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A theoretical and experimental study of magnetic metamaterials with unit cells containing two resonant
elements is presented. The properties of these structures, consisting of split rings, are governed by strongly
anisotropic magnetic coupling between individual elements. This coupling leads to propagation of slow mag-
netoinductive waves in the vicinity of the resonant frequency. The wavelength of magnetoinductive waves is
much smaller than the free-space wavelength of the electromagnetic radiation. This opens up the possibility of
manipulating the near field on a subwavelength scale. We develop a theoretical formulation for coupled chains
of metamaterial elements allowing the tailoring of their guiding properties in the near field. In a comprehensive
analysis modes of coupled waveguides supporting forward and/or backward waves are identified and the
corresponding hybridization mechanisms for dispersion equations of magnetoinductive waves are determined.
Analytical predictions are verified both experimentally and numerically on a variety of coupled waveguides.
The approach can be employed for the design of near-field manipulating devices.
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I. INTRODUCTION

It has been known for a long time, at least for a century,
that the electrical properties of a material can be influenced
by inserting into it a variety of elements in a periodic or in a
random manner. The recent upsurge of interest in this field is
due to the recognition that those electrical properties may
radically change when the elements have a resonant charac-
ter. Two examples of such elements are the metallic rod of
Rotman1 and the split ring resonator of Hardy and
Whitehead,2 the former one based on linear currents and
electrical interaction, and the latter one on circulating cur-
rents and magnetic interactions. Their chief merit is that they
exhibit resonances with physical dimensions much smaller
than the electromagnetic wavelength. The impetus for further
research came from three important developments: a proof
by Smith et al.3 that a combination of those elements may
lead to the realization of Veselago’s negative index material,4

secondly the proof of negative refraction by Shelby et al.,5

and thirdly Pendry’s proposal that a slab of negative index
material6 may produce subwavelength images.

Another strand of research, unrelated to the aspect of
changing material properties, was concerned with the propa-

gation of waves along resonant elements. Dispersion equa-
tions were derived by Atabekov7 and Silin and Sazonov8

with applications to electric filters and to slow wave struc-
tures in mind. An antenna array excited by a single element
was shown to be able to support a leaky wave9 which is
partially guided and partially radiating. A physical realization
of such an array of resonant elements became available in the
late 1990s due to the technological advances in producing
features on the nanometer scale. Tiny spheres of resonant
metallic elements were produced and shown10 to be able to
support waves. Wave propagation both by transverse and
longitudinal electric dipoles was demonstrated at optical
wavelengths.11,12 A similar theoretical analysis for waves
along an array of loaded, electrically coupled metallic rods
was carried out by Tretyakov and Viitanen.13 In photonic
crystals the possibility of guiding a wave within an impurity
band by chains of coupled resonators was demonstrated by
Stefanou and Modinos.14 An optical waveguide based on
similar principles was proposed by Yariv et al.15 who had in
mind coupling between individual defect cavities but they
also considered microdisc cavities as the resonators. Taking
coupling between dipoles into account Thomas et al.16 con-
sidered the transfer of optical excitation energy between a
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pair of identical quantum dots. Gay-Balmaz and Martin17

observed that electromagnetic properties of individual and
coupled split ring resonators differ.

It was a triumph of effective medium theory that it was
capable of explaining negative refraction in a medium con-
sisting of rods and split ring resonators. However, such a
theory, based on averaging, is bound to disregard waves
which may travel on the same elements. In other words ef-
fective medium theory can predict what happens to a trans-
verse electromagnetic wave when it enters such a medium
but not the waves whose existence is entirely due to those
elements. Taking as examples metamaterials consisting of
capacitively loaded loops, Swiss Rolls, and split ring resona-
tors it was proven in a series of publications �see, e.g., Refs.
18–22� both theoretically and experimentally that waves,
called magnetoinductive �MI� waves in this context, can in-
deed travel along such structures. It was also shown that
these arrays may provide the basis for a variety of near-field
manipulating devices23–29 including waveguide components,
transducers, and near-field imagers. In analogy to magneto-
inductive waves new kind of waves, electroinductive
waves,30 have been shown to propagate on the so-called
complementary metamaterials, obtained by inversion of the
constituent materials with metal being replaced by the di-
electric, and vice versa.

The distinguishing features of the magnetoinductive
waveguide are that it works in a narrow frequency region
close to the resonant frequency of the constituent elements,
that it can support waves that are much slower than light, and
it can work in the MHz region. Therefore we can expect that
in some special applications �e.g., a radio frequency mag-
netic guide tuned to nuclear magnetic resonance for mag-
netic resonance imaging� they could replace the traditional
coaxial waveguides. In this and in other applications the lack
of a continuous metal path in the waveguide may be a con-
siderable advantage when heat loss �in cryogenic applica-
tions� or the excitation of eddy currents are to be avoided.

In practice, when a device is to be designed it is essential
to have considerable freedom in choosing the dispersion
properties of the structure. The first successful attempt in
tailoring the dispersion characteristics of MI waves31 was
based on the analogy between MI waves and phonons in
solids. In a “biatomic” metamaterial chain with two elements
per unit cell the dispersion curve splits into two branches, an
“acoustic” and an “optical” one, separated by a band gap.
Theoretical predictions were soon verified experimentally.32

A biatomic chain of metamaterial elements may be employed
as a near-field waveguide providing two distinct pass bands.
A particular application may be in magnetic resonance
imaging33 when the image is required at two different fre-
quencies far from each other. Another set of potential appli-
cations is for nonlinear MI wave interaction, e.g., for para-
metric amplification.31 A similar idea was used in Ref. 34 to
create a double-band metamaterial.

The new pass band in a biatomic chain of metamaterial
elements is a direct consequence of biperiodicity well known
in solid state physics, see, e.g., Ref. 35. It may, therefore, be
expected that more complex biatomic metamaterial struc-
tures will follow similar trends and will give us additional
flexibility in design. The obvious candidates are coupled

chains of metamaterial elements. Couplers made of metama-
terial elements were recently reported in a series of
publications.36–39 The usual analysis of two coupled lines
proceeds by finding the propagation coefficients of the two
unperturbed lines and then characterizing the interaction be-
tween the lines by a coupling coefficient.

The aim of the present paper is to provide a comprehen-
sive study of the properties of two coupled chains of
metamaterial elements supporting MI waves. Due to the dis-
creteness of the metamaterial structure the overall coupling
strength between the chains is determined by an interplay of
a number of magnetic coupling coefficients between indi-
vidual elements. In Sec. II the anisotropy of magnetic cou-
pling coefficients is analyzed. A mathematical model is pre-
sented in Sec. III, where we derive the coupled wave
equations for two one-dimensional lines of metamaterial el-
ements. Modes of coupled guides supporting forward and/or
backward waves are identified and the corresponding hybrid-
ization mechanisms for dispersion equations of MI waves are
determined. Experimental results verifying theoretical pre-
dictions are presented in Sec. IV, practical implications are
discussed in Sec. V, and conclusions are drawn in Sec. VI.

II. ANISOTROPY OF THE NEAR-FIELD MAGNETIC
COUPLING

We consider magnetic metamaterial structures made up of
resonant elements of the split ring type with both the dimen-
sions of individual elements and the distances between them
much smaller than the wavelength �the “true metamaterial
limit”�.40 In this case the elements can be seen as LCR cir-
cuits and can be modeled as filament circular currents. The
coupling constant between two metamaterial elements de-
pends on their relative position and orientation and is defined
as follows:

� =
2M

L
�1�

with M being the mutual inductance and L the self-
inductance of the elements. The mechanism of the magnetic
coupling is that the ac current flowing in an element induces
a magnetic field, which threads the neighboring element and
excites a current in it. An expression for the mutual induc-
tance based on the vector potential41 can be obtained in the
form of elliptic functions. We distinguish two cases with nor-
mals to the elements being parallel �Fig. 1�a�� and perpen-
dicular �Fig. 1�b�� to each other. In both cases, the relative
position of the second element can be described by two vari-
ables, the “lateral” shift in the plane of the first element, �,
and the “vertical” shift in the direction of the normal of the
first element, h.

Figure 1�a� shows the variation of the coupling strength
with the relative position of two elements of radius r0 with
normals parallel to each other �both normals directed up-
wards� and Fig. 1�b� with normals perpendicular to each
other �with the normal of the first element directed upwards
and the normal of the second element directed to the right�.
Figure 1�a� contains a number of known limiting cases. If
�=0 then the elements are in the so-called axial configura-
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tion, and the coupling is positive. If h=0 then the elements
are in the planar configuration with negative coupling. The
reason is that the magnetic field threading two neighboring
elements is in the same direction for the axial case and in the
opposite direction for the planar case. The coupling constant
is identical for all four quadrants of the plane �� ,h� so it is
sufficient to discuss the properties of the first quadrant �
�0, h�0. There is a curve of zero coupling on the plane
�� ,h�. For any set of �� ,h� above this curve the coupling is
positive, and for any set of �� ,h� below the curve it is nega-
tive. The situation is quite different �Fig. 1�b�� when the
normals of the elements are perpendicular to each other. The
limiting cases are as follows: there is no coupling if either of
the shifts is zero, �=0 or h=0, which follows from a sym-
metry argument. The coupling is positive for the first and
third quadrants and negative for the second and fourth quad-
rants.

Note that the coupling constant is real as long as the dis-
tance between the elements is much smaller than the wave-
length of the electromagnetic wave. If the size of the ele-

ments and/or the distance between them become comparable
with the wavelength of the electromagnetic wave, retardation
effects may become important and the coupling constant may
become complex.22 In the following we shall make use of the
anisotropy of the magnetic coupling in constructing a variety
of structures carrying magnetoinductive waves with distinct
dispersion relations.

III. THEORY OF COUPLED MODES FOR MI WAVES

A. General formulation

We shall analyze the interaction mechanisms between two
chains of resonant metamaterial elements with magnetic cou-
pling between nearest neighbors. The derivation presented
here can easily be generalized to the case of couplings be-
tween any pair of elements. However, as shown in Sec. II the
mutual inductances between the elements decline fast and it
may be justified �at least in the pass bands� to take only
nearest neighbor interactions into account. We shall return to
the problem of many-element interactions in Sec. IV.

We start with an equidistant linear array of identical reso-
nant elements coupled magnetically to their nearest neigh-
bors. Kirchhoff’s voltage equation for the nth element is of
the form

Z01In + Z1�In−1 + In+1� = Vn
�1�, �2�

where harmonically varying signals of frequency � are as-
sumed. Here Z01 is the complex self-impedance of each one
of the elements. Z1 is the pure imaginary mutual impedance
between the neighboring elements, In is the current in, and
Vn

�1� is the voltage applied to the nth element.
Let us now consider a second linear array. Kirchhoff’s

equation may similarly be written as follows:

Z02Jn + Z2�Jn−1 + Jn+1� = Vn
�2�, �3�

where subscript 1 has now been replaced by subscript 2 and
the current in the nth element is denoted by Jn. The complex
self-impedance of elements of each line has the form Z0i
=Ri+ j�Li+1/ �j�Ci� with resistance Ri, self-inductance Li,
and capacitance Ci �i=1,2�. The purely imaginary mutual
impedance Zi is equal to j� times the mutual inductance Mi.

If the lines are close enough to each other their elements
are coupled not only to the elements of their own lines but
also to the elements of the other line. As may be seen in Fig.
2 a general element in the line is coupled to its five neighbors

FIG. 1. �Color online� Anisotropy of the magnetic coupling be-
tween two elements. The contour plot for the coupling constant
versus lateral and vertical shift. �a� With elements lying in parallel
planes and �b� with elements lying in perpendicular planes.

FIG. 2. Schematic presentation of the coupling between two
lines of resonant magnetic metamaterial elements. Mutual induc-
tances M1, M2, M, M3, and M4 between the nearest neighbors are
shown by arrows.
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by the mutual inductances M1, M2, M, M3, and M4. The
additional mutual inductances are M, the mutual inductance
within the unit cell, M3, the mutual inductance between the
nth element of line 1 and the �n+1�th element of line 2, and
M4, the mutual inductance between the nth element of line 2
and the �n+1�th element of line 1. Kirchhoff’s equations
must then be modified by adding the interaction terms due to
mutual impedances Z= j�M, Z3= j�M3, and Z4= j�M4 to the
left-hand side �LHS� of Eqs. �2� and �3� yielding

Z01In + Z1�In−1 + In+1� + ZJn + Z4Jn−1 + Z3Jn+1 = Vn
�1�,

Z02Jn + Z2�Jn−1 + Jn+1� + ZIn + Z3In−1 + Z4In+1 = Vn
�2�. �4�

Two coupled lines can be considered as a biatomic chain of
metamaterial elements with the unit cell containing two ele-
ments with the currents In and Jn in the upper and lower
lines, respectively.

Our next aim is to find the dispersion equation, i.e., to
relate the frequency � to the wave number k. In the presence
of losses k is complex and can be written in the form k=�
− j� where � and � are the propagation and attenuation con-
stants, respectively. We may then disregard the applied volt-
ages and look for wave solutions in the form In
= I0 exp�j��t−nkd�� and Jn=J0 exp�j��t−nkd��, where I0

and J0 are constants, � is the frequency, and d is the period
of the lines. Equations �4� may then be recast in the form

Z01I0 + 2j�M1I0 cos kd + j��M + M4ejkd + M3e−jkd�J0 = 0,

Z02J0 + 2j�M2J0 cos kd + j��M + M3ejkd + M4e−jkd�I0 = 0.

�5�

Equations �5� have nontrivial solutions when the determinant
of the coefficients of I0 and J0 vanishes yielding the relation-
ship between � and kd

�Z01 + 2j�M1 cos kd��Z02 + 2j�M2 cos kd� = − �2	�kd�
�6�

with the coupling coefficient

	�kd� = M2 + M3
2 + M4

2 + 2M�M3 + M4�cos kd

+ 2M3M4 cos 2kd . �7�

Note that we distinguish here between the coupling coeffi-
cient 	�kd� in Eq. �7� characterizing the overall coupling
strength between the lines and the coupling constant � in Eq.
�1� which determines the coupling between the individual
elements.

Equation �6� is clearly in the form of coupled wave equa-
tions with 	�kd� as the coupling coefficient. If 	�kd�=0 then
the brackets on the LHS of Eq. �6� give the dispersion equa-
tions of the uncoupled lines.

Let us now briefly discuss the properties of Eq. �6�. It can
be solved either for � or for kd. In terms of cos kd Eq. �6� is
an algebraic equation of the second order giving two solu-
tions. This means that there are two �in general complex�
values of kd corresponding to one real value of �. Such a
situation was discussed by Brillouin.42 For � it is a biqua-
dratic equation. For the lossless case �self-impedances Z01
and Z02 have no real parts� we find that, as long as �2	�kd�
is positive, real values of kd give real values of �, leading to
two passbands of the dispersion characteristics

�1,2 =��01
2 
2 + �02

2 
1 ±���01
2 
2 − �02

2 
1�2 + 4
�01

2 �02
2

L1L2
	�kd�

2�
1
2 −
1

L1L2
	�kd�� , �8�

where �0i=1/�LiCi is the resonant frequency of the elements in line i and 
i=1+ �2Mi /Li�cos kd�1+�i cos kd. The sub-
scripts 1 and 2 in Eq. �8� refer to lines 1 and 2 but note that �1 and �2 denote now the variations with frequency in passbands
1 and 2, respectively.

It may be seen from Eq. �8� that the group velocity, d� /dk, is zero at the edges of the band, at kd=0 and kd= ±� but it can
also be zero within the Brillouin zone when the following equation is satisfied:

	 j

�
�M1Z02 + M2Z01� + M�M3 + M4�
2

4�M3M4 − M1M2�
=

Z01Z02

�2 + M2 + �M3 − M4�2. �9�

If Eq. �9� has real solutions for � then it must refer to either
a minimum or a maximum of the dispersion curve ��kd�.
The presence of such an extremum in one or both branches
of the dispersion curve obviously means that the same

branch may support both forward and backward waves for
different ranges of kd. It is also known43–45 that the presence
of an extremum within the interval 0�kd�� will give rise
to complex modes.
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In the stop bands, in the lossless case, kd is either purely
imaginary or complex. Two limiting cases occur at kd=0
− j�d and kd=�− j�d. The decay is monotonic in the first
case whereas the sign of the amplitude alternates in the sec-
ond case. They correspond to Kelvin’s evanescent waves.42

We shall now apply the developed theoretical formulation
of coupled chains of metamaterial elements to a variety of
configurations with the aim to tailor their near-field guiding
properties. It is customary to put couplers into two distinct
categories, co-directional and contradirectional, depending
on whether the phase velocities of the two lines are in the
same or in opposite directions. In our case, MI waves allow
us to choose for the unperturbed lines both forward �axial
configuration� and backward �planar configuration� wave
propagation.19 The freedom in choosing the relative position
of both chains would lead to a great variety of mutual cou-
pling effects and would provide an additional flexibility in
tailoring the dispersion characteristics of coupled MI waves.
For simplicity we shall, from now on, assume all elements to
be identical, Z01=Z02=Z0.

B. Coupled modes with co-directional and contradirectional
power flow

1. Configurations

For a detailed investigation we have chosen configura-
tions shown schematically in Fig. 3. The cases of interest are
two coupled planar lines, �a� and �b�, and coupled planar and
axial lines, �c� and �d�. The unit cell in each case consists of
two elements. The elements within the unit cell are exactly
above each other in cases �a� and �c� and shifted by one half
of the period in cases �b� and �d�. The mutual inductances,

taken as different from zero, are shown in Figs. 3�a�–3�d� for
all four cases.

In cases �a� and �b� both lines, if uncoupled, support back-
ward waves. For these cases M1=M2�0. In cases �c� and �d�
one line is planar and the other one is axial. For these two
configurations the mutual inductances M1 and M2 are differ-
ent having both different signs and absolute values, M1�0
and M20, so that one line supports backward and the other
one forward waves.

In case �a� the identical planar lines are exactly above
each other. As may be expected the mutual inductances M3
and M4 do not greatly influence the coupling between the
lines and can therefore be neglected �see also Fig. 1�a��. The
dispersion equation �6� reduces to

�Z0 + 2j�M1 cos kd�2 = − �2M2. �10a�

In case �b� when the two planar lines are shifted relative to
each other by one half of the period M3=M for symmetry
reasons while M4 can be neglected �see also Fig. 1�a��. The
dispersion relation is

�Z0 + 2j�M1 cos kd�2 = − 2�2M2�1 + cos kd� . �10b�

In case �c� the planar and the axial lines are exactly above
each other. Since the planes of the loops within the unit cell
are perpendicular to each other the mutual inductance within
the unit cell, M, is zero so that interaction takes place via M3
and M4 which have equal absolute values and opposite signs,
M4=−M3 �see also Fig. 1�b��. The dispersion equation is of
the form

�Z0 + 2j�M1 cos kd��Z0 + 2j�M2 cos kd�

= − 2M3
2�2�1 − cos 2kd� . �10c�

In case �d� the planar and the axial lines are in the half-
period-shifted configuration. In this case M3=−M while M4
can be neglected �see also Fig. 1�b��. The corresponding dis-
persion equation is of the form

�Z0 + 2j�M1 cos kd��Z0 + 2j�M2 cos kd�

= − 2�2M2�1 − cos kd� . �10d�

2. Properties of the dispersion relations

We now illustrate the properties of the dispersion relations
�Eqs. �10a�–�10d�� choosing as an example a set of param-
eters relevant to the actual realization of the elements used in
our experiments. Since one of the potential applications of
metamaterials is in magnetic resonance imaging �MRI�, we
choose f0=�0 / �2��=46.2 MHz corresponding to a magnetic
field close to 1 T. The radius of the element is taken as r0
=10 mm. It is worth mentioning that the chosen approach of
modeling the elements as resonant filament currents still
leaves a considerable degree of generality and was proven to
work well to describe the experimental results for a variety
of metamaterial elements suitable for MRI applications in-
cluding capacitively loaded metallic loops,20 Swiss
Rolls,21,27 and capacitively loaded split pipes.32 The latter
elements shall also be employed in the experiments pre-
sented in Sec. IV. All the elements mentioned have it in

FIG. 3. Configurations of biatomic metamaterial structures with
co-directional �a�, �b� and contradirectional �c�, �d� power flow. �a�
Planar lines above each other. �b� Shifted planar lines. �c� Planar
and axial line above each other. �d� Shifted planar and axial lines.
The nonzero mutual inductances are shown by arrows.
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common that they are designed to work in the “true metama-
terial limit”40 as the radius of elements, about 1 cm, is 2–3
orders of magnitude smaller than the wavelength of the elec-
tromagnetic radiation of 5–15 m �corresponding to resonant
frequencies of 60–20 MHz�. The losses will be characterized
by the elements’ quality factor of Q=105. The stop bands are
indicated by a significant increase of the attenuation con-
stant.

For a clearer comparison of dispersion relations we
choose, for all four configurations, the same period d and the
same distance h between the two lines �see Figs. 3�a�–3�d��.
Note that the distance between neighboring elements within
a planar line cannot be smaller than 2r0. We shall choose d
=24 mm close to this minimum. The distance between the
planar and the axial line cannot be smaller than r0. We shall
choose h=15 mm.

The dispersion equations �10a�–�10d� with propagation
and attenuation constants versus frequency for the four bi-
atomic configurations are plotted in Figs. 4�a�–4�d�. The
dashed lines show the dispersion equations for the unper-
turbed lines �with the interaction between the lines switched

off, M =M3=M4=0�, whereas the solid lines are for the
coupled lines.

In case �a� the identical planar lines are exactly above
each other. Since the lines are identical the unperturbed dis-
persion characteristics �dashed line� must be identical as
well. The unperturbed dispersion equation describes a back-
ward wave corresponding to the coupling constant �1=
−0.09 with the passband given by �1−�1�−1/2=� /�0= �1
+�1�−1/2. In the presence of coupling between the lines one
dispersion curve �black solid line� moves upwards, and the
other one �grey solid line� downwards as may be clearly seen
from Fig. 4�a�. The separation in frequency between the two
branches is determined by the strength of the coupling con-
stant � which for the chosen parameters has the value, �
=0.19. The separation in frequency remains the same for all
values of �d; this conclusion follows also from the form of
Eq. �10a� with the right-hand side �RHS� independent of kd.
For the chosen parameters the interaction between the lines
is so large that the two branches are separated by a complete
stop band. It could be expected that if the distance h between
the lines were larger, the interaction between the lines would

FIG. 4. Dispersion characteristics of the coupled lines of Fig. 3. Dashed lines show the unperturbed dispersion curves.
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be weaker and the separation between the two branches
would not result in a complete stop band between them. In
such a case we would expect the behavior typical for cou-
plers: two values of �d for a single � leading to a beating of
the two signals and consequently to a periodic exchange of
power between the lines. This prediction shall be checked in
Sec. IV where we discuss experimental results.

In case �b� the identical planar lines are shifted relative to
each other by half a period. The unperturbed dispersion
equation of course does not change, but the behavior of the
dispersion equations for coupled lines changes drastically in
comparison with case �a�. It can be seen from the RHS of Eq.
�10b� that the coupling coefficient �and consequently the in-
teraction process� between the MI waves is now different
within the Brillouin zone itself: it is maximum at kd=0 and
entirely absent at kd=�. It may therefore be expected that
the amount of split will depend on �d. This is indeed what
happens as may be seen in Fig. 4�b�. For the chosen param-
eters the coupling constants are �1=−0.09 and �=0.1. The
resulting two branches are very different from each other.
The interaction results in an upper branch with a wider pass-
band than in the unperturbed case �black solid line� and in a
lower branch with a narrower passband �grey solid line�.
There is a noticeable minimum for the lowest branch. This
means that forward waves may also exist for a certain range
of frequency. The probable physical reason is that the mutual
inductance M is positive and large enough to suppress the
negative mutual inductance M1. The position of the mini-
mum may be obtained from Eq. �10b� as follows:

�

�0
= �1 − �1 −

�2

8�1
�−1

, cos kd =
�2

8�1
2 − 1. �11�

Below this point the propagation and attenuation constants
represent the complex modes. Note that we take ��d� so that
waves propagating in the different directions are in the same
half of the Brillouin zone.

In case �c� the planar and axial lines are exactly above
each other. The interaction mechanism is in this case quite
different from the cases of two planar lines �a� and �b�. The
two unperturbed dispersion curves show a backward wave
for the planar line �black dashed line in Fig. 4�c�� and a
forward wave for the axial line �grey dashed line in Fig.
4�c��. These curves correspond to the coupling constants �1
=−0.09 and �2=0.07. Consequently the passband of the
backward wave in the planar line one is slightly wider than
the passband of the forward wave in the axial line two. The
unperturbed dispersion curves cross at �d=� /2 which can
be seen to be a point of degeneracy. The interaction between
the lines is governed by relatively weak coupling constants
�3,4= ±0.05. As can be seen from Eq. �10c� the interaction is
absent for kd=0,� where the unperturbed dispersion curves
are far away from each other and it is maximum for kd
=� /2 at their crossing point. The resulting dispersion curves
show the split of the passband into two with the stop band
around the point of degeneracy. The coupled dispersion
curves are quite close to the unperturbed ones except in the
vicinity of the degenerate point �d=� /2 where complex
modes of high attenuation appear. In both passbands there

are frequency regions with two values of �d for a single �
which would result in a beating of the two signals. Contrary
to case �a� with two backward waves we have here a contra-
directional mode where both forward and backward waves
can simultaneously propagate.

In case �d� the planar and axial lines are in the half-
period-shifted configuration. The unperturbed dispersion
curves �dashed lines in Fig. 4�d�� are the same as in the
unshifted configuration �c�. The coupling mechanism gov-
erned by the coupling constants �=−�4=0.15 changes dras-
tically in comparison with case �c�. As may be seen from Eq.
�10d� the interaction is zero for kd=0 and maximum for kd
=�. The resulting dispersion in Fig. 4�d� shows two complex
passbands supporting both forward and backward waves
with the separation between the two branches increasing
with �d. Another consequence of the interaction between the
lines, that is different within a Brillouin zone, is that the
degenerate point is not at �d=� /2, as in the previous case,
but shifts towards smaller values of �d. The attenuation of
the two modes �solid black and gray lines in Fig. 4�d�� is
different within the passbands: for the lower one the
backward-wave mode �black line� has lower attenuation
whereas for the upper passband the forward wave dominates.

To sum up, in addition to the two classical types of hybrid
modes for coupled waves on unshifted lines �cases �a� and
�c��, we have also observed two novel hybrid modes for the
half-period shifted lines where the interaction is strongly de-
pendent on the propagation constant. In case �b� maximum
interaction is at kd=0 and zero at kd=� whereas for case �d�
the points of maximum and zero interaction are reversed.

IV. EXPERIMENT

We performed a series of experiments in order to check
the validity of our theoretical approach. In particular the
following points were addressed:

�i� the validity of the filament-current approach used for
studies of the anisotropy of the coupling coefficients;

�ii� the validity of the nearest neighbor approximation;
�iii� the verification of the different coupled modes.

A. Elements

The elements used in the experiments are capacitively
loaded split pipes. A photograph may be seen in Fig. 5�b� and
a schematic drawing in Fig. 5�a� showing the dimensions:
inner diameter, 2r0=20 mm, wall thickness, w=1 mm, wall
height, l=5 mm, and gap width, g=2 mm. They are loaded

FIG. 5. �Color online� Schematic presentation of the element
�a�, its photograph �b�.
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by nominally identical capacitors of 330 pF. Their resonant
frequencies and quality factors measured with the aid of a
network analyzer of the type HP8753C were found as f0
=�0 / �2��=46.2±0.2 MHz and Q=105±5.

B. Coupling constant measurements

The magnetic coupling between the elements was deter-
mined by measurements on two elements only. The transmit-
ting loop is placed close to the first element, and the receiv-
ing loop scans the magnetic field produced by the first
element and by the second element. The ratio of the signals
gives the ratio of currents in the elements, I2 / I1, and is re-
lated to the coupling constant20 as

2I2

I1
= ��1 −

�2

�0
2 −

j

Q
�−1

. �12�

Matching the measured dependence of I2 / I1 on frequency
gives the experimental value of �. Note that there are no
other free parameters as the resonant frequency � and the
quality factor Q are known. The measured values of � differ
from the theoretical values provided by our model by less
than 15% in configurations when the elements are close to
each other and start to coincide for distances between the
elements larger than 4r0.

C. Dispersion equations

We analyzed the waveguiding properties of the four bi-
atomic metamaterial configurations �a�–�d� arranging the el-
ements into two lines each containing 16 elements. The pe-
riod d was kept to be 24 mm in all cases, for the distance h
between the lines three values were chosen for each configu-
ration, h=10, 15, 20 mm for cases �a� and �b� and h=15, 20,
and 30 mm for cases �c� and �d�. The first element of line one
was excited by the transmitting loop, and the frequency de-
pendence of the currents in all elements were measured as
the receiving loop was moved first along line one and then
along line two. The measurements were performed in the
1601 frequency points for the range 34–58 MHz with the aid
of the same network analyzer.

To extract the dispersion equations for the coupled lines
we used the following procedure. We assume that for each
frequency � the structure supports two modes with two com-
plex values of kd. We should take into account that the struc-
ture has a finite length and that there are reflected waves as
well. Then the currents in line one and line two can be writ-
ten as follows:

In = a1 exp�− jnk1d� + b1 exp�jnk1d� + a2 exp�− jnk2d�

+ b2 exp�jnk2d� ,

Jn = c1 exp�− jnk1d� + d1 exp�jnk1d� + c2 exp�− jnk2d�

+ d2 exp�jnk2d� . �13�

k1d and k2d can thus be found from an algebraic expression
containing values of any six neighboring currents within ei-
ther line one or line two. Following a similar procedure the
unperturbed dispersion equations can be found from current

measurements of isolated lines. Assuming in this case a
single mode and its reflected wave, the dispersion equation
can be extracted from the values of any three neighboring
currents of the line.

Figure 6 shows the dispersion curves for the case of un-
coupled lines supporting backward and forward waves. The
experimental values are denoted by circles and squares and
the theoretical ones by solid lines. The agreement may be
seen to be excellent. Figure 7 gives a summary of the dis-
persion curves for each one of the coupled configurations.
The first and second columns �Figs. 7�a� and 7�b�� are for
h=20, 15, and 10 mm for planar-planar configurations un-
shifted and shifted, respectively. The third and fourth col-
umns show the dispersion curves for h=30, 20, and 15 mm
for planar-axial configurations, unshifted in Fig. 7�c� and
shifted in Fig. 7�d�. In each of the four columns the top
figure corresponds to the largest separation between the lines
and thus to the weakest interaction, the bottom figure corre-
sponds to the smallest separation and thus to the strongest
interaction. Comparing the figures in each column we can
clearly see the different characters of the respective coupling
mechanisms.

For the first column �Fig. 7�a��, when two planar lines are
exactly above each other �Fig. 4�a��, the unperturbed disper-
sion curve splits into two similar branches; the separation
between the branches grows as the distance, h, between the
lines decreases.

For the second column �Fig. 7�b��, when the planar lines
are half-period shifted relative to each other, the upper
branch is a backward-wave branch with a wider passband,
and the lower branch supports both forward and backward
waves with a minimum within a Brillouin zone �Fig. 4�b��.
The separation between the branches depends strongly on the
propagation constant and is maximum for �d→0 and mini-
mum for �d→�.

For the third column �Figs. 7�c��, when the planar and the
axial line are exactly above each other �Fig. 4�c��, the inter-
action between a backward and a forward wave of Fig. 6
results in a stop band around the resonant frequency. The
coupled dispersion curves differ from the unperturbed ones
mostly in the vicinity of the crossing point �d=� /2. The
smaller the separation between the lines, the better pro-
nounced is the effect.

For the fourth column �Fig. 7�d�� when the planar and the
axial line are half-period shifted relative to each other, the

FIG. 6. Dispersion characteristics of the uncoupled planar and
axial lines: theory �solid lines� and experiment �circles and squares�.
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separation between the branches depends strongly on the
propagation constant �Fig. 4�d��. The separation is maximum
for �d→� and minimum for �d→0. The degenerate point
may be seen to be around �d=� /2 for the distance h
=30 mm between the lines and it moves to the left as the
distance between the lines decreases.

The agreement between theory �provided by Eqs.
�10a�–�10d�� and experiment may be seen to be very good in
the passbands in each one of the 12 diagrams of Fig. 7. Note
that the experimental points in the stop bands had magni-
tudes close to the noise level due to the high attenuation so
they are probably spurious.

D. Validity of nearest neighbor approximation

The theoretical curves were obtained in the approximation
of nearest neighbor interactions where each element is inter-
acting with up to five neighbors.

As an additional check of the validity of the model we
also performed numerical simulations modeling the signal
propagation in our structures by taking all interactions into
account. Figure 8 shows an example of the power distribu-
tions along the structure for the unshifted planar-planar con-
figuration with the separation between the lines h=20 mm at
the frequency f =� / �2��=45.8 MHz which is close to the
resonant frequency of the individual element. Figures 8�a�

and 8�b� show the distribution of detected power along lines
one and two respectively. The squares are the experimental
values, the diamonds are the values obtained from the ana-
lytical theory with nearest neighbor interactions, and the
circles are the numerical simulation values from impedance
matrix calculation taking all interactions into account.21 The
agreement between experiment, theory and numerical results
may be seen to be good. The beating of the signals in line
one and line two are in antiphase, as the energy is transferred
from line one to line two and back. At the chosen frequency
the two lines act as a co-directional coupler �Fig. 7�a�, h
=20 mm�, and the corresponding values of the propagation
constant are �from Eq. �10a�� �1d=0.36� and �2d=0.73�.
The coupling length characterizing the period of energy
transfer is �=� / ��1−�2�. This gives the period of the energy
exchange of about five elements.

A similar agreement between the calculated and measured
values of current amplitudes within the structure is obtained
for all configurations for frequency values corresponding to
the passbands.

V. PRACTICAL IMPLICATIONS

An area of potential applications of biatomic metamaterial
structures supporting magnetoinductive waves is magnetic

FIG. 7. Dispersion characteristics of the coupled lines: Theory �solid lines� and experiment �circles and squares�. Unshifted �a� and
shifted �b� planar-planar lines with h=20,15,10 mm. Unshifted �c� and shifted �d� planar-axial lines with h=30,20,15 mm.
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resonance imaging. It is a technique where strong dc mag-
netic fields and weak rf magnetic fields are involved. Ferro-
magnetic materials are unsuitable because they would inter-
fere with the dc magnetic field. What is needed is a material
which has high magnetic response in the narrow frequency
range around the magnetic resonance being nonmagnetic at
dc. Magnetic metamaterials supporting magnetoinductive
waves can easily satisfy these requirements. Their wave-
length is much shorter than the free-space wavelength of the
electromagnetic radiation, which implies that the size of the
magnetoinductive wave devices is also small relative to the
wavelength. For the above mentioned example of the co-
directional coupler the free-space wavelength of electromag-
netic radiation is about 6.6 m, whereas the full power trans-
fer from the first �excited� to the second line takes place on a
much smaller distance of 6 cm. The additional flexibility in
tailoring the dispersion properties of coupled MI waves pro-
vided by biatomic metamaterial structures further improves
the possibility of manipulating the magnetic fields on a sub-
wavelength scale. Parametric amplification of magnetoinduc-
tive waves propagating in a biatomic metamaterial structure,
which includes nonlinear elements, e.g., a varactor diode,46,47

may be used for enhancing the performance of MRI devices
by improving the signal-to-noise ratio.

The mechanism for near-field imaging with silver multi-
layered metamaterials48 is provided by excitation of surface

plasmons.6 Regarding magnetic metamaterials, there is, how-
ever, not enough evidence at the moment to say which of
various mechanisms is responsible for near-field imaging
with magnetic metamaterials or whether all of them show
different facets of the same physical phenomenon. Pendry’s
proof of “perfect imaging” was based on the fact that with a
negative index material it is possible �at least in principle� to
obtain a flat transfer function in the spatial frequency
region.6 An alternative explanation of imaging for the two-
layer case may be based on the curvature of the dispersion
characteristics as discussed for example by Zengerle,49 Smith
et al.,50 Silin,51 and Belov et al.52 The explanation of imag-
ing with a single layer of Swiss Rolls was based on the
existence of a negative permeability region.53–55 The pres-
ence of MI waves in a one-dimensional layer was shown to
lead to strong distortion of the image.27,54 When the structure
consists of two parallel two-dimensional arrays of metama-
terial elements then MI waves may play a positive role.24

They may be responsible for obtaining the right current dis-
tribution on the outer array for imaging when the inner array
is excited by the object. The present model of coupled modes
in a biatomic metamaterial structure is potentially suitable
for the design of a near-field magnetoinductive lens with
required properties.

Recent developments in the field of metamaterials re-
search when miniaturization of split rings using
nanofabrication56–58 led to the increase in the magnetic reso-
nance frequency of metamaterials up to 100–300 THz
�3–1 �m wavelength� may make near-field manipulating
magnetic metamaterial devices feasible even in the visible
region. The proposed model, generalized to the case of com-
plex coupling constants due to retardation effects, may pro-
vide a useful tool for the design of such nanostructures with
desirable guiding properties.

VI. CONCLUSIONS

A comprehensive theoretical and experimental study of
dispersion properties of biatomic metamaterial structures,
consisting of two coupled one-dimensional lines of metama-
terial elements, each one capable of propagating a magneto-
inductive wave, was presented. The anisotropy of the mag-
netic coupling between individual elements determined
magnetic properties of these structures. The large variety of
possible coupling arrangements allowed the tailoring of the
dispersion curves for particular requirements. A general for-
mulation in terms of coupling between any two nearest
neighbors was set up. Modes of coupled guides supporting
forward and/or backward waves with coupling strength de-
pendent on the propagation constants were identified and the
corresponding hybridization mechanisms for dispersion
equations of magnetoinductive waves determined. Analytical
predictions were verified both experimentally and numeri-
cally on a variety of coupled waveguides. The wavelength of
magnetoinductive waves being much shorter than the free-
space wavelength opens up the possibility of manipulating
the near-field on a subwavelength scale. The approach can be
employed for the design of near-field manipulating devices
including a near-field magnetoinductive lens.

FIG. 8. Power distribution along the excited line one �a� and line
two �b� for the unshifted planar-planar configuration. h=20 mm, f
=45.8 MHz. Experiment �squares�, analytical theory with nearest-
neighbor approximation �diamonds�, numerical simulation includ-
ing all interactions �circles�. The lines connecting the symbols serve
as a guide to the eye.
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