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The spatial dependence of the superfluid density is calculated for the Kosterlitz-Thouless transition in the
presence of hard-wall boundaries, for the case of a single wall bounding the half-infinite plane, and for a
superfluid strip bounded by two walls. The boundaries induce additional vortices that cause the superfluid
density to become anisotropic, with the tensor component perpendicular to the wall falling to zero at the wall,
whereas the component parallel to the wall remains finite. The effects of the boundaries are found to extend
over all measured length scales, since the correlation length is infinite in the superfluid phase.
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The behavior of a superfluid near a hard wall is still not
well understood, even though many experiments are con-
ducted in the presence of container walls. The boundary con-
dition at the wall is that the superfluid current normal to the
wall should fall to zero. There have been many guesses that
this can be satisfied by having the superfluid density itself
fall to zero right at the wall, but this has never been rigor-
ously verified except perhaps in the simplest Landau-
Ginsburg models.1 Dirichlet boundary conditions at a wall
are often imposed on the order parameter in perturbative
renormalization expansions,2 but without any real justifica-
tion, and since the superfluid density is not simply propor-
tional to the order parameter in these theories its variation
near the wall is often left undetermined.

Here we calculate directly the superfluid density near a
hard wall for the case of the two-dimensional Kosterlitz-
Thouless �KT� transition,3 by taking into account the image
vortex pairs necessary to satisfy the boundary condition. This
leads to a lowered energy of the pairs in the superfluid near
the wall, and a consequent increase in the density of pairs.
The results show that the superfluid density does indeed fall
to zero at the wall, but only for the component measured in
the direction perpendicular to the wall, while the component
parallel to the wall remains finite. The presence of the wall
thus causes the superfluid density to become an anisotropic
tensor, and this perturbation is found to extend over all
length scales from the wall that are being measured. We also
consider the related problem of two parallel walls bounding a
long superfluid strip, a geometry often used in experimental
measurements. We note that several previous studies of the
KT transition near hard-wall boundaries have been carried
out,4 but none of these have incorporated the anisotropy of
the superfluid density, which we find to be a major effect.

These results should be of interest to experimental studies
of the KT transition. Although superfluid 4He films often
completely wet their substrates and thus have no boundaries,
it is now possible to micromachine channels in silicon to
such a small thickness that near the bulk � transition the
helium in the channels undergoes a two-dimensional KT
transition,5 and the geometry and dimensions of the bound-
ing walls can easily be varied. The superfluid density can be
measured with a small probing flow field in a given direction
at frequency �, and the length scale L over which the mea-
surement is made is then the vortex diffusion length,6 which

is thought to vary as �−1/2. For helium films at kilohertz
frequencies this length is known to be 4–5 orders of magni-
tude larger than the vortex core size.7

Consider a vortex pair whose center is a distance z from a
wall which bounds a semi-infinite half plane of superfluid
film. The pair have a separation r and the line joining their
cores makes an angle � with respect to the perpendicular to
the wall. For convenience we will scale all of these lengths
in the problem in units of the vortex core radius a0. Since the
wall can be replaced by the opposite-sign image vortices, the
energy of the pair, scaled by kBT, is easily found to be 8
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where K0=�2�s
0 /m2kBT is the bare areal superfluid density in

dimensionless form, and Ec is the core energy of a vortex.
Since the energy is a function of the angle with the wall, the
distribution of the thermally excited vortex pairs will be
angle dependent, and this causes the superfluid density to
become anisotropic, with tensor components K� and K�. By
following the arguments of Machta and Guyer9 for the an-
isotropic KT transition, it can be shown that the scaling re-
lations for the components of the superfluid density are given
by
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where �=ln r, y is the vortex fugacity, and f��� equals cos2 �
for the parallel moment of the fugacity y� and sin2 � for y�.
The lower limit in the integration of Eq. �5� arises when a
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pair near the wall is at the angle �min where one of the pair
approaches the wall to within a core radius, and from the
geometry this minimum value is �min=arccos
�2z−2� /e��
when 2z−2�e�, and �min=0 for 2z−2	e�. The density of
pairs n�r ,z� with separation between r and r+dr at the dis-
tance z is given by n�r ,z�= �y�

2+y�
2 � /r2, and in the limit of

large z this reduces to the infinite-plane result y2 /r2.
The recursion relations are iterated using variable-step

Runge-Kutta techniques, as is the integration of Eq. �5�. The
iterations start at the bare scale �=0 and terminate at the
scale over which the superfluid density is measured, �m
=ln�L�. The initial values at �=0 are K�

0=K�
0 =K0, and spin-

wave effects are neglected by assuming �s
0=�, the liquid

density. The initial fugacities are y� =y�=y=exp�−Ec�, where
we assume the Villain form Ec=�2K0 /2. The critical value

of K0 at TKT is then K0c=0.747 583, and the scaled tempera-
ture is given by T /TKT=K0c /K0.

Figure 1 shows the components of the superfluid density
and fugacity as a function of the distance z from the wall for
the measuring scale �m=12 �L=1.63
105�. The superfluid
density component perpendicular to the wall is zero within a
core radius of the wall, and then increases smoothly to the
infinite-plane value for z�L /2. The perpendicular fugacity
component y� is a maximum at the wall, reflecting the in-
creased density of pairs parallel to the wall that drives the
superfluid density to zero, and then decreases smoothly with
z. For distances larger than L /2 it then decreases to the
infinite-plane value. At high temperatures and very close to

FIG. 1. �Color online� Superfluid density components in the half
plane �a� perpendicular and �b� parallel to the wall, and �c� the
corresponding fugacities y� �dashed curves� and y� �solid curves�,
as a function of distance z from the wall. The curves are labeled by
their values of T /TKT.

FIG. 2. �Color online� Superfluid density components �a� per-
pendicular and �b� parallel to the walls of a strip of width W
=1000, and �c� the corresponding fugacities y� �dashed curves� and
y� �solid curves�, as a function of distance z from the left wall. The
curves are labeled by their values of T /TKT.
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the wall y� can become larger than 1, a high-density regime
where the recursion relations are not valid, but over most of
the regime where the superfluid density varies near the wall
y� is less than 1 and the results should be accurate. In Fig. 1
both components of the superfluid density vary rapidly near
TKT, but there is not a sharp jump to zero because of finite-
size broadening due to the cutoff of the recursion relations at
the distance L. This is well known10 to give a temperature
broadening above TKT in the form �T��b / ln L�2, where for
our parameters the value of the constant b is about 1.7.

If the distance over which the perpendicular superfluid
density rises to one-half of its ultimate value at large z is
denoted as 1/2, it can be seen in Fig. 1 that this quantity
varies rapidly with temperature. Fits to 1/2 over the range
T /TKT between 0.75 and 1.0 are best characterized by the
form 1/2=0.15L exp
13.3/ �1−T /TKT��. This differs from
the form exp
b / �1−T /TKT�1/2� that has been suggested as a
“superfluid” coherence length for the infinite-plane case,6 but
the reason for the difference in exponents is not clear; the
precise form will require an analytic solution of the recursion
relations of Eqs. �2�–�5�.

The component of the superfluid density parallel to the
wall remains finite at the wall, but with a rapid drop over
10–40 core radii depending on the temperature. This de-
crease is due to the point in the recursion relations where the
pair separation is nearly 2z and one of the pairs approaches
to within a core radius of the wall, effectively canceling with
the image in the wall. This reduces the energy of the pair
considerably, resulting in an increased vortex density that
lowers the superfluid density. The phase space of such pairs
is quite limited, however, since larger pairs are cut off at
�min, and the resulting fugacity component y� is relatively
small right at the wall, has a tiny peak near 10 core radii for
the higher temperatures �barely visible in Fig. 1�, and then
increases slowly with z as the phase space increases. For
intermediate values of z the parallel superfluid density is
relatively constant, but then as z approaches L /2 it increases
sharply as the pair energy is reduced only for very small
angles �, and finally is not reduced at all past L /2 where the
superfluid density quickly approaches the infinite-plane
value. y� peaks just at L /2 where the phase space increases
rapidly in conjunction with the lowered pair energy, and then
past L /2 it decreases rapidly to the infinite-plane value of y.

If these calculations are repeated at different values of L,
the results are nearly identical when plotted as a function of
z /L, with the only differences occurring near TKT due to the
finite-L broadening of the transition noted above. The effect
of the boundary extends over all length scales that are being
measured, a consequence of the infinite Kosterlitz correlation
length3 in the superfluid phase below TKT. The origin of the
depression of the perpendicular superfluid density at macro-
scopic values of z can be understood by the excitation of
pairs oriented parallel to the wall ��=� /2�, which are prima-
rily responsible for the reduction of the perpendicular com-
ponent. It is found from Eq. �1� that the energy to excite such
pairs becomes nearly linear in the variable z /r when r is
greater than z. Hence even at very large z it becomes quite
favorable to excite pairs with much larger values of r, and

these strongly reduce the perpendicular superfluid density
even at temperatures well below TKT. It is only when the
maximum value of r affecting the superfluid density is lim-
ited by the measuring length L that the effects of the wall are
finally curtailed.

The case of two hard walls defining a superfluid strip of
width W has also been investigated using the same tech-
niques, with the cutoff at L effectively acting as periodic
boundary conditions at the ends of the strip. The image vor-
tices for this geometry form two infinite lines of alternating-
sign vortices, and the bare energy of a pair is given by

FIG. 3. �Color online� Temperature dependence of the superfluid
densities �a� perpendicular and �b� parallel to the walls of a strip of
width W indicated by the numbers on the curves, at a distance from
the wall z=W /4. �c� shows the corresponding fugacities y� �dashed
curves� and y� �solid curves. The dashed portions of the curves in
�a� and �b� indicate where the fugacities become larger than 1, while
the upper curve is the infinite-plane KT transition.
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where k=� /W, �=r cos �, and �=r sin �. With this potential
the recursion relations are identical to Eqs. �2�–�4�, while in
Eq. �5� the term in the parentheses of the integral is replaced
by the argument of the second logarithm in Eq. �6� with r
=exp���. Figure 2 shows the calculated superfluid densities
and fugacities for a strip of width W=1000 and measuring
scale �m=12. Shown are the values for z between 0 and W /2;
the results are symmetric about W /2. Near z=0 the charac-
teristics are quite similar to the single-wall result, with the
perpendicular superfluid density rising from zero at the wall,
and the parallel component remaining finite. The main dif-
ference comes when z approaches W /2. At this point both
vortices in the pair can approach the walls, greatly lowering
the energy and causing a sharp dip in both components of the
superfluid density even at very low temperatures. An addi-
tional effect of the second wall is that the transition for the
perpendicular component is greatly broadened out, and there
is also a downward shift in the perpendicular transition tem-
perature to well below the infinite-plane TKT.

When the calculation is repeated for different values of W,
the curves are quite similar when plotted versus the scaled
variable z /W, with the main differences being the broadening
and Tc shift of the perpendicular component. Figure 3 shows
the temperature dependence of the superfluid densities and
fugacities at the point z=W /4, for a wide range of W. The
perpendicular superfluid density shows the strong downward
shift of Tc, which appears to be a logarithmic decrease with
W, varying as ln�W−0.05�. The transition is also greatly broad-
ened, with a linear temperature decrease that seems to be
independent of W. In contrast, the parallel component shows
about a 15% decrease in Tc that is independent of W, and
then a W-dependent finite-size temperature broadening vary-
ing approximately as �b / ln W�2, similar to the single-wall
broadening but with L now replaced by W.

These main results of anisotropy extending over macro-
scopic length scales should also apply to superconducting
films that undergo the KT transition, since strip geometries
are often used in the measurements. Finite-size effects at the
KT transition are known to be important in low-Tc granular
films,11 high-Tc films,12,13 and Josephson-junction arrays.14

However, the superconducting case involves an additional
length scale, the penetration depth �,15 and to compare with
experiments it will be necessary to extend the above theory
to incorporate that scale. A crude first approximation might
be to replace the measurement length L in the above calcu-
lations with � if it is smaller than L.

It also may be possible to extend the calculation to the
three-dimensional superfluid transition by using similar vor-
tex renormalization techniques 13,16 on the vortex loops near
the wall. The images in the wall would again lower the en-
ergy to create loops, but unfortunately analytic solutions for
the energy are only known for loops parallel to the wall,17

and numerical techniques will be necessary for the energies
at other angles.18 We would expect again to find anisotropy
in the superfluid density, but since in three dimensions �3D�
the correlation length is finite this would only occur within a
correlation length from the wall. The extension to the 3D
case would be important for gaining a more complete under-
standing of the critical Casimir effect in helium films, where
the boundary conditions at the upper and lower film surfaces
strongly affect the magnitude of the Casimir force.2,13
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