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We study vibrational excitations in graded elastic networks modeled by coupled harmonic oscillators in a
square lattice, in which the force constants or the vibrating masses can vary along one direction, i.e., the
gradient direction. It turns out that the two-dimensional network under study can be reduced to a set of
effective one-dimensional graded chains �Phys. Rev. B 73, 054201 �2006�� with additional on-site potentials.
We identify various kinds of vibrational normal modes in these networks with graded force-constant �mass�,
namely, unbound modes and two types of confined modes called soft �heavy� and hard �light� “gradons” which
reside at the two opposite edges of the network in the gradient direction. The transitions from gradons to
unbound modes occur at specific frequencies �c1�ks� and �c2�ks� for each corresponding wave number ks in the
transverse direction. While above the maximum of �c2�ks�, pure hard �light� gradons exist, there is severe
mixing of nondegenerate phonons and gradons below this frequency, showing intriguing zigzag inverse par-
ticipation ratio. It is very interesting to see such unusual excitation modes that have adjacent eigenvalues but
possess quite different spatial extents. The results reduce to the previously obtained one-dimensional results for
ks=0. The method is quite general and applicable to three-dimensional elastic networks. We conclude with
discussions on how these new gradon modes may affect the macroscopic properties of graded solids. Our
results can also be applied to analogous systems with graded character.
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I. INTRODUCTION

Wave behavior in inhomogeneous or disordered media is
an old subject,1,2 but is still under great evolution upon new
insights.3–5 Wave propagation in these complex media is a
large and interdisciplinary field of research with many un-
solved problems that are scientifically challenging and tech-
nologically important.6,7 Particular interest has been focused
on the wave localization, either weak or strong. The concepts
of weak and strong �i.e., Anderson� localization have origi-
nally been introduced in the study of electronic transport in
metals where they are related to the metal-insulator
transition.1 With decreasing disorder, electron states change
gradually from “strongly localized” to “weakly localized,”
and the energy levels become more correlated.

These concepts have also been applied to classical waves,
e.g., ultrasonic waves, seismic waves, light waves, and mi-
crowaves, etc.8 In particular, multiple-scattering conditions
lead to interference effects that result in enhanced back-
scattering �i.e., weak localization� or strong localization of
waves, whereas single impurity results in diffusive or local-
ized waves.7 These are, respectively, typical cases in ran-
domly inhomogeneous medium9 and in periodically modu-
lated artificial structure with defect�s�, e.g., spatial
imperfections in a lattice.10 Random media are ubiquitous,
both in composites and materials in nature and, thus, have
been extensively studied. On the contrary, impurities, in
analogy to the donor or acceptor in semiconductors, are often
carefully designed by including defect�s� into the otherwise
periodic crystals.

Substantial insights have been gained regarding the afore-
mentioned effects. However, much less is known about clas-

sical wave behaviors in gradually varied elastic or optical
systems. In fact, there have been many studies on gradual
variation of lattice anisotropy, i.e., gradual modification of
the periodic crystals parameter, such as filling factor, lattice
period, and/or intrinsic properties,11 as well as on tapered
optical elements12 and chirped photonic crystals.13 The ef-
fects of gradual variation of typical parameters on wave be-
havior �graded effects� have been noticed for quite a long
time in terms of both elastic wave and light. Actually, in
some cases gradient is much easier to be achieved than the
precise control of impurities. Besides, there exist in nature
abundant graded materials, such as biological cells14 and liq-
uid crystal droplets.15 It has also been recognized that gradi-
ent can alter the wave dispersion relation and their density of
modes. For example, Conwell first examined the electromag-
netic wave guiding in graded-index layers that are formed by
diffusion or liquid epitaxy.16 Ye revisited the problem and
applied the same spirit to interpret acoustic phenomena in
ocean surface and bottom,17 which are believed to possess
gradient characters. As a matter of fact, graded-index fiber
has attracted ever increasing interest over the past decades
for communications; and a gradually changed interface is
utilized to facilitate coupling light into and out of photonic
crystals.18

Recently, one of the current authors, Yu and his co-
workers, studied in detail graded composites19 and naturally
occurring materials with graded characters.20 Very recently,
we examined the elastic spectrum in a one-dimensional �1D�
graded network and identified a different type of delocaliza-
tion transition, namely, the phonon-gradon transition,21

which is quite different from many well-established delocal-
ization transitions. It also forms the basis for studying the
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higher-dimensional graded systems. In this paper, we shall
focus on elastic solids with a uniaxial gradient. These sys-
tems are modeled by graded harmonic spring-mass networks.
We specifically study the vibrational spectrum and harmonic
vibrational normal modes in the presence of a gradient in the
force constants or masses and find out that some normal
modes are confined at the edges of the network in the gradi-
ent direction, like the 1D gradons.21 However, in contrast to
the 1D case, we discover a reentrant localization-
delocalization transition, that is, some counterintuitive con-
fined modes at the low frequency regime, in addition to the
high frequency gradons already discovered in the 1D case.21

These modes reside at “soft”-springs �“heavy”-masses�,
while “hard”-springs �“light”-masses� confine high fre-
quency modes which also appear in 1D graded elastic
networks,21 for a graded force constant model �graded
masses model�. It is quite interesting to see unusual excita-
tion modes that have adjacent eigenvalues but possess quite
different spatial extents. We further manage to explain the
mechanism and offer explicit expressions of the reentrant
transition frequencies. The broader significance of the
present results and their relevance to general physical phe-
nomena, however, remain to be revealed.

In what follows, we first briefly describe, in Sec. II, the
graded elastic network model, and establish the formalism
for studying the eigenmodes. In Sec. III, we present our re-
sults mainly in the case of graded force constant. Finally,
conclusions and some discussions on our results are given.

II. GRADED ELASTIC NETWORK MODEL

The elastic problem in high dimensions can be modeled
by a simple square �cubic� lattice of size N2 �N3� with lattice
constant a=1, in which masses at nearest-neighboring sites r
and q are connected by a spring with force constant Krq
which is assumed to be a scalar force constant. The Hamil-
tonian of the harmonic lattice is of the form

H = �
q=1

Nd

Pq
2

2mq
+ �

q=1

Nd

�
r

1

2
Krq�ur − uq�2, �1�

where �uq , Pq ,mq� denote the position, i.e., the scalar dis-
placement about equilibrium position, momentum, and mass
of particle at the site q. In Eq. �1� d denotes the spatial
dimension of the system, e.g., d=2 indicates a square lattice
in two dimensions �2D�, which we shall exemplify in this

work. In this case q and r label the sites in the square lattice
as q= �N−1�i+ j for i=1,2 , . . . ,N and j=1,2 , . . . ,N. The
sum on r runs over the nearest-neighboring sites of q with
r�q. In this regard, each site q is assigned to d bonds with
force constant Krq that are connected to it in a directional
way. Thus we get the following equation of motion:

mq
d2uq�t�

dt2 = �
r

Krq�ur�t� − uq�t�� �2�

for all spatial components of the particle displacement uq.
We further assume a gradient in the force constant or mass in
one spatial direction, e.g., along z axis, which is referred to
the gradient direction or the longitudinal direction. We also
enforce periodic boundary conditions in the directions per-
pendicular to the gradient direction ẑ. That is denoted as the
transverse direction, e.g., x and/or y axis as shown in Fig. 1.
Then by decomposing the amplitude uq with the eigenvectors
e��� of the mode � as uq=��Q��t�e���, where Q��t� is a
time-dependent expansion coefficient which behaves as
Q��t��exp�−i��t�, Eq. �2� is partially decoupled and re-
duced to an effective 1D eigenproblem of coupled harmonic
oscillators

mi�
2ei = 	Ki−1

L + Ki
L + 2Ki

T�
�=1

d−1

�1 − cos ks
����
ei − Ki−1

L ei−1 − Ki
Lei+1, �3�

where i=1,2 , . . . ,N label the layers along the gradient direction ẑ and mi denotes the point mass at sites included in the ith
layer. Since the gradient is uniaxial, the eigenvector e��� can be written in the form of eq=ei exp�i��ks

���x��l��, where l labels
the site in the ith layer, ks

��� with �=1, . . . ,d−1 represents the transverse wave number, and x��l� denotes the � component

FIG. 1. �a� Schematic diagram of a two-dimensional graded
force constant system. �b� The reduced one-dimensional graded sys-
tem with additional springs �springs connected to the ceiling� cor-
responding to �a�. �c� Schematic diagram of a two-dimensional
graded mass system. �d� The effective one-dimensional graded sys-
tem with additional springs.
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of the position vector of the site l in the transverse
�d−1� dimensional space. Because periodic boundary condi-
tions must be satisfied in the transverse direction, in Eq. �3�
we must let ks

���=2�s /N, where s=0,1 , . . . ,N−1 being an
integer. The graded force constants are assumed to be locally
isotropic and represented by the longitudinal Ki

L and the
transverse Ki

T, respectively. For a linear gradient model,

Ki
L = K0 +

CK�i − 1�
N − 1

�i = 1,2, . . . ,N − 1� , �4a�

Ki
T =

Ki
L + Ki−1

L

2
�i = 2, . . . ,N − 1� , �4b�

while K0
L=KN

L =0, K1
T=K0−CK /2�N−1�, and KN

T =K0+CK�N
−3/2� / �N−1�. In this locally isotropic force constant model,
Eqs. �4a� and �4b�, however, characterize an anisotropic sys-
tem with a linear gradient in the force constant along the
uniaxial axis �e.g., z axis� in one of the orthogonal directions
of the square lattice, i.e., with a base force constant K0 and a
gradient coefficient CK in the force constant. Specifically, in
2D case we can omit the superscript ��� in ks

��� because �
=1 in this case, therefore we will use ks to denote the trans-
verse wave number in the 2D case hereafter.

In conclusion, we have simplified a size-Nd problem
�Eq. �2�� to size-N one-dimensional problems as depicted by
Eq. �3� with Nd−1 different values of ks

���, which is equivalent
to a 1D graded chain21 with additional on-site potentials Vi

=2Ki
T��=1

d−1�1−cos ks
����. In the graded mass model, we alter-

natively have mi=m0−Cmi /N where Cm is the coefficient of
the graded mass and m0 is the base mass. In this case, we
keep the force constant Ki

L and Ki
T to be uniform across the

whole lattice. Setting CK=0 �or Cm=0� recovers the system
homogeneous. Pictorial illustrations of the aforementioned
reducing processes are shown in Fig. 1.

III. RESULTS

Without loss of generality, in this section we will mainly
discuss the results of square lattices with graded force con-
stant. The analyses are applicable to the graded mass case
and similar results are found. Following the method as out-
lined in the 1D case,21 we diagonalize the eigenvalue prob-
lem of coupled harmonic oscillators with graded force con-
stant as described by Eqs. �3� and �4�. Open boundary
conditions, i.e., K0

L=0 and KN
L =0, are used in the gradient

direction �e.g., z axis�. Dispersion relations always have fun-
damental interest, which also reflect the density of normal
modes. But in the graded elastic network, the wave number
is not conserved in the gradient direction because of the lack
of translational symmetry in this direction. This does not
allow us to consider the dispersion relation for our model.
Nevertheless, relations between the eigenfrequency �� and
the mode index � in ascending order for every fixed trans-
verse wave number ks, which can be regarded as a pseudo-
dispersion relations, help us to interpret vibrational modes in
the graded system. In what follows, we may use a set of
indices to denote the normal mode �, i.e., �= �ks ,nL ,��,

where nL and � label the �longitudinal� mode index for a
specific transverse wave number ks and the mode frequency,
respectively.

The pseudodispersion relations between nL and � are
shown in Figs. 2�a� and 2�b� for the graded coefficient CK
=0 �i.e., homogeneous network� and CK=0.5, respectively,
with various ks=s� /5, where s=0,1 , . . . ,9 ,10. The results
are obtained with mi=m0=1 �i.e., Cm=0�, K0=1, and N
=1000. Figure 2�a� is for the homogenous network with Ki

T

=Ki
L=1 and mi=1, which can be regarded as the usual dis-

persion relations. From these �pseudo� dispersion relations, it
is clear that the modes �= �ks ,nL ,�� are doubly degenerated
for ks. For example, the curves representing pseudodisper-
sion relations between nL and � for s=10,9 ,8 ,7 ,6 overlap
those for s=0,1 ,2 ,3 ,4, respectively �see Fig. 2�.

Note that in Fig. 2�b� when ks=0 �solid curve�, one recov-
ers a pure 1D graded chain of coupled harmonic oscillators,
which we have elucidated in great detail.21 With vanishing
ks, in comparison to the homogeneous network �Fig. 2�a��,
the pseudo-dispersion relations are altered significantly only
for ���c=2.0. As we already discussed,21 the modes ap-
pearing at ��2.0 are identified to be gradons and are con-
fined at “hard” springs �or at light masses in the graded mass
model�. However, a significant difference appears for nonva-
nishing ks �s�0�, for which we observe two oscillations in
the pseudodispersion relation curves. The oscillations indi-
cate phase transitions, which do not appear at the zone-
folding band edge as in the homogeneous case �see the
dashed or dotted curves in Figs. 2�a� and 2�b�, respectively�.
As a matter of fact, these figures are projections of those
shown in Fig. 3, in which the eigenfrequencies � are shown

FIG. 2. Pseudodispersion relations between nL and � for various
ks for �a� homogenous 2D network �CK=0� and �b� graded network
�CK=0.5�. Results in �a� can also be regarded as the usual disper-
sion relations.
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as a contour plot of the transverse wave number ks and the
�reduced� longitudinal mode index nL. Figure 3�a� is for the
homogeneous square network and we replace its horizontal
axis nL by the longitudinal wave number kL, whereas
Fig. 3�b� is for the graded square network, on the same scale
of frequency as in Fig. 3�a�.We can clearly see that the pres-
ence of gradient significantly alters the isofrequencies, par-
ticularly near ks=�, i.e., at the band edge or along the lines
in the irreducible Brillouin zone joining the high symmetry
points along the transverse direction.

To examine precisely the expected transitions from
Fig. 2�b�, we show the density of states �DOS� in Fig. 4. In
the upper panels �Figs. 4�a� and 4�b�� of this figure, we ac-
tually plot the partial density of states �PDOS�

D��,ks� =
1

N
�

��S�ks�
��� − ��� �5�

as a function of frequency for ks=s� /5 with s=0, 3, and 5.
Here, S�ks� represents the set of modes having the transverse
wave number ks. The PDOS shown here can be regarded as
the inverse of derivative of the curves shown in Fig. 2. It is
clearly seen in Fig. 4�b� that there are two peaks in the PDOS
for nonvanishing ks �s�0�: One peak appears in the low-
frequency ��c1�ks�� region and the other at relatively higher
frequencies ��c2�ks��. As ks approaches �, both �c1�ks� and
�c2�ks� increase monotonously from 0 to 2.449 and from 2.0
to �max, respectively, where �max�2�2�K0+CK� /m0


3.464 is the maximum eigenfrequency of the harmonic
vibrational modes supported by the graded square lattice.
Additionally, the �usual� total vibrational density of states

D��� =
1

Nd �
s=1

Nd−1

�
��S�ks�

��� − ��� �6�

are shown in Figs. 4�c� and 4�d� for the homogeneous case
��� and for the graded case ���, respectively. Note that in
obtaining the histogram of DOS we have used frequency bin
	�=0.0283 and 0.0342 in Figs. 4�c� and 4�d�, respectively.
The sharp peak �Van Hove singularity� of the DOS for the
homogeneous network is somehow rounded and even disap-
pears in the case of graded network. This is also reflected by
the contour plot in Fig. 3. In Fig. 3�b� the green region rep-
resenting �
2.0 diminishes, while the orange region repre-
senting �
2.8 expands, as compared to Fig. 3�a�. In fact,
the DOS of an infinite graded elastic network can be ex-
pressed as an average of the DOS’s of homogeneous net-
works over a range of force constants. The arguments are as

FIG. 3. �Color online� Contour plot of eigenfrequency � for the
transverse wave number ks and the longitudinal eigenmode index nL

for �a� homogeneous 2D network with CK=0 and �b� graded net-
work with CK=0.5.

FIG. 4. Partial density of states for �a� homogeneous 2D net-
work �CK=0� and �b� graded network �CK=0.5�. The total densities
of states obtained numerically �symbols� and analytically �curves�
are also presented for �c� homogeneous and �d� graded cases.
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follows. Let us slice the infinite graded network along the
gradient direction into many subnetworks each still being
infinite in size �i.e., no boundary effects�. For each subnet-
work, the gradient is infinitesimal so that it can be regarded
as a homogeneous network. Thus, the DOS of a homoge-
neous network can be used to describe each subnetwork. In
this way, the DOS of the infinite graded network can be
expressed as an average of the DOS of the subnetwork over
a range of force constants. Specifically, for a 2D square lat-
tice of homogeneous media with point mass M and force
constant K, the DOS can be expressed as22

g��,M,K�

=�
4

�2��L
2 − �2

F�
� , �2��L
2 − �2� � 16�2,

�

�2�
F	1




 , 0 � �2��L

2 − �2� � 16�2,

0, otherwise,
�

�7�

where �1/2=�K /M is the intrinsic frequency, �L
2 =8� denotes

the maximum frequency, F�x� is the complete elliptic inte-
gral of the first kind, and


 =
4�

���L
2 − �2

. �8�

Consequently, the DOS of the graded system we studied with
M =m0=1 �see Eqs. �3� and �4�� can be obtained by the fol-
lowing integration:

gG��� =
1

CK
�

K0

K0+CK

g��,1,K�dK . �9�

The results for infinite size of the homogeneous case from
Eq. �7� and for the graded case from Eq. �9� are also shown
by thick solid curves in Figs. 4�c� and 4�d�, respectively.
Furthermore, a series of DOS of the homogeneous case with
K=K0=1.0 �thin solid curve�, K=1.2 �thin dashed curve�,
and K=K0+CK=1.5 �thin dotted curve� are also plotted in
Fig. 4�d�. It is clearly seen that the results from these closed
forms �curves� agree very well with the numerical data �sym-
bols�. It is further noticed that the low frequency part of the
DOS for the graded network with CK=0.5 almost coincides
with that for the homogeneous network with K=1.2 �Fig.
4�d��. This is related to the effective medium theory. The
force constant of an effective homogeneous media for CK
=0.5 is Keff= ��0

1dx�1/ �1+0.5x���−1
1.233. In this regard, at
low frequencies, the graded network can be regarded as an
effective homogeneous medium with K=Keff. The DOS of a
graded mass network of infinite size can be obtained in a
similar way.

In view of the clear transition features indicated in the
PDOS, we expect that the modes fall in 0����c1�ks�,
�c1�ks�����c2�ks�, and ���c2�ks� are qualitatively dif-
ferent from each other. Indeed, we see a reentrant
localization-delocalization transition in the longitudinal
mode pattern, i.e., we plot in Fig. 5�b� the eigenfunction of

e���= �ei� as a function of the layer index i for three typical
frequencies of �=1.645, �=2.384, and �=3.115, respec-
tively. In particular, the mode of high frequency �=3.115 is
confined at hard-springs �i.e., those with larger KL�, like a
gradon in 1D graded chain.21 The mode of intermediate fre-
quency �=2.384 is extended across the whole network.
However, the low frequency mode �=1.645 is shown to be
localized as well, but rather on the soft-spring side. These are
substantially different from results in 1D.21 In Fig. 5�b�, ks
=3� /5 is used as an example, but we have examined many
modes for other ks and found similar results except for ks
=0, for which the low frequency localization disappears, i.e.,
�c1�ks�→0 when ks→0. A detailed discussion for ks=0 cor-
responding to the 1D case has been carried out.21 Note that
for homogeneous square network, there is no such reentrant
transition, as seen in Fig. 5�a�, where all modes are extended
for any frequency, either high, intermediate, or low.

Therefore, we have identified two transitions which are in
accordance to the emergence of two kinds of longitudinally
confined modes. More precisely, for certain ks, higher energy
excitations are bounded at hard-springs and those with lower
energies are bounded in the soft-spring side. We name these
modes “hard gradons” and “soft gradons,” respectively. We
numerically plot the transition frequencies �c1�ks� and
�c2�ks� versus ks in Fig. 6�b� by filled squares and triangles,
respectively. Open triangles and circles represent the maxi-
mum and minimum frequencies of modes, namely the upper
and lower cut-off frequencies of the PDOS as shown in Fig.
4�b�. For comparison, results for a homogeneous square net-

FIG. 5. �Color online� Mode pattern in �a� homogeneous lattice
�CK=0� for �=1.614 and �=2.570 and �b� graded lattice �CK

=0.5� for three typical frequencies �=1.645 �0����c1�3� /5��,
�=2.384 ��c1�3� /5�����c2�3� /5��, and �=3.115
����c2�3� /5��.
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work with m0=1 and K0=1 are plotted in Fig. 6�a�. In this
case, all modes are extended as well known.

Figure 6�b� clearly demonstrates partitions of the normal
vibrational modes in the 2D graded lattice and can be re-
garded as a phase diagram. That is, the vibrational normal
modes of the square lattice with uniaxially graded force con-
stants have been categorized into three types: Soft gradons
�S�, unbound modes �U�, and hard gradons �H�. The confine-
ment of the soft gradons is quite distinguished because it is
in the lower frequency regime. The confinement mechanism
of the soft gradons can be explained as a consequence that a
low frequency vibrational mode can be excited only in a
spatial region in which additional springs �e.g., springs con-
nected to the ceiling in Fig. 1�b�� are soft enough to excite
such a low frequency mode, which is expected, for the con-
stant mi�=m0� case, to happen at �low

�soft��ks�����up
�soft��ks�,

where

�low
�soft��ks� =�Kmin

*

m0
, �10a�

�up
�soft��ks� =�Kmax

*

m0
. �10b�

Here, Kmin
* and Kmax

* are the minimum and maximum force
constants of the additional springs, which are generally
given, from Eqs. �3� and �4�, by

Kmin
* = 2K0�

�=1

d−1

�1 − cos ks
���� , �11a�

Kmax
* = 2�K0 + CK��

�=1

d−1

�1 − cos ks
���� �11b�

for an infinite graded force constant system. Therefore, the
soft gradons in two dimensions are excited in the frequency
region of

�2K0�1 − cos ks�
m0

� � ��2�K0 + CK��1 − cos ks�
m0

.

�12�

It is reasonable that the frequencies �low
�soft��ks� and �up

�soft��ks�
give the lowest frequency of modes with ks and �c1�ks�, re-
spectively. In fact, the lower two solid lines in Fig. 6�b�
representing �low

�soft��ks� and �up
�soft��ks� agree quite well with

our numerical results �symbols � and ��. We further note
that the lower and upper bounds of hard gradon frequencies
are given by

�low
�hard��ks� =�4Kmin

L + Kmin
*

m0
, �13a�

�up
�hard��ks� =�4Kmax

L + Kmax
*

m0
, �13b�

where Kmin
L and Kmax

L are the minimum and maximum values
of Ki

L, respectively. That is, from Eq. �4a�, Kmin
L =K0

and Kmax
L =K0+CK. This is because high frequency

vibrational modes can be excited only in a spatial region
in which the local stiffness is high enough to excite
such high frequency modes. In 2D, using Eqs. �13�,
we get �low

�hard��ks�=�2K0�3−cos ks� /m0 and �up
�hard��ks�

=�2�K0+CK��3−cos ks� /m0. These two characteristic fre-
quencies �low

�hard��ks� and �up
�hard��ks� can be regarded as �c2�ks�

and the maximum frequency of modes with ks, respectively.
The ks dependences of �low

�hard��ks� and �up
�hard��ks� are shown by

the upper two solid lines in Fig. 6�b�. Again, the numerical
and analytical results of the frequency bounds for hard gra-
dons are in excellent agreements. It should be noted that
�low

�soft��0�=�up
�soft��0�=0, �low

�hard��0�=2 and �up
�hard��0�=2.449

exactly reproduce �hard� gradons in a 1D graded system.21

The phase diagram of Fig. 6�b� is of great interest from
the perspective of excitation energy. There exist four charac-
teristic regions separated by the four horizontal dashed lines.

�i� In the lowest frequency region,

0 � � � �low
�soft���� �namely, 0 � � � �4K0/m0 = 2� ,

�14�

the spectra contain soft gradons and unbound modes �S
+U�.

�ii� The region of

FIG. 6. Phase diagram in the ks-� space for �a� homogenous
network �Ck=0� and �b� graded network �CK=0.5�. Results in �a�
can be regarded as the usual dispersion relation. Frequencies of soft
and hard gradons in �b� are in agreement with analytical predictions
�solid lines�.
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�low
�soft���� � � � �up

�soft����
�15�

�namely, 2 � � � �4�K0 + CK�/m0 
 2.449�

contains soft gradons, unbound modes, and hard gradons
�S+U+H�.

�iii� The region of

�up
�soft���� � � � �low

�hard����
�16�

�namely, 2.449 � � � �8K0/m0 
 2.828�

has hard gradons and unbound modes �H+U�.
�iv� The highest frequency region,

�low
�hard���� � � � �up

�hard����
�17�

�namely, 2.828 � � � ��K0 + CK�/m0 
 3.464�

contains only hard gradons �H�.
It is quite interesting that such a simple system has so

wide varieties. The reentrant transitions for fixed ks=� from
gradons to extended modes are clearly illustrated by the in-
verse participation ratio21,23,24 �IPR� as shown in Fig. 7. The
IPR is of the order of 1 /N if the mode is extended, while
becomes larger when the mode is confined within a small
spatial region. Figure 7 definitely proves the existence of the
reentrant transition between gradons and unconfined modes
�phonons�.

It is also remarkable that modes with adjacent eigenvalues
possess quite different spatial extents in the regions �i�–�iii�.
This situation is illustrated by Fig. 8 in which the IPRs for

the effective 1D chain are plotted versus frequency �. In Fig.
8 a zigzag IPR curve indicates a very complicated frequency
dependence of spatial extents of modes. In the frequency
regions �i�–�iii�, modes alternate localized and extended
states depending on ks. The localization length of soft gra-
dons decreases with the frequency in region �i�, while it has
a maximum value �i.e., minimum in the IPR� in region �ii�.
In region �iii�, the localization length of hard gradons again
decreases with �. In contrast to regions �i�–�iii�, there are no
unbound modes in region �iv�, which can be seen from larger
values of the smallest IPR in this region. These behaviors of
the IPR are consistent with the phase diagram Fig. 6�b�.

Due to the duality between force constant and mass, the
graded mass model is essentially the same with the graded
force constant model we discussed. Similarly, in the graded
mass case �Figs. 1�c� and 1�d��, we substantially find the
same confined modes, which reside in “light” masses at
higher frequencies and in “heavy” masses at lower frequen-
cies, and are thus called “light gradons” and “heavy gra-
dons,” respectively. In this case, �low

�heavy��ks�=�K* /mmax and
�up

�heavy��ks�=�K* /mmin represent the bounds of heavy gradon
frequencies, where K*=2K0�1−cos ks

���� denotes the force
constant mediated by the additional on-site potential and
mmax, mmin are, respectively, the maximum and the minimum
masses in the graded mass network. Similarly, the bounds of
light gradons �low

�light��ks� and �up
�light��ks� are given by substi-

tuting with K*=2K0�3−cos ks
���� in the above expressions for

heavy gradons. In the same way as adopted in Fig. 6�b�, a
phase diagram for heavy gradons, unbound modes, and light
gradons can be obtained.

IV. DISCUSSION AND CONCLUSION

In summary, we have identified various kinds of vibra-
tional normal modes in 2D graded elastic networks, namely,
unbound modes and confined modes called soft �heavy� and
hard �light� “gradons” which reside at the two opposite edges
of the network in the gradient direction. The dependences of
the lower and upper frequency bounds on the transverse
wave number ks have been analytically determined for an
infinite graded system. For a fixed ks, we have discovered a
reentrant transition due to the competition between the trans-
verse momentum and the longitudinally effective confine-
ment. It is obvious that the three-dimensional results of a
graded solid are basically the same, in view of their similar-
ity of the reduced effective 1D problem as described by Eq.
�3�, i.e., the presence of additional dimension�s� only intro-
duces additional on-site potentials to the 1D graded elastic
chain.21 Although we mainly present the results in 2D square
lattices with orthogonal gradient, soft �heavy� and hard
�light� gradons would exist also in square lattices with diag-
onal gradient, as well as in triangular lattices with a non-
trivial gradient. In this regard, the method we demonstrated
for the reduction of inhomogeneous problem in higher di-
mensions to equivalent 1D problems is applicable to a wide
spectrum of systems. For example, by virtue of the analogy
of the vibrational problem with many other problems, such
as electromagnetic wave propagation25,26 in which the index

FIG. 7. Inverse participation ratio �IPR� for modes with ks=� as
a function of frequency �.

FIG. 8. IPR vs frequency � for all the modes in the graded
square network.
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of refraction plays the same role as the mass, one would
expect similar reentrant transitions from soft �heavy� and
hard �light� gradons to extended modes. In particular, in
quantum systems with graded characters,27 analogies be-
tween the classical and quantum problems indeed lead to
many cross fertilizations since solutions obtained in one field
can be carried over to the other.

The model we considered here may have relevance to
carbon nanotubes which are made by wrapping graphitic
sheets into cylindrical structures. However, they have no
simple square or rectangular lattices. A gradient in the azi-
muthal direction is possible with various ambients of the
nanotube, which will alter the dispersion and the DOS of
vibrational modes. This may lead to interesting electron-
gradon interactions in this system. The electrostatic interac-
tions effectively increase the elastic moduli near the surface
region of a nanotube, leading to a suppression of the strain.28

Since the effective force constant is related to the charge
density in piezoelectric materials, the force constants are ex-
pected to vary as well. The piezoelectric property of nano-
tubes thus may give a possibility to observe gradons by elec-
trical measurements. In addition, some changes in the heat
capacity of graded elastic solids would be visible around
Tc= ��c1��� /KB and ��c2��� /KB �KB the Boltzman con-
stant� with respect to that of a homogeneous media, by sim-
ply utilizing the DOS shown in Figs. 4�c� and 4�d�. The
remarkable change in the DOS of graded networks may be
detected by Mössbauer spectroscopy because its effect in the
recoiless fraction,29 or by other sensitive spectroscopies such
as nuclear magnetic resonance spectroscopy due to gradons
possible effects on the nuclear spin-lattice relaxation rate.30

Using the conventional neutron scattering method on the
graded system will also be informative.

It would be interesting to study the transmission
coefficient/transmission probability,31 energy flow,32 and heat
conduction33 versus the graded coefficient CK or Cm. Our
current results are relevant to a variety of problems like vi-
brational DOS of nanoscopic grains34 and transportation

through nanoscale devices that possess graded characters.
The effects of gradient on the wave transmission coefficient
are expected to be significant. For example, the high-
transmission extended excitations might become squeezed
and more confined modes appear with low transmission at
the pure band of hard gradons �e.g., region �iv� by Eq. �17��.
Specifically, from the phase diagram Fig. 6�b� we expect
very low transmission in the frequency range of ��2.0 be-
cause a majority of modes are confined beyond the frequency
of 2.0 in the case we analyzed. Simulations of the propaga-
tion of a wave packet in graded systems will reveal these
behaviors.

Sound waves in graded materials also affect how light
moves through it, because the compression effect of the
sound changes the refractive index from place to place,
which is the acousto-optic effect. It can be measured by
sending a sound wave into the structure and measuring what
it does to a beam of light reflected by it, optimizing the
interaction between sound and light, for example, in selec-
tively filled porous silicon. In this context, the frequency-
dependent reentrant transition behaviors in graded materials
will definitely lead to flexibly controllable acousto-optic ef-
fects. Finally, in terms of exciting the eigenmodes in the
graded system, it should be remarked that an excitation
launched outside the system must have a plane wave com-
ponent with wave number k�ks. In some cases, we may be
able to construct structures having a complete band gap for
acoustic waves35 or light with the help of hard or light
gradons.
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