a comparison with the strongly �i.e., 60%�
hole-doped spin chains of the mother compound
Sr14Cu24O41.

16,17 Moreover, there is a finite interchain cou-
pling causing 3D AFM spin order below TN�10 K.18,19 In
previous papers we have argued that the spin ordered phase
at zero magnetic field is presumably also characterized by a
�short-range� charge order.20,21 External magnetic fields of
the order of a few Tesla suppress the long-range spin order
when applied along the easy axis and cause a short-range
antiferromagnetically spin ordered and charge disordered
phase.19,21 In the present paper we concentrate on the prop-
erties of the intermediate field phase at several Tesla, which
is characterized by �i� short-range AFM spin order, and �ii�
quasistatic charge disorder.

II. MOTIVATION OF THE MODEL

As was shown previously, the melting of long-range AFM
spin order at a field B=B1 �depending on temperature� causes
an anomaly in the magnetization M�B�.19,21 This is demon-
strated by Fig. 1�a�, which shows the magnetization M�B�, at
fixed temperature T=2.5 K, of La5.2Ca8.8Cu24O41. If the
magnetic field is oriented parallel to the chain direction, i.e.,
B �c, the magnetization depends linearly on B, except for a
small contribution of free spins. In contrast, two anomalies
are observed in M�B �b�, which become clearly visible if the
susceptibility �=�M /�B in Fig. 1�b� is considered. At B1
=3.75 T one recognizes a sharp peak which is attributed to
the melting of the long-range spin order. Hence this anomaly
signals a transition from a spin and �probably short-ranged�
charge ordered phase for low fields B �b�B1 into a charge
disordered state for B�B1.
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Based on the suggestions described in Ref. 22, various
theoretical studies have been devoted to the phenomena at
B=B1.20,23–25 There the magnetic degrees of freedom were
described by Ising spins and the holes were assumed to move
either freely along the chains or under the influence of a
periodic pinning potential stabilizing a striped structure.
These models predict a breakdown of the striped �charge
ordered� phase and may thus explain the transition at B=B1.

Our present study, however, focuses on the properties for
B�B1. Previous numerical and experimental work20–22 im-
plies that this phase is characterized by short-range AFM
spin correlations and quasistatic �quenched� charge disorder.
The data in Fig. 1�b� display an additional broad peak in �, at
B2=6.9 T�B1, which was not captured by the previous the-
oretical studies. We attribute this anomaly to the reorienta-
tion of the Cu spins. The idea that the anomaly at B2 is in
fact a “smoothened out” spin-flop transition will be explored
in greater detail in the next section, where we present the
results of our Monte Carlo simulations. We propose that the
anomaly at B=B2 is the relic of a spin-flop transition, which
is smeared out due to the strong disorder induced by the
quasistatic holes. In this sense one may call the anomaly a
“pseudo” spin-flop peak.

In the scenario of the “pseudo” spin-flop transition, the
magnetic field overcomes, for B�B2, the uniaxial anisotropy
which is due to the nearly 90° Cu-O-Cu exchange �cf. Refs.
14 and 15�. Quantitatively, the experimental value of B2 is
consistent with a recent inelastic neutron scattering study on
La5Ca9Cu24O41,

26 which reported a spin gap of �gap/ �g�B�
= �7±0.5�T.

III. NUMERICAL SIMULATIONS

A. Definition of the model, choice of interaction parameters,
and simulation method

Taking the scenario of quenched charge disorder and
short-range AFM spin order for B�B1 as our starting point,
we adopt a complementary view to the previous studies
which considered mobile charge carriers and study the influ-
ence of quenched charge disorder on the magnetic properties
of the system, ignoring the mobility of the holes altogether.

We consider a L	L square lattice consisting of L rows,
which we identify with the chains, and L sites per chain. This
choice of lattice geometry is motivated by neutron scattering
experiments indicating that the copper ions in the CuO2
planes of La5Ca14Cu24O41 form a rectangular array.27 We
conveniently set the lattice constants along and perpendicular
to the chains equal to unity. Periodic boundary conditions are
employed throughout.

Each site �i , j�, where i is the chain index and j labels the
sites along the chain, is either occupied by a spin �represent-
ing a magnetic Cu2+ ion�, or a nonmagnetic hole �Zhang-
Rice singlet�. To describe the hole distribution, we introduce
random variables pi,j taking the values pi,j =1 if a spin re-
sides at lattice site �i , j� and pi,j =0 if it is occupied by a hole.
The spins are modeled by �classical� three-component vec-

tors S� i,j = �Si,j
x ,Si,j

y ,Si,j
z � with �S� i,j�=1. As discussed in Ref. 28,

we expect our results to remain qualitatively correct if one
took the quantum character of the spins properly into account
�although there would be, of course, quantitative deviations�.
This is basically a consequence of the Ising-like anisotropy
of the model which tends to suppress quantum fluctuations,
in particular in the presence of a field applied along the easy

axis as in our case. If a hole is at site �i , j�, we set S� i,j =0. We
simulate either the pure system without holes �pi,j =1 for all
i , j�, or employ a fixed hole concentration of 10% within
each chain. The latter should resemble the situation in the
lightly hole-doped chain systems of LaxCa14−xCu24O41 with
x�5. Moreover, we disallow nearest-neighbor pairs of holes
within the same chain, since such configurations are ener-
getically unfavorable due to the strong Coulomb repulsion.
Thus consecutive holes along the chains are always separated
by at least one spin.

The configurational energy depends both on the spin vari-

ables �S� i,j� and the hole distribution described by the occu-
pation variables �pi,j�. In a field H applied along the z-axis,
the Hamiltonian of our model reads:

H = − Jc1�
i,j

�S� i,j · S� i,j+1 + �Si,j
z Si,j+1

z � − Jc2�
i,j

S� i,j · S� i,j+2

− J0�
i,j

�1 − pi,j+1�S� i,j · S� i,j+2 − Ja�
i,j

S� i,j · S� i+1,j − H�
i,j

Si,j
z .

�1�

The interactions of this model are shown schematically in
Fig. 2. The Cu-O-Cu bonding angle of nearly 90° suggests
that the nearest-neighbor �NN� intrachain coupling Jc1 is fer-
romagnetic �Jc1�0�. Moreover, this coupling is
anisotropic,14,15,19 favoring the alignment of the spins along

FIG. 1. Magnetization M �a�, and susceptibility �=�M /�B �b�,
of La5.2Ca8.8Cu24O41, at T=2.5 K vs magnetic field B parallel to the
b- and to the c-axis, respectively �Ref. 21�. The data are corrected
by the g-factor taken from Ref. 15. In �a�, the small, isotropic con-
tribution due to free defect spins �dashed curve� has been sub-
tracted, see Ref. 22. The vertical dashed line shows the phase
boundary between long-range and short-range antiferromagnetic
spin order.
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an easy axis �the crystallographic b-axis�, which we take to
be the z-axis. The anisotropy parameter is ��0, where �
=0 corresponds to the isotropic case. In CuO2 spin chains
one expects next-nearest-neighbor �NNN� spins to be
coupled antiferromagnetically.29 The coupling between NNN
spins is Jc2�0 if they are separated by a spin and J0�0 if a
hole resides between them, where �J0�� �Jc2�. The difference
is mainly caused by the smaller size of the Cu3+ ions leading
to a stronger overlap of the p-orbitals of the involved oxygen
ions. Finally, in accordance with the experimentally observed
long-range AFM ordering, we assume an interchain coupling
Ja�0 between NN spins on adjacent chains.

In the following, we turn to the values of the interaction
parameters of Eq. �1�. To the best of our knowledge, no
direct information on the magnetic coupling parameters is
available which agrees with our thermodynamic studies.30

Thus for the numerical simulations we indirectly estimate the
interaction parameters. First, we address the NNN interaction
across a hole. This parameter has been determined to be
J0 /kB=−130 K from neutron diffraction studies of the sto-
ichiometric compound Sr14Cu24O41.

16,31 In contrast to J0,
only little is known about Jc1 and Jc2. Qualitatively, the
bonding geometry suggests Jc1�0 and Jc2�0.14,32,33 In ad-
dition, the presence of ferromagnetic spin order along the
chains in the weakly hole-doped compounds implies �Jc1�
� �Jc2�. In order to get a quantitative estimation, we apply the
exchange parameters which have been extracted for the un-
doped CuO2 spin chains in Li2CuO2. In this compound, the
Cu-O-Cu bonding angles in the CuO2 spin chains are very
similar to those of �Ca,Sr�14−xLaxCu24O41. Thus we take
Jc1 /kB=100 K.33–35 Moreover, we assume Jc2 /kB=−35 K,
which is again estimated from a comparison with Li2CuO2
by applying the bond-valence sum rule and the pressure de-
pendence of J0 in Sr14Cu24O41. For Sr14Cu24O41, the latter
amounts to �J0 /�pc=4.2 K/GPa.17

The magnitude of Ja significantly affects the zero-field
ordering temperature of the model �without holes�. In

Sr14Cu24O41, the coupling between Cu spins in adjacent
chains amounts to Ja	−20 K.16 However, preliminary dif-
fraction experiments27 suggest changes of the relative posi-
tions of neighboring CuO2 chains upon La-doping, which are
supposed to strongly affect the interchain coupling constant.
According to a recent result on undoped spin chains in Ref.
32,


CW
3D 
 
CW

1D − zeff
Ja

4
, �2�

where the 3D Curie-Weiss temperature may be estimated as

CW

3D 	−8 K from a fit to high-temperature susceptibility
data,22 while for the 1D Curie-Weiss temperature one has

CW

1D 	0.23Jc1=−23 K from a cluster calculation.32 Using
the �approximate� effective number zeff=2 of nearest neigh-
bors at surrounding chains, one gets a slightly larger value
Ja	−30 K as compared to Sr14Cu24O41. This estimate, how-
ever, intimately depends on zeff, which might be different. In
the following, we set Ja /kB=−25 K, since this gives rise to a
zero-field ordering temperature which appears to be quite
reasonable as compared to the experiments �see the discus-
sion in Sec. III B�.

From the interaction parameters Jc1, Jc2, and Ja, and a fit
to the experimentally determined spin-wave gap of Ref. 26,
we can calculate the anisotropy parameter �. This yields �
=0.0255.

The model is simulated employing a single-spin Metropo-
lis algorithm. System sizes range from L=20 to 240. To ob-
tain good equilibrium data, up to 2	107 Monte Carlo steps
per site are needed for the largest systems. At the beginning
of each run, 20% of the steps are discarded for thermaliza-
tion. For the system with holes, we average over up to 300
randomly generated realizations of the disorder.

A quantity of primary concern due to its relation to the
experiments is the magnetic susceptibility �z,

�z =
1

kBTL2„��M
z�2� − �Mz�2

… , �3�

where �¯� denotes the thermal average and Mz=�i,jSi,j
z is the

z-component of the total magnetization. Other observables of
interest include the specific heat and the staggered magneti-
zation. We also record typical spin configurations generated
during the Monte Carlo runs in order to monitor directly
microscopic properties of the system.

B. Pure (undoped) system

Before studying the influence of the disorder, it is instruc-
tive to review some basic properties of the pure system with-
out holes. In the present context, the most relevant features
of the pure model are �i� the existence, for low temperatures
and fields, of a phase with long-range AFM order perpen-
dicular to the chains, as well as �ii� the occurrence of a spin-
flop transition upon applying a magnetic field along the easy
axis �i.e., the z-axis�.

Let us first discuss the model in zero magnetic field �H
=0�. To measure the long-range AFM order perpendicular to
the chains, we define the quantity

FIG. 2. Schematic representation of the interactions of our
model Hamiltonian, Eq. �1�. Closed and open circles denote Cu and
O atoms, respectively. Nearest-neighbor �NN� spins along the CuO2

chains �c direction� interact via an anisotropic ferromagnetic ex-
change Jc1 ,Jc1

z = �1+��Jc1�, whereas next-nearest-neighbor �NNN�
spins are coupled antiferromagnetically. The strength of the antifer-
romagnetic coupling depends on whether the NNN spins are sepa-
rated by a hole �J0� or by another spin �Jc2�. Finally, neighboring
chains have an AFM interaction �Ja�.
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Ms
2 =

1

L
�
j=1

L � 1

L
�
i=1

L

�− 1�iS� i,j�2

. �4�

Note that the expression within the parentheses is the stag-
gered magnetization �per spin� of one column of the square
lattice. We cannot simply take the difference between the
total magnetizations of even and odd rows, which would be a
natural candidate for the AFM order parameter, since the
usual AFM structure is modified by a helical ordering of the
spins along the chains, as explained below. Thus the total
magnetization of each chain vanishes for H=0. In the fully
�antiferromagnetically� ordered state, one has Ms

2=1.
From our simulational data �Fig. 3� we infer that a phase

with long-range AFM order exists at low temperatures. The
interchain order parameter Ms

2 seems to vanish continuously
at a Néel temperature TN, which we estimate as kBTN / �Ja �
	0.61 by finite-size extrapolation of our data. This value is
also obtained by analyzing the peak positions of the specific
heat.

Taking the spin S=1/2 of the Cu2+ ions into account we
obtain an estimate of TN=13 K for the Néel temperature at
zero field, which is reasonably close to the experimental
value for La5Ca9Cu24O41 �TN=10.5 K�.18 However, this re-
sult has to be taken with care and should only be regarded as
a rough consistency check. To mention just two points, the
real system is not hole-free and quantum fluctuations �absent
in our classical spin model� certainly alter the value of the
ordering temperature �cf. Ref. 28�.

Whereas neighboring spins on adjacent chains are aligned
antiferromagnetically for T�TN, the spins within the chains
exhibit a more complicated structure due to the competing
intrachain interactions Jc1�0 and Jc2�0. At T=0, this struc-
ture can be found by a ground-state analysis using �and
slightly generalizing� the methods described in Refs. 36 and
37. Without anisotropy ��=0�, one would obtain a simple
helical ordering within each chain. In that case the spins
rotate, with a constant angle � between two consecutive
spins, within a plane whose orientation is fixed in space. A
straightforward calculation yields �	44°, corresponding to
a wavelength of the helix of approximately eight lattice con-

stants. The finite exchange anisotropy ��0, however, modi-
fies this structure. In order to minimize the anisotropy en-
ergy, the spins rotate in a plane that contains the z-axis
�without anisotropy the orientation of the plane is arbitrary�.
Moreover, the rotation angle is not a constant, but somewhat
smaller for spins in the vicinity of the z-axis. The wavelength
of the modified helix, though, changes only a little as com-
pared to the isotropic case. Such a configuration is depicted
schematically in Fig. 4�a�. The results of the ground-state
analysis are corroborated by inspection of typical low-
temperature Monte Carlo configurations. We can unambigu-
ously identify the type of helical order shown in Fig. 4�a�.
The wavelength of the helix turns out to depend only weakly
on temperature.

A magnetic field H�0 along the easy axis lifts the sym-
metry between the positive and negative z-direction and the
system develops a finite total magnetization along the z-axis.
At T=0, one can again find the corresponding spin configu-
rations by a ground-state analysis. For small fields H�Hsf,
where Hsf is the spin-flop field �see below�, the analysis
yields a fanlike structure Fig. 4�b��. At H=Hsf, this structure
becomes unstable against a spin-flop phase where the spins
make a finite angle with the z axis and rotate on the surface
of a cone see Fig. 4�c��. All spins now have the same
z-component, but the x- and y-components are reversed for
nearest-neighbor spins on adjacent chains. This justifies call-
ing the structure a “spin-flop phase.” At H=Hsf, the
z-component of the magnetization �and various other quanti-
ties� exhibit a discontinuity. For the parameters of our model,
the value of the zero-temperature spin-flop field is given by
Hsf / �Ja � 	0.70. Upon further increasing the field the opening
angle of the cone continuously shrinks to zero until at H
=Hpm all spins point along the z-axis. However, this transi-
tion from the spin-flop to the paramagnetic phase occurs at
values of the magnetic field much larger than the highest
fields used in the experiments and will therefore be disre-
garded in the following.

The above spin structures in a magnetic field H�0 can
again be found in our finite-temperature Monte Carlo con-
figurations. Moreover, we observe a sharp peak in the sus-
ceptibility �z �Fig. 5�, which occurs at a field quite close to
the value of the spin-flop field at T=0, Hsf / �Ja � =0.70 �see
above�. Apparently, the peak signals the �presumably first-
order� transition towards the spin-flop phase. Similar anoma-
lies are found in other quantities. The spin-flop field Hsf is
only weakly temperature-dependent �for low temperatures�.

A more detailed investigation of the phase diagram of the
pure model, the nature of the various transition lines, and the
behavior near possible critical and multicritical points, where

FIG. 3. Interchain order parameter, Eq. �4�, of the pure model vs
temperature �at H=0�, for different system sizes L.

FIG. 4. Schematic representation of the �intrachain� spin con-
figurations for �a� H=0, �b� 0�H�Hsf, and �c� Hsf�H�Hpm,
where Hsf is the spin-flop field and Hpm the field of the spin-flop to
paramagnetic transition.
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the different phases eventually meet, would certainly be of
interest on its own but is beyond the scope of the present
paper.

C. Influence of random, immobile holes

The introduction of randomly distributed, immobile holes
has a drastic impact on the properties of the model. Any
long-range spin order �including the AFM ordering perpen-
dicular to the chains� gets destroyed, which leads to a smear-
ing out of all phase transitions discussed in the previous
section.

The loss of long-range order already appears in the
ground-state �T=0�. Within a modeling in terms of Ising
rather than Heisenberg spins, it can be shown analytically
that at T=0 the spin correlation function within the chains
decays exponentially for large distances.20 This is intuitively
clear since the strong AFM coupling J0 enforces an antipar-
allel alignment of two spins on the left and right sides of a
hole. Thus the chain splits up into �ferromagnetic� fragments
separated by antiphase boundaries. If the holes are distrib-
uted randomly, all long-range spin correlations along the
chain are thus destroyed. For the spin correlations perpen-
dicular to the chains an analytic treatment is much more
complicated due to the frustration of the interchain interac-
tions. The latter occurs since fragments of neighboring
chains will generally be displaced against each other. In or-
der to minimize its total energy the system will thus form
additional antiphase boundaries within the chains in order to
balance the competing intrachain and interchain interaction
energies. In any event, one again expects an exponential de-
cay of the spin correlations. This has been confirmed numeri-
cally.

The above mechanism for the destruction of long-range
correlations may equally well apply if the Ising spins are
replaced by Heisenberg spins. We have checked this by ana-
lyzing low-temperature Monte Carlo data of the AFM inter-
chain order parameter, Eq. �4�, for varying system sizes L
�Fig. 6�. The order parameter seems to extrapolate to zero for
L→�, indicating the absence of long-range AFM interchain

order in the thermodynamic limit, as expected from the
above arguments.

One should keep in mind that despite the lack of long-
range order, the spins will in general still exhibit some de-
gree of short-range ordering, which reflects the properties of
the corresponding pure phases �without holes� in the various
regions of the T ,H-plane.

The smearing out of the phase transitions due to the pres-
ence of the randomly distributed holes can be inferred from
our simulational data. For example, for H=0 the specific heat
of the pure model exhibits a peak whose height increases
with the system size L and whose position approaches the
Néel temperature TN as L→�. For the disordered system, on
the other hand, we observe a noncritical maximum, being
almost size-independent for sufficiently large systems, which
occurs at a “pseudo” Néel temperature kBT N

ps / �Ja � 	0.58, as
compared to kBTN / �Ja � 	0.61 for the pure model �see Sec.
III B�. Thus the Néel transition is not only smeared out but
also slightly shifted towards lower temperature. In addition,
the specific heat shows a small anomaly at lower tempera-
tures, which is probably due to the incommensurability of
the wavelength of the helical structures with the system size.
The same conclusions are found by analyzing other quanti-
ties, such as the magnetic susceptibility.

Turning now to the �in our context� more interesting case
of a nonvanishing magnetic field H�0, we examine how the
spin-flop transition of the pure system is affected by the
quenched holes. Again, we find that the transition is trans-
formed into a smooth anomaly. Whereas for the pure system
the susceptibility �z exhibits a sharp peak at H=Hsf �cf. Fig.
5�, we now observe a broad �and much smaller� maximum at
a “pseudo” spin-flop field Hsf

ps �depending on system size�,
see Fig. 7. The curves display some finite-size dependence
for small systems. For example, the strong increase, for
small system sizes, of �z as H→0 is weakened significantly
for larger systems. For systems larger than L=80 the curves
change only a little. The inset of Fig. 7 illustrates this for the
position of the maximum, which approaches Hsf

ps / �Ja � 
0.5.
Analogous conclusions apply to the height of the maximum,

FIG. 5. Magnetic susceptibility �z of the pure model at fixed
temperature kBT / �Ja � =0.25 for a system of size L=80. Note the
sharp spin-flop peak at Hsf / �Ja � 	0.72.

FIG. 6. Interchain order parameter, Eq. �4�, for various system
sizes �L=40, 80, and 240� at fixed temperature kBT / �Ja � =0.1. For
1/L→0 the order parameter seems to extrapolate to zero �dashed
line�, indicating the destruction of the long-range AFM order due to
the quenched holes.

QUENCHED CHARGE DISORDER IN CuO2 SPIN¼ PHYSICAL REVIEW B 73, 224415 �2006�

224415-5



which quickly saturates if L�80. Thus, in the disordered
case, it seems to be sufficient to simulate systems of size L
=80 to capture the relevant properties holding in the thermo-
dynamic limit.

A closer look at the Monte Carlo configurations reveals
local spin-flop structures for H�Hsf

ps, while for HHsf
ps do-

mains showing helically modified antiferromagnetic struc-
tures can be identified. In this sense, Hsf

ps marks a smooth
crossover from the AFM phase to the spin-flop state. This
qualitative picture can be corroborated by examining a suit-
able quantity measuring the local AFM order �see below�.

For magnetic fields smaller than the spin-flop field H
Hsf

ps, the disorder fluctuations due to different realizations
of the hole distribution are significantly larger than for H
�Hsf

ps. To reduce the disorder fluctuations one therefore has
to average over many realizations. Since simulating many
different hole distributions for all values of the field requires
too much computational time, we generated a large number
of up to 300 disorder realizations for lower fields only �H
�Hsf

ps�. For higher fields, 100 realizations usually turned out
to be sufficient. In this way we obtained reasonably good
statistics for all data points.

To provide further evidence that the broad susceptibility
maximum is indeed the remnant of a smeared-out spin-flop
transition, we study the square of the z-component of the
local staggered magnetization, which is a measure of the
degree of local AFM order perpendicular to the chains:

�Ms,loc
z �2 =

1

4L2�
i=1

L

�
j=1

L

Si,j
z − �Si−1,j

z + Si+1,j
z �/2�2. �5�

Note that the expression under the double sum is �up to a
factor of 1 /4� the square of the z-component of the local
AFM order parameter at site �i , j�. This local quantity is then
averaged over the whole lattice. As exemplified in Fig. 8,
��Ms,loc

z �2� drops down smoothly as one increases the mag-
netic field, i.e., the local AFM order along the z-direction

decreases, as one expects for a transition between an AFM
and a spin-flop phase. Moreover, the slope of the curve is
maximal at the same field Hsf

ps where the susceptibility �z has
its maximum �cf. Fig. 7�. Note that Hsf

ps is somewhat lower
than the spin-flop field Hsf / �Ja�	0.70 of the pure model. For
the pure system, ��Ms,loc

z �2� appears to jump at H=Hsf �see
the inset of Fig. 8�.

We would like to stress that many of the above conclu-
sions are qualitatively insensitive to details of the model like
the precise values of the interaction parameters, provided
that the system exhibits randomly distributed, immobile
holes. In fact, we have also carried out simulations using the
model proposed in Ref. 26, which was based on an interpre-
tation of inelastic neutron scattering data for La5Ca9Cu24O41
�an analysis of this model, with and without mobile holes,
may be found in Ref. 28�. This model has a different lattice
geometry, a single-ion instead of an exchange anisotropy,
and quite distinct values of the interaction parameters. More-
over, we considered a simplified model with vanishing NNN
coupling within the chains and a ferromagnetic NN interac-
tion �i.e., Jc2=0 and Jc1�0�. Essentially all of our conclu-
sions concerning the smearing out of the phase transitions,
which transform into �smooth� anomalies when introducing
quenched holes, also hold for these modified models. On the
other hand, when comparing the results of the simulations
with the experimental data, the quantitative agreement seems
to be most satisfying for our present model.

However, the choice of the interaction parameters cer-
tainly has an effect on the typical spin configurations within
the chains. For example, for the simplified model with Jc2
=0, Jc1�0 mentioned above the chains order ferromagneti-
cally �this also applies to the model of Ref. 26�. Thus in the
disordered system each chain splits up into ferromagnetic
fragments separated by the holes which induce antiphase
boundaries. But for the present model the spins form “heli-
cal” chain fragments due to the competing intrachain inter-
actions �see Sec. III B�, and again reverse their direction
across a hole. In diffraction experiments, no indications of

FIG. 7. Susceptibility �z vs magnetic field at constant tempera-
ture kBT / �Ja � =0.25. The solid lines are guides to the eye. Up to 300
disorder realizations were used to generate the data. The error bars
are smaller than the symbol sizes to the right of the maxima and are
thus not shown there. The inset shows the position of the maximum
as a function of system size.

FIG. 8. Square of the z-component of the local staggered mag-
netization, Eq. �5�, vs magnetic field at constant temperature
kBT / �Ja�=0.25, indicating a smooth transition between the AFM and
the spin-flop phase. For the pure model, the same quantity appears
to behave discontinuously at the spin-flop field �see inset�. In all
cases, the error bars are much smaller than the symbol size.
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such a residual helical ordering in La5Ca9Cu24O41 have been
found so far. One should note, however, that hints at incom-
mensurate ordered spin structures, which could in principle
be explained by the presence of a �modified� helical phase,
have been reported in La6Ca8Cu24O41.

38 Note also that in the
closely related spin-chain system Li2CuO2 the helical order-
ing is destroyed due to the anisotropy and the finite inter-
chain coupling according to theoretical calculations.32 Thus
the existence or nonexistence of helical structures appears to
be a delicate question which depends sensitively on details of
the interaction and the lattice geometry �i.e., the coordination
number of the interchain interaction, which is different for
La5Ca9Cu24O41 and Li2CuO2�.

Plotting the susceptibility curves for various temperatures
�Fig. 9� allows us to draw a more detailed comparison with
the experimental magnetization measurements. The tempera-
ture dependence of both the position and the height of the
spin-flop anomaly resemble the experimental data which will
be presented in Sec. IV �Fig. 11� quite well.

Finally, we depict the “magnetic phase diagram” of our
model in Fig. 10, i.e., the dependence of the “pseudo” spin-
flop field Hsf

ps on temperature. Again, we find qualitative
agreement with the upper line B2 of the experimental phase
diagram �Fig. 11�. If one converts the theoretical values for
Hsf

ps into physical units, taking the spin value S=1/2 of the
Cu2+ ions and the correct g-factors15 properly into account,
we obtain a “pseudo” spin-flop field of approximately 9 T
for a temperature of kBT / �Ja�=0.1. This compares reasonably
well with the experimental values. An even better agreement
may be reached by fine-tuning of the interaction parameters
�whose precise values are not known yet�, taking into ac-
count quantum effects, or allowing for a �partial� mobility of
the holes.

Summarizing, the above findings corroborate the idea that
the experimentally observed broad anomaly in the suscepti-
bility curves can indeed be understood as a disorder phenom-
enon due to randomly distributed, quasistatic holes, which
lead to a destruction of the long-range AFM order and, cor-
respondingly, to a smearing-out of the spin-flop transition.

IV. EXPERIMENTAL RESULTS ON THE “PSEUDO SPIN-
FLOP PEAK”

In order to test the numerical predictions of the preceding
section, we here present some of our experimental data on
the magnetic properties of the lightly hole-doped spin chains
in Lax�Ca,Sr�14−xCu24O41. We studied single crystals of ap-
proximately 0.2 cm3, grown by the floating zone technique.39

For the magnetization measurements a vibrating sample
magnetometer �VSM� was used. The measurements were
performed in magnetic fields up to 16 T. The fields were
applied either parallel to the chain direction �c axis� or per-

FIG. 9. Susceptibility curves for different temperatures �and sys-
tem size L=80�. As in Fig. 7, we used a varying number of up to
300 disorder realizations �depending on the value of the field� to
generate the data points. The solid lines are guides to the eye.

FIG. 10. Magnetic phase diagram of the model with quenched
disorder. The curve shows the temperature dependence of the
“pseudo” spin-flop field where the susceptibility maximum occurs
�cf. Fig. 9�. All data were obtained using systems of size L=80.

FIG. 11. Susceptibility of La5.2Ca8.8Cu24O41 vs magnetic field
B �b parallel to the easy axis for different temperatures, �a�, and
position of the maximum in �a� vs temperature, �b�.
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pendicular to the CuO4 plaquettes of the CuO2 chains, i.e.,
along the easy magnetic axis �b axis�.

Figure 11�a� shows the susceptibility of La5.2Ca8.8Cu24O41
vs magnetic field along the b-axis, at different temperatures
up to 15 K�TN=10.5 K. The sharp anomaly at B1, which
signals the melting of the long-range spin order, is visible for
all temperatures below TN. In contrast to the melting of the
spin order, the anomaly at B2 is still present for T�TN,
where only short-range spin correlations exist. This fact
agrees with the observation that at T=2.5 K the anomaly
occurs at fields B�B1, where also only short-range spin or-
der does exist. Upon heating, the anomaly is shifted to higher
fields. Moreover, the peak both shrinks and broadens drasti-
cally at higher temperatures. Comparing the data in Fig.
11�a� with those in Fig. 9 illustrates the similarities between
the experimental data and the numerical results. The broad
peak at B2 is well-described by the model calculations, which
strongly reinforces the approach presented in Sec. III.

The temperature dependence of the “pseudo” spin-flop
transition in La5.2Ca8.8Cu24O41 is summarized in Fig. 11�b�.
Qualitatively, the presence of the broad anomaly B2 indicates
short-range spin correlations up to 15 K. The temperature
dependence of the peak maximum depends roughly linearly
on the temperature, in agreement with the numerical findings
�Fig. 10�. At �7±1� K, the curvature of B2�T� slightly
changes, which again resembles the numerical results.

V. CONCLUSION AND OUTLOOK

We have presented measurements of the magnetic proper-
ties of the anisotropic spin chains in lightly hole-doped
Lax�Ca,Sr�14−xCu24O41, x�5. The experiments suggest that
for fields B�4 T the system is characterized by short-range
AFM spin order and quasistatic charge disorder. The suscep-
tibility as a function of the magnetic field B �applied along
the easy axis� shows a broad anomaly instead of a sharp
peak, as one would have expected if the system underwent a
spin-flop transition �and as one indeed observes in the re-
lated, but hole-free spin chain compound Li2CuO2, see Ref.
22�. In order to understand these findings theoretically, we
have carried out Monte Carlo simulations of an anisotropic
classical Heisenberg model with quenched holes. Our nu-
merical data show that the spin-flop transition of the pure
model is smeared out upon introducing quenched holes. The
susceptibility curves at fixed temperature exhibit broad peaks
and resemble the experimental data quite well. At low tem-

peratures, the peak occurs at a field value slightly below the
corresponding spin-flop field of the pure system. Further-
more, the peak position increases with temperature, similarly
as it is observed in the experiments. Taken together, our nu-
merical studies corroborate the idea that the broad anomaly
in the experimental susceptibility curves is essentially a sig-
nature of the disorder due to quasistatic holes.

Nonetheless, there remain several challenging questions
for future �experimental and theoretical� work. One of them
concerns the possible mechanisms for the pinning of the
holes, which would explain the occurrence of quasistatic
�quenched� charge disorder. While the destruction of the
stripe-ordered phase by an effective, field-induced attraction
of the holes �as proposed in Refs. 20 and 22� obviously re-
quires a certain mobility of the holes, the existence of the
broad anomaly in the susceptibility seems to suggest that
pinning might play an important role to understand the high-
field behavior �B�B1�. If one assumes the holes to move
freely along the chains, the theoretical models predict a clus-
tering of the holes upon increasing the field and no broad
anomaly in the susceptibility occurs �see the discussion in
Ref. 28�. Thus one may speculate that as the field becomes
large enough �B�B1� and the holes start to move around,
they get trapped at �randomly distributed� pinning centers
and then stay more or less immobile.

Closely related to the pinning of the holes is the possible
influence of the Coulomb interaction, which has been ne-
glected in the theoretical models so far. The Coulomb repul-
sion of the holes destabilizes the above-mentioned clustered
structures and would tend to distribute the holes more uni-
formly across the system. It is unclear, however, whether
inclusion of the Coulomb interaction between the holes alone
would suffice to predict the existence of quasistatic disorder
for fields B�B1. It might also be necessary to take the inter-
action with the La3+ and Ca2+ ions into account. Due to their
different charges and ionic radii, these might introduce addi-
tional disorder into the system which may turn out to be
important for an understanding of the pinning of the holes.
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