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The ordering and magnetic properties of bcc-based iron-cobalt alloys have been investigated as a function of
the atomic composition. The different states of ordering in Fe-Co alloys, from the fully ordered to the disor-
dered state, and their effect on the atomic volume, the magnetic moment, and enthalpy of formation, were
described using the recently developed variational cluster expansion method based on first-principles data. The
coarse-grained description of the energetics of the system allowed one to identify several new ordered struc-
tures, additional to the known FeCo-B2 �CsCl� ground state, after an extensive combinatorial search in the
configurational phase space. It is found that the atomic volume and magnetic moment do not follow Vergard’s
law for either the ordered or disordered Fe-Co alloys. However, the equilibrium values of the atomic volume
and the magnetic moment depend linearly on each other. The implications of such results on Fe-Co nanostruc-
tured systems are discussed.
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I. INTRODUCTION

Alloys of iron and cobalt constitute an important class of
soft magnetic materials with a wide and important range of
technological applications where high magnetic flux densi-
ties are required. Fe-Co alloys find application in data stor-
age, high performance transformers, and pole tips for high
field magnets.1 More recently, efforts in devising a new gen-
eration of aircrafts, where the pneumatic, hydraulic, and me-
chanical components are to be replaced by their electric and
magnetic counterparts, have focused on developing new al-
loys that can meet the stringent operation conditions of an
aircraft, i.e., alloys that can perform at high temperatures
��600 °C� while sustaining high inductions and good ther-
mal stability for extended periods of time ��5000 h�. The
More Electric Aircraft initiative2 has found Fe-Co based al-
loys the material of choice because of their unique combina-
tion of high saturation magnetization, high Curie tempera-
tures, good permeability, good strengths, and excellent
performance-to-weight ratio.1,2

Scientifically, on the other hand, iron-cobalt alloys pose
interesting questions because of their structural and physical
properties.3 At high temperatures the fcc-based Fe-Co alloys
are stable �austenite�, transforming into bcc-based �ferrite�
structures upon lowering the temperature. Fe-Co alloys are
ferromagnetic in the whole composition range with Curie
temperatures that decrease linearly with composition for Co-
rich alloys, while coinciding with the austenite-to-ferrite
transition temperature �T�985 °C� for near stoichiometric
FeCo alloys. At lower temperatures, the system undergoes an
order-disorder transformation between the bcc disordered ���
phase and the B2 �CsCl-type, ��� phase. The ordered B2
phase exists over a considerable concentration range around
equiatomic composition, i.e., between 28 and 75 at. % Fe
with a maximum order-disorder temperature of �730 °C.
The assessed temperature-concentration phase diagram of
Nishizawa and Ishida shows no other stable intermetallic
phases for temperatures higher than 500 °C.4 However, over

the years it has been suggested that additional intermetallic
phases are present at lower temperatures.5–7 Masumoto et
al.5 proposed the existence of FeCo3 and Fe3Co superstruc-
tures based on their heat-capacity and electric conductivity
measurements, where maxima for such quantities were found
around the 25 and 75 at. % Fe. Subsequently, Viting6 and
Goldenberg et al.7 also found, by different methods, signs of
both superlattices. There are also investigations that do not
support the existence of other ordered structures additional to
the FeCo-B2 phase. Asano and co-workers,8 based upon
their neutron diffraction and Mössbauer measurements on
Fe-Co fine particles, ruled out the existence of the Fe3Co
structure. However, recent nuclear-magnetic resonance ex-
periments by Wojcik and co-workers9 on codeposited
Fe-Co thin films seem to verify the early claims of new
Fe-Co ordered structures. Very recently, on the basis of first-
principles electronic structure calculations and combinatorial
analysis, we found that Fe-Co alloys display a dense se-
quence of ground states additional to the known B2 phase.10

Our results showed that the L60 phase �Ti3Cu-type� is stable
against phase separation between neighboring phases, i.e.,
between the Fe11Co5 and the Fe13Co3, thus constituting a true
Fe3Co ground-state structure.

This paper aims to provide an integral picture of the in-
terplay between structure and magnetism in bcc-based
Fe-Co alloys by enlarging the analysis of the energetics of
Fe-Co at low temperatures advanced in Ref. 10, and by ex-
panding it to other physical quantities of interest, such as the
atomic volume and the magnetic moment. Particular empha-
sis has been set on the different degrees of partial order and
their impact on the aforementioned quantities when the
atomic concentration is varied. The formalism of the cluster
expansion11,12 is used to bridge the quantum-mechanical de-
scription of several ordered structures with the statistical me-
chanics necessary to model partially ordered alloys. This al-
lows us to make the proper comparisons with experimental3

and previous theoretical work,13–18 especially with those
within the virtual crystal19,20 or the coherent-potential
approximation,21–25 that aimed to describe the magnetic
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properties of disordered Fe-Co alloys. Our theoretical results
show good agreement with the available experimental data.

The theoretical tools are discussed in Sec. II, where the
recently developed variational approach to the cluster
expansion27 is presented in detail, together with the mixed-
basis plane-wave pseudopotential technique employed to
generated the first-principles Fe-Co data. The results are pre-
sented in Sec. III followed by discussions on the existence of
the Fe3Co superlattices and on the implications of a dense
sequence of ground-state structures for nanostructured iron-
cobalt alloys. The paper is closed with a summary of the
results and the conclusions.

II. THEORY

A. Cluster expansion method

The cluster expansion method11,12 is commonly applied in
crystals where each atom can be assigned to a lattice site p.
For binary systems, the occupation variable �p= +1�−1�
when lattice site p is occupied by the atomic species A�B�,
respectively. The whole crystal with N lattice sites is charac-
terized by the configuration vector of the occupation of all
lattice sites �i= ��1 ,�2 , . . . ,�N�. The cluster expansion
method states that any function F of the alloy configuration
can be expressed as11,12

F��i� = J0 + �
�

D�J�����i� , �1�

where ����i� are the lattice averages of the cluster func-
tions, defined as the product of the occupation variables on
the cluster of � lattice points, J� are the effective cluster
interactions �ECIs�, and the D� account for the number of
symmetry-equivalent clusters having identical effective clus-
ter interactions. Examples of alloy functions that depend on
the configuration are the atomic volume, the magnetic mo-
ment and, of course, the enthalpy of formation.

An important characteristic of Eq. �1� is that the �� con-
stitute a complete set of basis functions in the configuration
space.11 In other words, once the corresponding expansion
coefficients J� are determined, we can easily compute F for
any configuration � of the system, including all ordered and
disordered states. Rigorously, the determination of an infinite
number of ECIs needs an infinite set of configurations. The
viability of Eq. �1� resides in the notion that configurational
degrees of freedom and the crystal structures in metals are
strongly correlated and thus amenable to be described by a
small number of parameters.28 In the past two decades, a
wealth of work on alloys and surfaces thereof, have been
done using the cluster expansion thus establishing it as a
reliable tool for describing ab initio configurational thermo-
dynamics of alloys.29,30

The practical implementation of Eq. �1� relies on the
knowledge of F for a given set of ordered structures, i.e., for
a certain set of �’s, so that the expansion can be inverted,
that is, the expansion coefficients �ECIs� can be determined.
This is easily accomplished by truncating the expansion and
retaining a small number of terms �10–20�. Deciding which
terms ought to be included is a different matter and has been

the subject of protracted discussions in the literature.29–33

Historically, due to the technical difficulties to large and re-
liable data sets of different configurations, especially from
electronic theories, cluster-expansion practitioners selected
relevant ECIs in Eq. �1� on the basis of short-rangeness34 and
ad hoc spatial-decay of the ECIs criteria.30 The associated
expansion coefficients, that is, the effective cluster interac-
tions, were determined by minimizing the least-squares fit-
ting error

�Fit
2 =

1

Ns
�

i

f i�Fi − �
�

D�J�����i��2
, �2�

for the input structures i=1, . . . ,Ns and a set of Nc cluster
figures �=1, . . . ,Nc. The �constant� structure weights f i al-
low one to give a certain structure, e.g., a ground state more
weight.35 The structure-inversion method of Connolly and
Williams34 corresponds to the special case when Ns=Nc and
Eq. �1� can be inverted. It has been shown,30 however, that
Ns�Nc provides better ECIs.

With the advent of powerful and efficient computer re-
sources, both hardware and software �band-structure codes�,
this original scenario has shifted toward a more heuristic
approach where the selection of the cluster figures is done by
minimizing the cross-validation score �CV�:31

�CV
2 =

1

Ns
�

k

fk�Fk − �
�

D�J�
�k�����k��2

. �3�

The CV score is the mean-square error for predicting Fk
when the expansion is performed without taking configura-
tion �k into account, for all Ns structures considered. For
obvious reasons, this process has been also termed “leave-
one out” cross-validation.31

Currently, the selection of the cluster figures is done based
on a compactness criterion31–33 or on the basis of an auto-
mated genetic-algorithm process.36 The latter method illus-
trates what we meant by heuristic approaches. In their con-
tribution, Hart and co-workers36 used a genetic-algorithm
approach, where the CV score is optimized by determining a
small number ��5� of many-body cluster figures out of a
pool of clusters ��50� generated on the basis of maximum
bond length ��fifth nearest neighbor�. Their results for bcc-
and fcc-based systems showed that good CV scores can be
obtained with a small number of cluster figures, some of
them quite open.

B. Variational approach to the cluster expansion method

In this paper we have used a newly developed variational
approach27 to determine the relevant cluster figures in the
cluster expansion. A good way to present the method is to
consider the following question: How to know if a given set
of cluster figures produces indeed the lowest prediction er-
ror? This is an important question because we will always
have finite �limited� amount of input data from which we
would like to get the best expansion possible. And by the
“best expansion” we mean a physically transparent and nu-
merically efficient expansion that produces the smallest pos-
sible fitting and prediction errors. We have proposed an effi-
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cient algorithm based on weighting the expansion
coefficients in Eq. �2�. The new objective function then takes
the form

�Gen
2 =

1

Ns − 1
� �

i�k

Ns−1

f i�Fi − �
�

D�J�
�k�����i��2

+ �
�

D�w�
2J�

2� . �4�

The optimum value of the weights is determined from the
minimization of the average prediction error

��CV
2

�w�

=
�

�w�
	 1

Ns
�

k

fk�Fk − �
�

D�J�
�k��w�����k��2
 = 0,

�5�

for all clusters �. We have written J�
�k��w� to emphasize that

the ECIs are now functions of the weights. In practice, this
optimization strategy selects the relevant clusters by assign-
ing them low weights and discarding clusters that do not
contribute to a stable expansion by associating them with
large weights. The most important characteristic of our
method is that the process of sorting out irrelevant clusters is
driven by the optimization of the cross-validation error in a
variational way. Another relevant aspect of our method is
that both weighted fitting and prediction errors always de-
crease with the number of clusters, contrary to the traditional
cross-validation score.27

It is obvious that the minimization of �CV
2 in Eq. �5� can-

not yield useful results if too many cluster figures are used to
fit a given set of input data, i.e., Nc�Ns. In order to complete
Eqs. �4� and �5� an optimization strategy is required that
judges the stability of the cluster expansion coefficients. This
is achieved by systematically removing clusters from the ex-
pansion and monitoring the stability of the expansion coeffi-
cients. The simplest sort-out mechanism consists of remov-
ing the cluster with the lowest value of �D�J�� after the
weights have been optimized, and then minimizing �CV

2

again �Eq. �5�. This procedure is repeated until the predic-
tion error of the reduced pool starts to increase more than a
certain numerical value. Then a significant cluster figure was
removed. At this stage the sorting-out procedure can still be
continued to further decimate the number of clusters at the
expense of a larger prediction error.

C. First-principles calculations of selected ordered Fe and Co
structures

The ab initio calculations of the enthalpy of formation,
atomic volume, and magnetic moment �the F’s in Sec. II A
for Fe-Co alloys were performed using a mixed-basis plane-
wave pseudopotential �MBPP� implementation as encoded in
the Stuttgart package.37 The MBPP code is particularly well
suited for describing the electronic properties of transition
metals and their alloys, since the approach successfully com-
bines the merits of plane-wave pseudopotential methods with
an atomic-like basis—that handles the narrow-band elec-
tronic states with few localized functions. This characteristic

makes the MBPP computationally efficient, since few plane
waves are needed to provide converged results. For our
present calculations of Fe, Co, and their alloys, we have used
a plane-wave energy cut-off Epw=18 Ry and five local orbit-
als of d symmetry per atom. The local orbitals were con-
structed by trimming the respective atomic pseudowave
function beyond a cut-off radius of 2.0 bohr for both Fe and
Co atoms. This muffin-tin radius is well below the touching-
spheres limit, thus allowing for structural relaxations in
Fe-Co alloys. Also, we have used norm-conserving, nonlocal
pseudopotentials38 including a nonlinear partial-core correc-
tion for the exchange and correlation contribution,39 which is
very important in treating spin-polarized systems.

In all the calculations we used a generalized gradient ap-
proximation �GGA� to the exchange and correlation energy
as proposed by Perdew, Burke, and Ernzerhof.40 The electron
densities were calculated in a Fourier representation enclos-
ing plane waves up to 900 Ry. The k-point mesh integration
was carefully done using a special set of points as provided
by the Moreno-Soler scheme41 together with a Gaussian
broadening of 7 mRy. Using an equivalent set of k points
guarantees the best possible cancellation of errors when com-
puting enthalpies of formation. Besides, it has been shown
that equivalent k-point convergency is faster than absolute
convergency.30 A grid of 16�16�16 k points for the body-
centered cubic �bcc� unit cell was used in all calculations or
denser when this k-point mesh was incommensurate with the
periodicity of the structure. With the above-mentioned pa-
rameters, enthalpies of formation were numerically con-
verged to within 0.1 mRy/atom. In Table I we show our
MBPP-GGA results for equilibrium atomic volume and the
magnetic moment for Fe and Co in a bcc structure, together
with results of previous calculations found in the literature.
Experimental data are quoted where available.

Our MBPP-GGA results compare very well with previous
first-principles calculations and experimental results. The en-
ergy difference between the nonmagnetic and the spin-
polarized solution �Emag� in Fe bcc also shows sizable varia-
tions that might be ascribed to the promotion of the 3p states
as semicore states. This is reflected in a slightly smaller
atomic volume and magnetic moment. On the other hand, the
discrepancy between the experimental and the predicted
magnetic moment for bcc Co is not due to computational
approximations but due to other factors.

Cobalt occurs naturally in an hexagonal close-packed
structure that changes into a face-centered cubic lattice
upon raising the temperature above 427 °C. Body-centered
cubic Co is not found in nature. However, after its ex-
perimental realization by Prinz as thick films on GaAs
substrate,61 bcc cobalt drew a great deal of attention from
the theoretical community, especially on its mechanical56

and magnetic55,56,58–60 properties—the first band-structure
calculations on bcc-Co were performed by Callaway and
co-workers,62 using a linear combination of Gaussian orbitals
method. All these calculations �see Table I� predicted a mag-
netic moment of about 1.7�B in contrast to the experimental
measurements of 1.5�B. Although initially it was believed
that substrate strain effects were responsible for such a low
value of the magnetic moment, later experimental63 as well
as theoretical64 evidence pointed toward contamination as
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the source for the low magnetic moment in bcc cobalt.
The magnetic and mechanical properties for selected

Fe-Co ordered structures as calculated in the MBPP are pre-
sented in Table II. Contrary to the pure elements, theoretical
investigations are less abundant and mostly focused on pre-
dicting the magnetic moment. Experimental information is
also scarce especially for the mechanical properties. The
available theoretical results for the B2 phase �CsCl-type� of
Fe-Co are consistent among themselves, showing an atomic
volume within few percent of the experimental value. The
data show the well-known features of GGA and the local-
density approximation �LDA� when applied to magnetic sys-
tems, that is, LDA predicts smaller atomic volumes and low
values for the magnetic moment. The GGA corrects some of
the overbinding of the LDA but, in general, overestimates the
magnetic energy, predicting higher magnetic moments. The
enthalpy of formation �E, i.e., the energy of a given con-
figuration referred to that of the concentration-weighted av-
erage of the pure components, for the B2 phase is
−9.3 mRy/atom, which agrees well with our projector aug-
mented wave �PAW� calculations. In the case of the B32
�NaTl-type� and the D03 �Fe3Al-type� structures, we also

found a negative enthalpy of formation indicating an order-
ing tendency in this system. The comparison in Tables I and
II, albeit brief, provide a measure of the reliability and accu-
racy of the MBPP first-principles calculations in Fe-Co al-
loys �see Sec. III�.

III. RESULTS

We used the mixed-basis plane-wave pseudopotential
method described in Sec. II C to calculate the enthalpy of
formation and the magnetic moment of a set of 68 FenCom
ordered structures. The atomic volume was obtained from
the fit of the Vinet equation of state65 to the calculated data.
For each structure, all the crystal parameters were relaxed,
either by minimizing the total energy against the proper dis-
tortion, e.g., volume and the c /a ratio, or by minimizing the
forces on the atoms with positions not fixed by symmetry.
The atomic positions were relaxed using the Broyden-
Fletcher-Goldfarb-Shanno �BFGS� method,66 achieving an
accuracy of 1 mRy/a .u. Table III summarizes the results of
the calculations. Note that when a structure has a known
Strukturbericht designation symbol we have listed it in the
table next to the corresponding stoichiometry. Further details
of the crystal structures of the calculated Fe-Co compounds
are found in the Appendix.

The enthalpy of formation �E, i.e., the energy of a given
configuration referred to that of the concentration-weighted
average of the pure components,

�E��� = E��� − xE�Fe� − �1 − x�E�Co� , �6�

is negative for all structures considered, indicating a strong
tendency for ordering in Fe-Co alloys. Spin-polarization is

TABLE I. Structural and magnetic properties of bcc Fe and Co
obtained in this paper and compared with previous first-principles
calculations and experimental measurements. All calculations were
performed using GGA for the exchange and correlation �xc� poten-
tial with the exception of those using the von Barth-Hedin �vBH�
functional. Perdew and Wang GGAs are denoted by PW86 �Ref. 42�
and PW91 �Ref. 43�. NCPP and USPP denote norm-conserving and
ultrasoft pseudopotentials, respectively. Projector augmented wave
�PAW� results from VASP �Ref. 44�. Emag is the difference between
the nonmagnetic and the ferromagnetic total energies.

Metal Method
XC
type

V
�a .u.3�

M0

��B�
Emag

�mRy/atom� Ref.

Fe MBPP PBE 79.6 2.32 44.0 This work

MBPP PBE 79.3 2.27 43.8 45

MBPP PW86 87.8 2.35 46.0 46

MBPP PW86 84.1 ¯ 41.0 47

LAPW PW86 80.7 2.13 35.1 48

LAPW PW91 76.8 2.17 ¯ 49

LAPW PW91 77.2 2.17 33.9 50

LMTO PW91 77.0 2.24 28.7 51

NCPP PW91 78.7 2.32 38.0 52

USPP PW91 79.0 2.32 40.6 53

PAW PW91 76.6 2.20 32.8 54

Exp. ¯ 79.5 2.22 ¯ 3

Co MBPP PBE 76.8 1.77 29.6 This work

LAPW vBH 69.5 1.62 ¯ 55

LAPW vBH 71.0 1.73 23.0 56

LAPW PW91 76.5 1.74 ¯ 57

LMTO vBH 75.3 1.73 11.0 58

ASW vBH 74.0 1.68 ¯ 59

PAW PW91 74.5 1.69 ¯ 60

Exp. ¯ 75.7 1.53 ¯ 61

TABLE II. Structural and magnetic properties of selected bcc
Fe-Co alloys obtained in this paper and compared with previous
first-principles calculations and experimental measurements.

Structure Method
XC
type

V
�a .u.3�

M0

��B�
�E

�mRy/atom� Ref.

FeCo-B2 MBPP PBE 79.7 2.29 −9.3 This work

PAW PBE 78.0 2.25 −8.0 This work

LAPW PBE 77.6 ¯ ¯ 26

LAPW PW86 71.8 2.25 ¯ 17

LMTO VWN ¯ 2.27 ¯ 24

ASW vBH 76.2 2.18 ¯ 18

ASW vBH 75.3 2.21 ¯ 15

Exp. ¯ 78.8 2.40 ¯ 3

Fe2Co2-B32 MBPP PBE 79.3 2.22 −4.5 This work

PAW PBE 77.5 2.17 −3.4 This work

ASW vBH 75.2 2.15 ¯ 15

Fe3Co-D03 MBPP PBE 80.0 2.36 −6.2 This work

PAW PBE 78.4 2.32 −5.0 This work

ASW vBH 76.0 2.30 ¯ 15

FeCo3-D03 MBPP PBE 78.1 2.00 −3.4 This work

PAW PBE 76.4 2.00 −2.7 This work

ASW vBH 75.1 1.90 ¯ 15
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TABLE III. Atomic volume, average magnetic moment, and enthalpy of formation, of ordered bcc-based
Fe-Co structures calculated with the MBPP using the GGA-PBE for the xc potential. The last column stands
for the enthalpy of formation obtained when the spin polarization is not considered. The enthalpy of forma-
tion of the Fe-rich ground states predicted by the cluster expansion is shown between parentheses.

Composition Structure
Volume
�a .u.3�

M0

��B�
�E
�mRy/atom�

�Ensp

�mRy/atom�

Fe15Co Fe15Co 80.10 2.382 −1.77 �−1.84� 48.39

Fe7Co �100� SL 80.29 2.414 −3.33 47.84

Fe7Co 80.16 2.392 −3.53 �−3.64� 47.75

Fe6Co �100� SL 80.30 2.405 −3.92 47.59

Fe8CoFe4Co-�100� SL 80.20 2.393 −3.90 47.46

Fe13Co3 Fe13Co3 80.25 2.394 −5.19 �−5.16� 47.00

Fe4Co �100� SL 80.25 2.392 −5.43 46.90

Fe3Co D03 80.00 2.360 −6.19 45.65

L60 80.06 2.364 −6.52 �−6.63� 46.00

�100� SL 80.15 2.376 −6.46 45.98

Fe6Co2-�100� SL 80.06 2.345 −3.46 45.58

Fe3CoFeCoFe2-�100� SL 80.23 2.381 −5.94 46.16

Fe5Co2 �100� SL 79.98 2.332 −4.04 44.93

Fe3CoFe2Co-�100� SL 80.16 2.377 −7.08 45.42

Fe11Co5 Fe11Co5 79.86 2.331 −7.61 �−7.67� 44.90

Fe2Co�Fe3Co�2Fe2CoFeCo-�100� SL 80.13 2.368 −7.23 45.09

Fe2Co C11b 80.15 2.364 −7.59 44.71

�FeCo�2Fe�FeCo�2Fe3-�100� SL 80.11 2.359 −7.35 44.91

Fe8Co4 79.87 2.330 −7.96 44.67

Fe5Co3 Pd5Ti3 80.03 2.344 −7.99 44.08

�100� SL 79.53 2.257 −3.24 43.09

Fe2Co2FeCoFe2-�100� SL 79.73 2.285 −5.83 43.52

Fe5Co3 79.89 2.331 −8.67 �−8.67� 44.17

Fe3Co2 Al3Os2 79.93 2.323 −8.16 43.75

�100� SL 79.70 2.281 −5.07 43.01

Fe4Co3 Cu4Ti3 79.60 2.274 −6.49 42.39

�FeCo�3Fe-�100� SL 79.83 2.310 −8.48 43.24

�100� SL 79.39 2.233 −3.72 42.00

Fe9Co7 Fe9Co7 79.82 2.311 −9.10 �−9.09� 43.29

Fe5Co4 V4Zn5 79.51 2.252 −5.58 42.11

��FeCo�3Fe�2Fe�FeCo�2-�100� SL 79.85 2.309 −8.66 43.17

FeCo B2 79.70 2.289 −9.32 �−9.46� 42.40

B32 79.29 2.217 −4.49 40.81

B11 79.33 2.214 −5.77 41.06

Fe4Co4-�100� SL 79.04 2.170 −3.28 40.65

Fe2Co2�FeCo�2-�100� SL 79.49 2.241 −7.55 41.62

Fe3CoFeCo3-�100� SL 79.25 2.208 −5.41 41.12

Fe4Co5 V4Zn5 78.98 2.163 −4.63 40.06

��CoFe�3Co�2Co�CoFe�2-�100� SL 79.26 2.200 −8.55 40.75

Fe7Co9 Fe7Co9 79.23 2.206 −7.83 40.68

Fe3Co4 Cu4Ti3 78.89 2.139 −5.98 39.40

�CoFe�3Co-�100� SL 79.14 2.171 −8.27 40.19

�100� SL 78.74 2.123 −3.57 39.11

Fe2Co3 Al3Os2 78.93 2.128 −7.61 39.38

�100� SL 78.67 2.110 −4.23 38.72

STRUCTURE AND MAGNETISM IN bcc-BASED IRON-¼ PHYSICAL REVIEW B 73, 224208 �2006�

224208-5



fundamental in obtaining a correct description of the energet-
ics of Fe-Co alloys,16,20,26 as demonstrated by Fig. 1 and the
last column in Table III, where we show the formation en-
thalpy �Ensp when the spin-polarization has been switched
off from the fully-relaxed magnetic results. In order to make

the comparison meaningful, we have used the bcc ferromag-
netic phases of Fe and Co as the standard states in both �E
and �Ensp. The difference between these two energies give
us, in a first approximation, an estimation of the magnetic
energy in Fe-Co alloys. Note that �Ensp contains both the
inter- and intra-atomic magnetic contributions to the total
energy, explaining why it is several times larger than �E. We
will return to this point later on.

The relaxation effects are, in general, small in Fe-Co al-
loys, being more pronounced on the Co-rich side but usually
of a few percent only. This is understandable since Fe and Co
have very similar atomic sizes and electronic structures—
they are neighbors in the periodic table. It also explains the
success of simpler approaches such as the virtual crystal ap-
proximation in describing the magnetism of Fe-Co
alloys.19,20 Treating Fe-Co alloys as disordered systems for
all temperatures and concentrations is a different issue, since
there are no a priori indications that this might be the case.
The cluster expansion technique, as presented in Secs. II A
and II B, is an ideal tool to investigate this point because it
allows for a direct comparison between the ordered and dis-
ordered states.67 Since the disordered state of the alloy is
calculated from the knowledge of the set of ordered struc-
tures �Table III�, it has all virtues of the latter, including the
relaxation contributions and the accuracy of the first-
principles calculations.

We have cluster expanded the formation enthalpies of
Fe-Co alloys of Table III, finding that a small set of 12 ECIs

TABLE III. �Continued.�

Composition Structure
Volume
�a .u.3�

M0

��B�
�E
�mRy/atom�

�Ensp

�mRy/atom�

Fe3Co5 Pd5Ti3 78.85 2.112 −6.91 38.74

�100� SL 78.55 2.085 −3.06 38.22

Co2Fe2CoFeCo2-�100� SL 78.68 2.109 −5.11 38.61

Fe3Co5 Fe3Co5 78.84 2.138 −6.53 39.31

FeCo2 C11b 78.57 2.061 −5.96 37.55

�CoFe�2Co�CoFe�2Co3-�100� SL 78.60 2.082 −6.40 38.05

Fe4Co8 78.58 2.090 −5.79 38.19

Fe5Co11 Fe5Co11 78.46 2.070 −5.26 37.77

Co2Fe�Co3Fe�2Co2FeCoFe-�100� SL 78.47 2.057 −5.67 37.43

Fe2Co5 �100� SL 78.12 2.010 −3.17 36.32

Co3FeCo2Fe-�100� SL 78.30 2.028 −5.17 36.69

FeCo3 D03 78.11 2.001 −3.38 36.05

L60 78.11 2.008 −4.08 36.46

�100� SL 78.07 1.998 −4.31 36.05

Fe2Co6-�100� SL 77.98 1.985 −2.71 35.74

Co3FeCoFeCo2-�100� SL 78.12 1.998 −4.60 36.25

FeCo4 �100� SL 77.74 1.940 −3.77 34.82

Fe3Co13 Fe3Co13 77.77 1.939 −2.97 34.45

FeCo6 �100� SL 77.52 1.896 −2.52 33.65

Co8FeCo4Fe-�100� SL 77.51 1.894 −2.61 33.75

FeCo7 �100� SL 77.42 1.880 −2.25 33.52

FeCo7 77.43 1.886 −1.95 33.73

FeCo15 FeCo15 77.10 1.825 −0.94 32.35

FIG. 1. �Color online� Enthalpy of formation of ferromagnetic
�circles� and of paramagnetic �squares� Fe-Co alloys. The latter was
obtained from the fully relaxed ferromagnetic case by switching the
spin polarization off. Positive values of the enthalpy of formation
describe phase-separating alloys whereas the opposite stands for
ordering systems.
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is enough to describe the configurational aspect of the chemi-
cal bonding with an accuracy of 0.12 mRy/atom �prediction
error�. Figure 2 contains both the direct density-functional
�DFT� and the cluster expanded �CE� formation enthalpies.
The formation enthalpy of the random alloy is denoted by a
solid line. Several features in Fig. 2 are worthy to be empha-
sized. First, the enthalpy of formation of the ordered com-
pounds around equiatomic composition is almost twice as
big as the corresponding enthalpy of the random alloy, point-
ing to short- and long-range order effects important for the
configurational thermodynamics of Fe-Co. Second, the cal-
culated enthalpies of formation reproduce the asymmetry ob-
served in the experimental phase diagram,4 showing stable
ordered structures for the Fe-rich side. This is an interesting
result, especially because the experimental phase diagram
shows FeCo-B2 �CsCl� as the only ordered phase. According
to our results, there are seven additional bcc-based Fe-rich
ground-state structures. A third interesting characteristic of
Fig. 2 is that Fe3Co superlattices are stable in the form of a
L60 structure, thus supporting the existence of such superlat-
tices for Fe-Co. We did not find, however, stable bcc-based
FeCo3 superstructures. Let us comment on each of these
points separately.

One of the great advantages of the cluster expansion tech-
nique is that once the expansion is converged �as judged by
the fitting and prediction errors�, one can straightforwardly
predict the energy of any configuration with virtually no
computational effort. This is a very useful fact when con-
fronted with the possibility that a system might have new
phases. We used the above-obtained ECIs to a direct enu-
meration ground-state �GS� search, where the enthalpy of
formation of bcc-based supercells, of different shape and
containing up to 32 atoms, was evaluated. Our combinatorial
search resulted in 8 ground-states, out of the 1.5�1010

scanned configurations, for Fe-rich Fe-Co alloys. These GSs,
depicted in Fig. 2 with closed circles, proved to be stable
against phase separation into structures of neighboring com-
position. We also ascertained the existence of such new GS
structures by directly calculating their enthalpy of formation
using our first-principles total energy mixed-basis plane-
wave pseudopotential method. What is really interesting is
that these new GS structures appear every 1/16 in Fe con-
centration from the equiatomic alloy. The underlying mecha-

nism is very appealing because of its simplicity and because
it is related to the topology of bcc-based alloys.

A bcc lattice can be split into two equivalent simple cubic
�sc� sublattices each containing half of the sites of the crys-
tal: One sublattice is defined by the “body-centered” sites
and the other simple-cubic sublattice is defined by the “cu-
bic” sites. Because of this, frustration effects are not present
in bcc-based systems with ordering �antiferromagnetic�
interactions—as opposed to the face-centered cubic lattice. A
strong nearest-neighbor pair interaction stabilizes the B2
�CsCl-like� phase. In terms of the two simple-cubic sublat-
tices, the B2 structure can be viewed as having each atomic
species occupying exclusively one sublattice. The obtained
ECIs for the Fe-Co alloys show a nearest-neighbor pair in-
teraction that is almost an order of magnitude larger than any
of the other ECIs. This makes the B2 phase stable enough to
“lock” the Fe atoms to one of the simple-cubic sublattices.
Thus, an increase in the Fe concentration will only affect the
atomic distribution in the other sublattice. A simple inspec-
tion of the structures in Fig. 2 shows that this is indeed the
case. We can then simplify the picture by transforming the
bcc-based ECIs into sc-based ECIs by subsuming the occu-
pancy of the locked Fe atoms. This effectively reduces the
dimensionality of the interactions in that n-body ECIs are
transformed into �n−m�-body interactions, when the original
cluster figure contains m sites in the Fe sublattice. The re-
duced effective cluster interactions �RECIs� obtained in this
way �not shown� have pair and three-body interactions. Al-
though the reduced three-body interactions are necessary to
capture subtle details of the ground-state phase diagram, like
its asymmetry with concentration, the key parameters are the
reduced effective pair interactions �REPIs�. In the case at
hand, all REPIs are positive except the sixth one that is zero.
This is the key to the periodicity of the GS structures, be-
cause the sixth REPI sets the characteristic length between
Fe atoms in the unlocked sublattice. In other words, upon
increasing the Fe concentration from 50%, the Fe atoms oc-
cupy positions in the sc lattice so that unlike atoms are 2a
�the length of the sixth REPI� apart from each other. This
motif is complete when the nominal concentration is x
=9/16, thus stabilizing the Fe9Co7 GS. Further increase of
the Fe concentration will fill the remaining sc sites according
to remaining positive RECIs, subject to the supercell size in
steps of 1 /16.

FIG. 2. �Color online� Enthalpy of formation of bcc-based Fe-Co alloys as obtained by first-principles total energy calculations �circles�
and the cluster expanded energies using a set of 12 ECIs �squares�. The fitting and prediction errors are 0.10 and 0.12 mRy/atom,
respectively. The solid line stands for the enthalpy of formation of the random alloy. In order to emphasize that the new ground states are
derivatives of a B2 motif, only the occupation for one sublattice is shown. The other sublattice is fully occupied with Fe atoms. This is
illustrated for the B2 phase in the rounded rectangle.
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In a previous investigation on the ground states of
Fe-Co alloys,10 we found that the sixth REPI became nega-
tive thus setting the characteristic length scale of the ground-
state sequence. From the general argument of Ref. 10, it is
clear that for the determination of ground-state sequence,
having a negative REPI among a positive distribution �i.e., a
local minimum� is equivalent to having such REPI as the last
one and with zero value. There are two main reasons for
having this change in the value of the sixth REPI. Primarily,
we have increased our input-structure database by 48%, that
is, from 46 to 68 structures. Second, we have considerably
improved our algorithm to select the relevant cluster figures
in the expansion, so that our current fitting and predicted
errors are almost threefold smaller than previously. Since the
details of ECIs �and therefore the RECIs� depend on these
two aspects, it is no surprise to find small quantitative
changes. However, the physical picture remains the same, as
we have already shown. A more complicated REPI behavior,
e.g., oscillating chemical and weak yet long-ranged elastic
interactions, can induce a continuous succession of adaptive
crystal structures.68,69

The experimental Fe-Co phase diagram shows an asym-
metric order-disorder boundary where the transition tempera-
ture is higher for Fe-rich alloys.4 Our first-principles calcu-
lations for the enthalpy of formation reflect this
characteristic, i.e., Fe-rich alloys have large values of the
enthalpy of formation. The fact that most of the Co-rich bcc-
based alloys are above the tie line indicate that such com-
pounds are not likely to be formed in a bcc-like environment.
This is again in agreement with the experimental observation
of Co-rich alloys crystallizing in close-packed structures.3

Actually, it is in this region where the atomic relaxations are
more accentuated but still of a few percent. The virtual crys-
tal approximation �VCA� assumes an alloy volume that in-
terpolates linearly between the atomic volumes of the pure
elements �Vegards’s law�. Considering the success of the
VCA in the description of the magnetism in Fe-Co
alloys,19,20 one would expect that the atomic volume should
follow Vegard behavior. However, our results show that the
atomic volume depends on the atomic concentration in a
nonmonotonic fashion, deviating from Vegard’s law. Figure
3 contains our first-principles calculations for the atomic vol-
ume as function of the Fe concentration for both ordered and
disordered alloys—the latter calculated via a cluster expan-
sion. It is interesting to observe that the atomic volume de-
pends strongly on the concentration and that is only slightly
sensitive to the configurational degrees of freedom.

We attribute the overestimation of the atomic volume to
the overestimation of the magnetic energy, a known behavior
of the GGA functionals.72 Nevertheless, it is gratifying to see
that such overestimation occurs in a systematic way, locating
our first-principles GGA-PBE predictions within 2% of the
experimental values in all the concentration range. In Fig. 3
we show the results of Rodgers and Maddocks70 that
measured the atomic volume of Fe-Co alloys after slow
cooling the samples from 600 to 650 °C �squares�. Ellis
and Greiner71 reported the atomic volume after quenching
the samples from 575 to 580 °C �triangles� and 800 °C
�inverted triangles� down to 25 °C. The atomic volume
shows a slight increase upon ordering around equiatomic

composition,71 a trend that is very well reproduced by our
theoretical data �see also Table III�. In general, the atomic
volume of a binary alloy shrinks upon ordering. In the case
of Fe-Co alloys occurs the opposite because of the magne-
tism �see the following�.

In Fig. 4 we show our ab initio results for the magnetic
moment in ordered and disordered Fe-Co alloys, together
with the experimental values obtained by Bardos73 in both
fast-quenched �disordered� and slow-cooled �ordered�
samples. Our theoretical predictions and the actual values for
the magnetic moment per atoms agree well. Different from
the case of the atomic volume, however, the discrepancy
between the experimental and the theoretical values is not
systematic. At large Fe concentrations the first-principles re-
sults overestimate the magnetic moment, whereas the oppo-

FIG. 3. �Color online� Calculated first-principles GGA-PBE
atomic volume of Fe-Co alloys as function of the Fe concentration.
Experimental data from Rodgers—Ref. 70 �squares� and Ellis and
Greiner—Ref. 71 �triangles: quenched samples from 575 to 580 °C,
inverted triangles: quenched samples from 800 °C�. The atomic
volume of the ground-state structures is marked with closed circles.
See the text.

FIG. 4. �Color online� Calculated first-principles GGA-PBE
magnetic moment per atom as a function of the Fe concentration for
bcc-based Fe-Co alloys. Circles stand for the set of 68 ordered
structures of Table II, while the solid line represents the magnetic
moment of the random alloy. Experimental data are presented for
ordered �inverted triangles� and disordered �inverted triangles� al-
loys from Bardos �Ref. 73�. See the text.
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site happens at low Fe concentrations. This discrepancy is by
no means associated to a particular method of calculation,
since it is present in all first-principles approaches �see, for
example, the FeCo-B2 entry in Table II�. One might think
that a possible explanation to this discrepancy comes from
the fact that we had ignored the orbital contribution to the
magnetic moment. However, the experimental observations
of Reck and Fry attribute the orbital polarization only to
4%–5% of the total magnetic moment of bcc-based Fe-Co
alloys.74 First-principles calculations within the virtual-
crystal approximation also showed a uniform increase of few
percent in the total magnetization when the orbital contribu-
tion, both in the form of spin-orbit and orbital polarization,
was taken into account.20 Recent exact muffin-tin-orbital cal-
culations in Fe-Co alloys, where the one-electron effective
potential was represented by the optimized overlapping
muffin-tin potential75 and the disorder was modeled within
the coherent-potential approximation,76 are also in agreement
with the VCA and experimental results. Clearly, a uniform
upward shift in the magnetic moment per atom would im-
prove the agreement around equiatomic composition but
would make it worse for Fe-rich alloys.

A possible source for this discrepancy might be found in
the inherent limitations of the local-density �LDA� and GGA
to deal appropriately with local quantities that are related to
the spin polarization. Although the GGA generally improves
integral quantities such as the total ground-state energy over
LDA, it is less successful in improving local quantities like
the difference between spin-up and spin-down in the ex-
change potentials.77 Experimentally, some of these restric-
tions have been pointed out by neutron scattering measure-
ments on FeCo single crystals.78 The GGA-PBE functional
used in this paper is considered the best in its class for solid
state properties.79 To resolve the issue of electronic and spin
distributions in Fe-Co alloys, it might be necessary to go
beyond the GGA, i.e., to use a meta-GGA such as the
Tao-Perdew-Staroverov-Scuseria,80 that is a semilocal func-
tional on the density and the occupied orbitals. Such an
analysis, although interesting per se, is beyond the scope of
the present contribution.

IV. DISCUSSION

A. Magnetic moment and equilibrium volume in Fe-Co alloys

It is well known that a rigid-band picture is inadequate to
explain the dependence of the magnetic moment with con-
centration in Fe-Co alloys.13 Williams et al.81 suggested that
the magnetic moment versus concentration curve is defined
by the interplay between strong ferromagnetism �for the Co-
rich side of the maximum� and weak ferromagnetism �for the
Fe-rich side�. This ferromagnetic weakness coincides with a
pinning of the Fermi level at the valley of the minority den-
sity of states. However, an spd tight-binding Hamiltonian by
Victora and Falicov19 pointed to electron-electron correla-
tions as the source for the anomalous shape of the magnetic
moment versus concentration curve. Within their theory, the
maximum of the magnetic moment curve is indeed due to
strong ferromagnetism for Co-rich alloys, as Williams et al.81

had suggested, until the addition of Fe causes electronic cor-

relations, now insufficient to cause saturation, to become
more important. The transition from weak �Fe-rich� to strong
�Co-rich� ferromagnetism is driven by an occupation of the
Fe minority spin band as the concentration of Co is increased
and the subsequent shift of d levels. The Coulomb interac-
tion is responsible for this shift and affects both spin-up and
spin-down levels equally. An occupation of the majority
band thus increases the magnetic moment of the alloy. Figure
4 shows a maximum of the magnetic moment located at
higher Fe concentration than the experimental results. As
outlined in the previous section, we believe that this discrep-
ancy can be attributed to electronic correlations, i.e., it is
necessary to go beyond the GGA, for example, by using the
meta-GGA of Tao-Perdew-Staroverov-Scuseria80 that is a
semilocal functional on the density and the occupied orbitals.
Certainly more theoretical work is needed and we hope that
the present contribution motivates some of it.

On the other hand, note that the magnetic moment does
not change significantly upon ordering, i.e., magnetism in
Fe-Co alloys is not very sensitive to the configurational de-
grees of freedom but dominated by the concentration. This
explains the success of approaches as the virtual crystal
�VCA�19,20 or the coherent potential approximation
�CPA�21–25,76 in describing the dependence of the average
magnetic moment with concentration. In the VCA, the
Hamiltonian of the two constituent elements is coarse-
grained to produce a concentration-averaged atom. Thus a
binary alloy is modeled by this single-atom system in a lat-
tice with the full symmetry of the disordered system. One
would expect the VCA to render a good approximation when
the elements are analogous in their electronic properties. Fe
and Co are adjacent in the periodic table with very similar
electronic properties, i.e., similar band widths and a large d
occupation.

Interestingly enough, most of the VCA calculations for
Fe-Co assumed an average atomic volume that follows Veg-
ard’s law, i.e., a linear interpolation between the atomic vol-
umes of the pure elements. Our results in Fig. 3 show a
positive departure from the linear behavior that resembles
the behavior of invar alloys, i.e., the atomic volume reaches
a maximum as a function of the concentration.82 In this light,
the VCA results give the impression that structural details,
e.g., the atomic volume, do not have much bearing on the
magnetic properties of Fe-Co alloys. However, the above
discussion on the magnetism of Fe-Co alloys shows an inter-
dependence between the atomic volume and the average
magnetic moment, i.e., both are controlled by the relative
occupation of the majority and minority bands as the concen-
tration is varied.

Owing to the fact that both the equilibrium magnetic mo-
ment and the atomic volume of Fe-Co alloys show a remark-
able similar dependence with atomic concentration, one can
entertain the idea that the same mechanism that explains the
maximum of the magnetic moment curve applies as well to
the atomic volume. We based our argument on Pauling’s83

idea of separating the valence electrons into the “bonding”
and “atomic” ones—Pauling actually called them bonding
and atomic orbitals—with the former participating actively
in bond formation whereas the latter are responsible for the
magnetic moment. The precise definition of either type of
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electrons has changed over the years though. Pauling used a
rather simplified way to discriminate atomic from bonding
electrons, basically because he had scarce experimental data,
thus he obtained a very simple curve �a triangle in his case�
for the magnetic moment versus band filling. The magnetic
valence concept of Williams and co-workers provides a more
accurate definition of the “atomic” electrons, thus reproduc-
ing more accurately the experimental data for several binary
transition-metal alloys.81 Therefore, one can rationalize the
shape of the atomic volume versus concentration curve in
terms of “atomic” electrons, that is, when passing from Fe to
Co, the electronic concentration changes in such a way that
all the electrons that contribute to the formation of the mag-
netic moment do not contribute to the bonding.

Figure 5 condenses Fig. 4 and Fig. 3 by plotting the equi-
librium values of the magnetic moment �m0� as function of
the atomic volume �v0� for Fe-Co alloys. It is remarkable to
see that a linear relationship

m0
DFT = − 12.229 + 0.18223v0

DFT �7�

develops between those two quantities, independent of the
degree of configurational order—the first-principles data for
ordered structures �circles� and the cluster expanded result
for the fully disordered alloys �solid line� essentially have the
same slope. In Fig. 5 we can see an upturn of the magnetic
moment when the volume is around 80 a .u.3 for both the
ordered and disordered alloys. This region corresponds to the
Fe-rich alloys and, as is well known, Fe and Fe-rich alloys
show anomalous behavior in their magneto-volume
properties,84 and the upturn is just a reflection of that.

Interestingly enough, our ab initio calculations show great
consistency with experimental results. In Fig. 5, we have
plotted �triangles� the magnetic moment reported by
Bardos73 as a function of the atomic volume from Ellis and
Greiner71 whenever both measurements were performed at
the same concentration. The turn of the magnetic moment for

large volumes is also present in the experimental data, al-
though in a different direction. A linear fit of the experimen-
tal data �without the two points at large volumes� reveals a
slope that is virtually the same of that obtained from the
calculated data, i.e.,

m0
exp = − 11.882 + 0.18270v0

exp. �8�

A skeptical reader might argue that a linear fit should be
expected when the magnetic moment is fitted over such a
small volume interval. We have checked this by performing
ab initio calculations for the magnetic moment in the
Fe3Co-D03, FeCo-B2, FeCo3-D03, and FeCo15 structures in
the same volume interval of Fig. 5. We found that the mag-
netic moment behaves linearly with volume but with a very
small slope ��0.01�, i.e., the magnetic moment varies slowly
with volume �see Fig. 6�. However, there are significant dif-
ferences between Figs. 5 and 6. The former corresponds to
the equilibrium values of both the magnetic moment and the
atomic volume, whereas the latter is just a variation of the
atomic volume around its equilibrium value.

The existence of such linear dependence between the
atomic volume and the magnetic moment �either Eq. �7� or
Eq. �8� clearly points out that the magnetic moment in
Fe-Co alloys depends only on the electron count, and not on
other factors such as the configurational order. It also seems
to corroborate the idea of “atomic” and “bonding” electrons
explained above. From a practical point of view, on the other
hand, having such a simple relation between m0 and v0 might
be useful for experimentalists to fine-tune the magnetic mo-
ment by selecting the appropriate atomic volume �lattice
constant�.

B. Strain effects and A3B superlattices in Fe-Co

One of the core results of the present contribution is that
bcc-based Fe-Co alloys display a series of ordered ground-
state structures for Fe-rich compounds �see Fig. 2�. This is an
interesting result for bcc-based systems in general, because
the mechanism behind the dense sequence of GS structures is

FIG. 5. �Color online� Equilibrium magnetic moment �m0� as a
function of the equilibrium atomic volume �v0� for Fe-Co alloys.
First-principles DFT calculations for ordered structures are repre-
sented by circles. The solid line stands for the fully disordered alloy.
Experimental results �triangles� from Ellis and Greiner �Ref. 71�
and Bardos �Ref. 73�. See the text for further information.

FIG. 6. �Color online� Calculated volume dependence of the
magnetic moment for Fe3Co-D03, FeCo-B2, FeCo3-D03, and
FeCo15 ordered alloys. The average slope of the magnetic moment
with atomic volume is �0.01.
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due to the properties of the bcc lattice. However, it is also
important for Fe-Co alloys in particular, because of the pos-
sible existence of Fe3Co and FeCo3 superlattices.5–9 Our
first-principles calculated enthalpies of formation for Fe-Co
alloys �see Table III� show that Fe3Co alloys have a stable
L60 �Ti3Cu-type� ground state. The Fe3Co-L60 structure is
very close in energy to several of its allotropic forms, includ-
ing the D03 �Fe3Al-type� and some �001� superlattices. This
is a clear indication that the Fe-Co system has a tendency to
form ordered structures with 3:1 stoichiometry on the
Fe-rich side.

It is important to emphasize that central to the existence
of a dense sequence of ordered structures in Fe-Co alloys,
and in particular to the presence of Fe3Co superstructures, is
the idea of a nonrandom distribution of Fe atoms on the Co
sites for Fe-rich alloys. Although derived from a pure theo-
retical basis, this idea has some experimental support from
59Co nuclear magnetic resonance �NMR� investigations of
the short-range order in bulk Fe-Co alloys.85 In their inves-
tigation, Jay and co-workers85 found that Co and Fe are not
randomly distributed in the mixed sublattice of the Co-rich
samples. They also found that such samples tend to segregate
�in agreement with the experimental phase diagram�, thus
strengthening the B2 ordering in off-stoichiometric com-
pounds.

On the other hand, we did not find stable FeCo3 structures
with an underlying bcc lattice, i.e., all calculated and
searched configurations lead to structures with an enthalpy of
formation above the tie line. This is in agreement with ex-
perimental measurements that report a two-phase �bcc+fcc�
region for Co-rich alloys.3,4 Notwithstanding that the inves-
tigation of the coexistence of different phases at low tem-
peratures for Co-rich alloys is beyond the scope of this paper,
preliminary calculations for FeCo3 ordered alloys showed a
gain in stability of the fcc-based phase that is sufficient to
locate their formation enthalpy below the tie line. Consider-
ing that some of the fcc-based ordered structures can be
viewed as a tetragonal distortion of a bcc-based phase, e.g.,
the L10 is related to the B2 phase, one can speculate if such
ordered phases could be observed in epitaxial Fe-Co alloys.

Recently, Wojcik and co-workers9 prepared Fe-Co thin
films by molecular-beam epitaxy on MgO and GaAs sub-
strates. X-ray diffraction showed that the bcc stability limit is
shifted to Fe concentrations as low as 0.11, in contrast with
bulk measurements that located the bcc-boundary around
0.25. For Fe concentrations lower than 0.11 the system dis-
played a sharp transition toward the fcc phase. Nuclear mag-
netic resonance measurements on a 1000-Å-thick
Fe0.27Co0.73 sample deposited at 500 °C signaled a highly
ordered structure where all Co atoms have the same environ-
ment. This observation led Wojcik et al. to conclude that a
new ordered phase with stoichiometry close to FeCo3 exists,
although the stabilization mechanism could not clearly be
elucidated from their experiments. The authors envisaged ep-
itaxial strains or surface diffusion as the most probable ones.
Our own ab initio calculations support that epitaxial strains
may change the delicate hierarchy in the energies of compet-
ing structures as compared to our bulk materials.

C. Dense sequence of ground states, confinement effects, and
nanostructured Fe-Co alloys

The fact that strain effects can stabilize phases not present
in bulk alloys has a venerable history.61,86 The underlying
idea, independent of the details of the system, is that an
“external field” stabilizes a phase that exists in the neighbor-
hood of the RTP state of a material. In the case of the bcc
cobalt61 surveyed in Sec. II C and in the experiments of
Wojcik et al.,9 reviewed earlier, the external field is the epi-
taxial strain. Pressure and temperature, on the other hand,
can also be used to access otherwise nonstable phases, e.g.,
fcc and hcp Fe.87 The external fields are spanning a hyper-
surface, where all the possible phases are represented by lo-
cal minima. At room temperatures and pressures, one of
these minima develops as the global minimum thus defining
the stable phase of a material for such conditions.

Confinement effects encompass both surface and finite-
size effects that can be used to stabilize new phases.88,89 The
recent development of nanostructured intermetallics, single
or multiphase polycrystalline solids with grain sizes in the
range of few nanometers, usually exhibit properties that are
significantly different from and often improved over their
coarse-grained bulk counterparts.90 Interfacial and finite-size
effects are in consequence important to define the properties
of such nanostructured alloys. Very recently, superlattices of
air-stable Fe-Co nanoparticles were synthesized in solution
from an organometallic precursor. The 15 nm FeCo nanopar-
ticles adopted an unusual short-range atomic ordering that
transformed into bcc upon annealing at 500 °C.91 This nano-
structured Fe-Co material proved to be homogeneous with
excellent magnetic properties.

The dense sequence of ordered structures might have
some relevance to nanostructured Fe-Co alloys, in that con-
finement �surface plus finite size� effects may stabilize some
of the observed phases. We have already seen that strain
effects are important to increase the bcc stability limit down
to 0.11 in Fe concentration9 and that bcc-based nanocrystal-
line Fe-Co alloys can be produced on the large scale.91 We
believe that our results can be useful in producing and char-
acterizing off-stoichiometry Fe-Co nanoscale alloys.

V. CONCLUDING REMARKS

On the basis of first-principles total-energy calculations of
Fe-Co ordered alloys we found a set of new ground states
additional to the well-known B2 ordered phase. The mag-
netic and mechanical properties of these ordered alloys were
also calculated. Using the cluster expansion method, the
physical quantities of interest were cast into a simple Hamil-
tonian that allowed for extensive sampling of the configura-
tional space. In particular, for the enthalpy of formation we
performed a combinatorial search of 1.5�1010 bcc-based
configurations that led us to the discovery of the dense se-
quence of ground states.

The dependence of the magnetic moment, the atomic vol-
ume, and the bulk modulus with concentration was also ex-
amined rendering a picture where the average magnetic mo-
ment is rather insensitive to the configurational details but
depends on the atomic concentration and volume. Both the
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atomic volume and the magnetic moment resemble those of
invar alloys.

Our systematic calculations revealed that Fe3Co alloys are
stable in the L60 structure �Ti3Cu-type� thus confirming the
early experimental claims on the existence of such superlat-
tices. We do not find, however, unstrained bcc-based FeCo3
superstructures. We argued, on the basis of the experimental
evidence and our own calculations, that strain effects might
be responsible for stabilizing FeCo3 epitaxial alloys. Cer-
tainly, confinement effects may stabilize some of the re-
ported new ordered phases, as the recently reported air-stable
Fe-Co nanocrystal superlattices.

We consider that the use of high-throughput ab initio-
based approaches for bulk materials, as the ones described in
this paper, can provide insights into nanoscale alloys. By
sampling sizable portions of the configurational phase space,
one can identify the neighboring phases that can be reached
either by confining the size of the system or by imposing
some external fields. Certainly, more work is needed, and we
hope this paper motivates both experimental and theoretical
investigations along these lines.
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APPENDIX: CRYSTAL STRUCTURES

This section aims to provide additional crystallographic
information on the structures used for the first-principles cal-
culations of ordered Fe-Co alloys. Commonly found struc-
tures, e.g., D03, as well as superlattices, will not be listed.
However, special emphasis has been set on the predicted new
ground-state structures, for which the dimensions of the unit
cell �in Å� has been given along with the fractional atomic
coordinates. In all cases, space group and space group num-
ber have been assigned according to Refs. 92 and 93.

1. V5Zn4

Prototype structure: V4Zn5, Pearson symbol: tI18, space
group: I4/mmm, space group number: 139.

Primitive cell �Cartesian coordinates�: a1= �−1.5,1.5,
0.5�, a2= �1.5,−1.5,0.5�, a3= �1.5,1.5,−0.5�.

Atomic coordinates �Cartesian coordinates�: A1= �0.0,
0.0,0.0�, A2= �1.0,1.0,0.0�, A3= �1.0,2.0,0.0�, A4= �2.0,
1.0,0.0�, A5= �2.0,2.0,0.0�, B1= �0.0,1.0,0.0�, B2= �0.0,
2.0,0.0�, B3= �1.0,0.0,0.0�, B4= �2.0,0.0,0.0�.

2. Cu4Ti3

Prototype structure: Cu4Ti3, Pearson symbol: tI14, space
group: I4/mmm, space group number: 139.

Primitive cell �Cartesian coordinates�: a1= �−0.5,0.5,
3.5�, a2= �0.5,−0.5,3.5�, a3= �0.5,0.5,−3.5�.

Atomic coordinates �Cartesian coordinates�: A1= �0.5,
0.5,0.5�, A2= �0.0,0.0,1.0�, A3= �0.5,0.5,2.5�, A4= �0.0,

0.0,3.0�, B1= �0.0,0.0,0.0�, B2= �0.5,0.5,1.5�, B3= �0.0,
0.0,2.0�.

3. Al3Os2

Prototype structure: Al3Os2, Pearson symbol: tI10, space
group: I4/mmm, space group number: 139.

Primitive cell �Cartesian coordinates�: a1= �−0.5,0.5,
2.5�, a2= �0.5,−0.5,2.5�, a3= �0.5,0.5,−2.5�.

Atomic coordinates �Cartesian coordinates�: A1= �0.0,
0.0,0.0�, A2= �0.0,0.0,1.0�, A3= �0.5,0.5,1.5�, B1= �0.5,
0.5,0.5�, B2= �0.0,0.0,2.0�.

4. Pd5Ti3

Prototype structure: Pd5Ti3, Pearson symbol: tP8, space
group: P4/mmm, space group number: 123.

Primitive cell �Cartesian coordinates�: a1= �1.0,0.0,0.0�,
a2= �0.0,1.0,0.0�, a3= �0.0,0.0,4.0�.

Atomic coordinates �Cartesian coordinates�: A1= �0.0,
0.0,0.0�, A2= �0.0,0.0,1.0�, A3= �0.5,0.5,1.5�, A4= �0.5,
0.5,2.5�, A5= �0.0,0.0,3.0�, B1= �0.5,0.5,0.5�, B2= �0.0,
0.0,2.0�, B3= �0.5,0.5,3.5�.

5. Fe8Co4

Pearson symbol: oP12, space group: Pmma, space group
number: 51.

Primitive cell �Cartesian coordinates�: a1= �1.0,0.0,0.0�,
a2= �0.0,2.0,0.0�, a3= �0.0,0.0,3.0�.

Atomic coordinates �Cartesian coordinates�: A1= �0.0,
0.0,0.0�, A2= �0.0,0.0,1.0�, A3= �0.5,0.5,1.5�, A4= �0.0,
0.0,2.0�, A5= �0.0,1.0,0.0�, A6= �0.5,1.5,0.5�, A7= �0.0,
1.0,1.0�, A8= �0.0,1.0,2.0�, B1= �0.5,0.5,0.5�, B2= �0.5,
0.5,2.5�, B3= �0.5,1.5,1.5�, B4= �0.5,1.5,2.5�.

6. GS:FeCo-B2

Prototype structure: CsCl, Pearson symbol: cP2, space

group: Pm3̄m, space group number: 221.
Unit cell parameters: a=b=c=2.868 Å, primitive cell:
a1= �a ,0.0,0.0�, a2= �0.0,b ,0.0�, a3= �0.0,0.0,c�.
Fractional atomic coordinates: Fe1= �0.0,0.0,0.0�, Co1

= �0.5,0.5,0.5�.

7. GS:Fe9Co7

Pearson symbol: cP16, space group: Pm3̄m, space group
number: 221.

Unit cell parameters: a=b=c=5.739 Å, primitive cell:
a1= �a ,0.0,0.0�, a2= �0.0,b ,0.0�, a3= �0.0,0.0,c�.

Fractional atomic coordinates: Fe1= �−0.25,−0.25,0.25�,
Fe2= �−0.25,−0.25,0.75�, Fe3= �−0.25,−0.75,0.25�, Fe4

= �−0.25,−0.75,0.75�, Fe5= �−0.75,−0.25,0.25�, Fe6

= �−0.75,−0.25,0.75�, Fe7= �−0.75,−0.75,0.25�, Fe8

= �−0.50,−0.50,0.50�, Fe9= �−0.75,−0.75,0.75�, Co1

= �0.00,0.00,0.00�, Co2= �0.00,0.00,0.50�, Co3= �0.00,
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−0.50,0.00�, Co4= �0.00,−0.50,0.50�, Co5= �−0.50,0.00,
0.00�, Co6= �−0.50,0.00,0.50�, Co7= �−0.50,−0.50,0.00�.

8. GS:Fe5Co3

Pearson symbol: cI8, space group: Im3̄m, space group
number: 229.

Unit cell parameters: a=b=c=5.741 Å, primitive cell:
a1= 1

2 �a ,b ,−c�, a2= 1
2 �a ,−b ,c�, a3= 1

2 �−a ,b ,c�.
Fractional atomic coordinates: Fe1= �0.00,0.00,0.00�,

Fe2= �0.50,0.50,0.00�, Fe3= �0.00,0.50,0.00�, Fe4= �0.50,
0.00,0.50�, Fe5= �0.00,0.50,0.50�, Co1= �0.00,0.00,0.50�,
Co2= �0.50,0.50,0.50�, Co3= �0.50,0.00,0.00�.

9. GS:Fe11Co5

Pearson symbol: cP16, space group: P4/mmm, space
group number: 123.

Unit cell parameters: a=b=c=5.740 Å, primitive cell:
a1= �a ,0.0,0.0�, a2= �0.0,b ,0.0�, a3= �0.0,0.0,c�.

Fractional atomic coordinates: Fe1= �−0.25,−0.25,0.25�,
Fe2= �0.00,0.00,0.50�, Fe3= �−0.25,−0.25,0.75�, Fe4

= �−0.25,−0.75,0.25�, Fe5= �−0.25,−0.75,0.75�, Fe6

= �−0.75,−0.25,0.25�, Fe7= �−0.75,−0.25,0.75�, Fe8

= �−0.50,−0.50,0.00�, Fe9= �−0.75,−0.75,0.25�, Fe10

= �−0.50,−0.50,0.50�, Fe11= �−0.75,−0.75,0.75�, Co1

= �0.00,0.00,0.00�, Co2= �0.00,−0.50,0.00�, Co3= �0.00,
−0.50,0.50�, Co4= �−0.50,0.00,0.00�, Co5= �−0.50,0.00,
0.50�.

10. GS:Fe3Co-L60

Prototype structure: Ti3Cu, Pearson symbol: tP4, space
group: P4/mmm, space group number: 123.

Unit cell parameters: a=b=4.067 Å, c=2.866 Å, primi-
tive cell: a1= �a ,0.0,0.0�, a2= �0.0,b ,0.0�, a3= �0.0,0.0,c�.

Fractional atomic coordinates: Fe1= �−0.50,−0.50,0.00�,
Fe2= �0.00,−0.50,−0.50�, Fe3= �−0.50,0.00,−0.50�, Co1

= �0.00,0.00,0.00�.

11. GS:Fe13Co3

Pearson symbol: cP16, space group: P4/mmm, space
group number: 123.

Unit cell parameters: a=b=c=5.750 Å, primitive cell:
a1= �a ,0.0,0.0�, a2= �0.0,b ,0.0�, a3= �0.0,0.0,c�.

Fractional atomic coordinates: Fe1= �0.00,0.50,0.00�,
Fe2= �−0.25,0.25,0.25�, Fe3= �0.00,0.50,0.50�, Fe4

= �−0.25,0.25,0.75�, Fe5= �−0.25,−0.25,0.25�, Fe6

= �−0.25,−0.25,0.75�, Fe7= �−0.75,0.25,0.25�, Fe8

= �−0.50,0.50,0.50�, Fe9= �−0.75,0.25,0.75�, Fe10

= �−0.50,0.00,0.00�, Fe11= �−0.75,−0.25,0.25�, Fe12

= �−0.50,0.00,0.50�, Fe13= �−0.75,−0.25,0.75�, Co1

= �0.00,0.00,0.00�, Co2= �0.00,0.00,0.50�, Co3= �−0.50,
0.50,0.00�.

12. GS:Fe7Co

Pearson symbol: cI8, space group: Im3̄m, space group
number: 229.

Unit cell parameters: a=b=c=5.748 Å, primitive cell:
a1= 1

2 �a ,b ,−c�, a2= 1
2 �a ,−b ,c�, a3= 1

2 �−a ,b ,c�.
Fractional atomic coordinates: Fe1= �0.00,0.00,0.00�,

Fe2= �0.50,0.50,0.00�, Fe3= �0.00,0.50,0.00�, Fe4= �0.50,
0.00,0.50�, Fe5= �0.00,0.00,0.50�, Fe6= �0.50,0.50,0.50�,
Fe7= �0.50,0.00,0.00�, Co1= �0.00,0.50,0.50�.

13. GS:Fe15Co

Pearson symbol: cP16, space group: Pm3̄m, space group
number: 221.

Unit cell parameters: a=b=c=5.746 Å, primitive cell:
a1= �a ,0.0,0.0�, a2= �0.0,b ,0.0�, a3= �0.0,0.0,c�.

Fractional atomic coordinates: Fe1= �0.25,0.75,−0.25�,
Fe2= �0.00,0.50,0.00�, Fe3= �0.25,0.75,0.25�, Fe4= �0.00,
0.50,0.50�, Fe5= �0.25,0.25,−0.25�, Fe6= �0.25,0.25,0.25�,
Fe7= �0.00,0.00,0.50�, Fe8= �−0.25,0.75,−0.25�, Fe9

= �−0.50,0.50,0.00�, Fe10= �−0.25,0.75,0.25�, Fe11

= �−0.50,0.50,0.50�, Fe12= �−0.25,0.25,−0.25�, Fe13

= �−0.50,0.00,0.00�, Fe14= �−0.25,0.25,0.25�, Fe15

= �−0.50,0.00,0.50�, Co1= �0.00,0.00,0.00�.
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