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In the context of the Ginzburg-Landau theory for critical phenomena, we consider the Euclidean
��4+��6 model bounded by two parallel planes, a distance L separating them. This is supposed to describe a
sample of a superconducting material undergoing a first-order phase transition. We are able to determine the
dependence of the transition temperature Tc for the system as a function of L. We show that Tc�L� is a concave
function of L, in qualitative accordance with some experimental results. The form of this function is rather
different from the corresponding one for a second-order transition.
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I. INTRODUCTION

In the last few decades, a large amount of work has been
done on the Ginzburg-Landau phenomenological approach to
critical phenomena. An account on the state of the subject
and related topics can be found, for instance, in Refs. 1–10.
Questions concerning the existence of phase transitions may
also be raised if one considers the behavior of field theories
as a function of spatial boundaries. The existence of phase
transitions would be in this case associated to some spatial
parameters describing the breaking of translational invari-
ance, for instance, the distance L between planes bounding
the system. Analyses of this type have been recently
performed.11–13 In particular, if one considers the Ginzburg-
Landau model confined between two parallel planes, which
is assumed to describe a film of some material, the question
of how the critical temperature depends on the film thickness
L can be raised.

Studies on field theory applied to bounded systems have
been done in the literature for a long time. In particular, an
analysis of the renormalization group in finite-size geom-
etries can be found in Refs. 14 and 15. These have been
performed to take into account boundary effects on scaling
laws. In another related topic of investigation, there are sys-
tems that present domain walls as defects, created for in-
stance in the process of crystal growth by some prepared
circumstances. At the level of effective field theories, in
many cases, this can be modeled by considering a Dirac
fermionic field whose mass changes sign as it crosses the
defect, meaning that the domain wall plays the role of a
critical boundary separating two different states of the
system.16,17 Under the assumption that information about
general features of the behavior of systems undergoing phase
transitions in absence of external influences �like magnetic
fields� can be obtained in the approximation which neglects
gauge field contributions in the Ginzburg-Landau model, in-
vestigations have been done with an approach different from
the renormalization group analysis. The system confined be-
tween two parallel planes has been considered and using the
formalism developed in Refs. 11–13, the way in which the
critical temperature is affected by the presence of boundaries
has been investigated. In particular, a study has been done on

how the critical temperature Tc of a superconducting film
depends on its thickness L.13,18,19 In the present paper we
perform a further step, by considering in the same context an
extended model, which besides the quartic field self-
interaction, a sextic one is also present. It is well known that
those interactions, taken together, lead to a renormalizable
quantum field theory in three dimensions and which is sup-
posed to describe first-order phase transitions.

We consider, as in previous publications, that the system
is a slab of a material of thickness L, the behavior of which
in the critical region is to be derived from a quantum field
theory calculation of the dependence of the renormalized
mass parameter on L. We start from the effective potential,
which is related to the renormalized mass through a renor-
malization condition. This condition, however, reduces con-
siderably the number of relevant Feynman diagrams contrib-
uting to the mass renormalization, if one wishes to be
restricted to first-order terms in both coupling constants. In
fact, just two diagrams need to be considered in this approxi-
mation: a tadpole graph with the �4 coupling �one loop� and
a “shoestring” graph with the �6 coupling �two loops� �see
Fig. 1�. No diagram with both couplings occur. The L depen-
dence appears from the treatment of the loop integrals, as the
material is confined between two planes a distance L apart
from one another. We therefore take the space dimension
orthogonal to the planes as finite, the other two being other-
wise infinite. This dimension of finite extent is treated in the
momentum space using the formalism of Ref. 12.

The paper is organized as follows. In Sec. II, we present
the model and the description of a bounded system through
an adaptation of the Matsubara formalism suited for our pur-
poses. The contributions from the two relevant Feynman dia-
grams to the effective potential are established, as well as an
expression showing the L dependence of the critical tempera-
ture. In Sec. III, as we wish to compare our theoretical result
with some experimental data, we need first to make a phe-
nomenological evaluation of the �6 coupling constant, based
on the analogous derivation made by Gorkov for the �4 con-
stant. The comparison with measurements is discussed in
Sec. IV. Finally, in Sec. V we present our conclusions.
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II. THE EFFECTIVE POTENTIAL IN THE �6

GINZBURG-LANDAU MODEL

We start by stating the Ginzburg-Landau Hamiltonian
density in a Euclidean D-dimensional space, now including
both �4 and �6 interactions, in the absence of external fields,
given by �in natural units, �=c=kB=1�,

H =
1

2
����2 +

1

2
m0

2���2 −
�

4
���4 +

�

6
���6, �1�

where we are taking the approximation in which ��0 and
��0 are the renormalized quartic and sextic self-coupling
constants. Near criticality, the bare mass is given by
m0

2=	�T /T0−1�, with 	�0 and T0 being a parameter with
the dimension of temperature. Recall that the critical tem-
perature for a first-order transition described by the Hamil-
tonian above is higher than T0.20 This will be explicitly stated
in Eq. �21� below. We consider the system confined between
two parallel planes, normal to the x axis, a distance L apart
from one another and use Cartesian coordinates r= �x ,z�,
where z is a �D−1�-dimensional vector, with corresponding
momenta k= �kx ,q� , q being a �D−1�-dimensional vector in
momenta space. The generating functional of Schwinger
functions is written in the form

Z =� D�*D� exp�− �
0

L

dx� dD−1zH����, ������ , �2�

with the field ��x ,z� satisfying the condition of confinement
along the x axis, ��x
0,z�=��x�L ,z�=const. Then the
field should have a mixed series-integral Fourier representa-
tion of the form

��x,z� = �
n=−�

�

cn� dD−1qb�q�e−inx−iq·z�̃�n,q� , �3�

where n=2�n /L and the coefficients cn and b�q� corre-
spond, respectively, to the Fourier series representation over
x and to the Fourier integral representation over the
�D−1�-dimensional z space. The above conditions of con-
finement of the x dependence of the field to a segment of
length L allow us to proceed, with respect to the x coordi-
nate, in a manner analogous as is done in the imaginary-time
Matsubara formalism in field theory and, accordingly, the
Feynman rules should be modified following the prescrip-
tion:

� dkx

2�
→

1

L
�

n=−�

�

, kx →
2n�

L
� n. �4�

We emphasize, however, that we are considering an Euclid-
ean field theory in D purely spatial dimensions, so we are not
working in the framework of finite-temperature field theory.
Here, the temperature is introduced in the mass term of the
Hamiltonian by means of the usual Ginzburg-Landau pre-
scription.

To continue, we use some one-loop results described in
Refs. 11, 12, and 21, adapted to our present situation. These
results have been obtained by the concurrent use of dimen-
sional and zeta-function analytic regularizations, to evaluate
formally the integral over the continuous momenta and the
summation over the frequencies n. We get sums of polar �L
independent� terms plus L-dependent analytic corrections.
Renormalized quantities are obtained by subtraction of the
divergent �polar� terms appearing in the quantities obtained
by application of the modified Feynman rules and dimen-

FIG. 1. Diagrams contributing to the renormalized mass at lowest order in the coupling constants.
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sional regularization formulas. These polar terms are propor-
tional to � functions having the dimension D in the argument
and correspond to the introduction of counterterms in the
original Hamiltonian density. In order to have a coherent
procedure in any dimension, those subtractions should be
performed even for those values of the dimension D for
which no poles are present. In these cases a finite renormal-
ization is performed.

In principle, the effective potential for systems with spon-
taneous symmetry breaking is obtained, following the
Coleman-Weinberg analysis,22 as an expansion in the number
of loops in Feynman diagrams. Accordingly, to the free
propagator and to the no-loop �tree� diagrams for both cou-
plings, radiative corrections are added, with increasing num-
ber of loops. Thus, at the one-loop approximation, we get the
infinite series of one-loop diagrams with all numbers of in-
sertions of the �4 vertex �two external legs in each vertex�,
plus the infinite series of one-loop diagrams with all numbers
of insertions of the �6 vertex �four external legs in each
vertex�, plus the infinite series of one-loop diagrams with all
kinds of mixed numbers of insertions of �4 and �6 vertices.
Analogously, we should include all those types of insertions
in diagrams with two loops, etc. However, instead of under-
taking this computation, in our approximation we restrict
ourselves to the lowest terms in the loop expansion. We re-
call that the gap equation we are seeking is given by the
renormalization condition in which the renormalized squared
mass is defined as the second derivative of the effective po-
tential U��0� with respect to the classical field �0, taken at
zero field,

	 �2U��0�
��0

2 	
�0=0

= m2. �5�

Within our approximation, we do not need to take into ac-
count the renormalization conditions for the interaction cou-
pling constants, i.e., they may be considered as already
renormalized when they are written in the Hamiltonian. At
the one-loop approximation, the contribution of loops with
only �4 vertices to the effective potential is obtained directly
from Ref. 12, as an adaptation of the Coleman-Weinberg
expression after compactification in one dimension

U1��,L� = �D
a�
s=1

�
�− 1�s+1

2s
g1

s�0
2s �

n=−�

� � dD−1k

�k2 + an2 + c2�s .

�6�

In the above formula, in order to deal with dimensionless
quantities in the regularization procedure, we have
introduced parameters c2=m2 /4�2�2, a= �L��−2,
g1=−� /16�2�4−D, and �0=�0 /�D/2−1, where �0 is the nor-
malized vacuum expectation value of the field �the classical
field� and � is a mass scale. The parameter s counts the
number of vertices on the loop.

It is easily seen that only the s=1 term contributes to the
renormalization condition �5�. It corresponds to the tadpole
diagram. It is then also clear that all �6-vertex and mixed
�4-vertex and �6-vertex insertions on the one-loop diagrams
do not contribute when one computes the second derivative

of similar expressions with respect to the field at zero field:
only diagrams with two external legs should survive. This is
impossible for a �6-vertex insertion at the 1-loop approxima-
tion, therefore the first contribution from the �6 coupling
must come from a higher-order term in the loop expansion.
Two-loop diagrams with two external legs and only �4 ver-
tices are of second order in its coupling constant, and we
neglect them, as well as all possible diagrams with vertices
of mixed type. However, the two-loop shoestring diagram,
with only one �6 vertex and two external legs is a first-order
�in �� contribution to the effective potential, according to our
renormalization criterion.

Therefore, the renormalized mass is defined at first order
in both coupling constants, by the contributions of radiative
corrections from only two diagrams: the tadpole and the
shoestring diagrams. The tadpole contribution reads �putting
s=1 in Eq. �6��

U1��0,L� = �D
a
1

2
g1�0

2 �
n=−�

� � dD−1k

k2 + an2 + c2 . �7�

The integral on the D−1 noncompactified momentum vari-
ables is performed using the dimensional regularization for-
mula

� ddk

k2 + M
=

�1 −
d

2
��d/2

M1−d/2 , �8�

for d=D−1, we obtain

U1��0,L� = �D
a
��D−1�/2

2
g1�0

2�3 − D

2
�

� �
n=−�

�
1

�an2 + c2��3−D�/2 . �9�

The sum in the above expression may be recognized as one

of the Epstein-Hurwitz zeta functions, Z1
c2� 3−D

2 ;a�, which
may be analytically continued to23

Z1
c2

��;a� =
2

2�+1
2 �

4�−1
2


a����
�2�−3/2m

�
�1−2�

�� −
1

2
�

+ 2�
n=1

�  m

�2Ln
�1/2−�

K�−1/2�mnL�� , �10�

where the K� are Bessel functions of the third kind. The
tadpole part of the effective potential is then

U1��0,L� =
�Dg1�0

2

�2��D/2−2�2− D+1
2 m

�
�D−2

�1 −
D

2
�

+ �
n=1

�  m

�2Ln
�D/2−1

KD/2−1�mnL�� . �11�

We now turn to the two-loop shoestring diagram contri-
bution to the effective potential, using again the Feynman
rule prescription for the compactified dimension. It reads
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U2��,L� = �2D−2a
1

2
g2�0

2

� ��3 − D

2
���D−1�/2Z1

c23 − D

2
;a��2

,

�12�

where g2=� /128�4�6−2D. After subtraction of the polar term
coming from the first term of Eq. �10� we get

U1
�Ren���0,L� =

− ��0
2

4�2��D/2 �
n=1

�  m

�2nL
�D/2−1

KD/2−1�mnL�

�13�

and

U2
�Ren���0,L� =

��0
2

4�2��D��
n=1

�  m

nL
�D/2−1

KD/2−1�mnL��2

.

�14�

Thus the full renormalized effective potential is given by

U��0,L� =
1

2
m0

2�0
2 −

�

4
�0

4 +
�

6
�0

6 + U1
�Ren� + U2

�Ren�. �15�

The renormalized mass with both contributions then sat-
isfies an L-dependent generalized Dyson-Schwinger equation

m2�L� = m0
2 −

�

2�2��D/2 �
n=1

�  m

nL
�D/2−1

KD/2−1�mnL� +
�

4�2��D

� ��
n=1

�  m

nL
�D/2−1

KD/2−1�mnL��2

. �16�

Thus, the effective potential �15� is rewritten in the form

U��0� =
1

2
m2�L��0

2 −
�

4
�0

4 +
�

6
�0

6, �17�

where it is assumed that � ,��0, a necessary condition for
the existence of a first-order phase transition associated to
the potential �17�. Then, a first-order transition occurs when
all the three minima of the potential are simultaneously on
the line U��0�=0. This gives the condition

m2�L� =
3�2

16�
. �18�

Notice that the value m=0 is excluded in the above condi-
tion, for it corresponds to a second-order transition. For
D=3, which is the physically interesting situation of the sys-
tem confined between two parallel planes embedded in a
three-dimensional Euclidean space, the Bessel functions
entering in the above equations have an explicit form,
K1/2�z�=
�e−z /
2z, which replaced in Eq. �16�, performing
the resulting sum, and reminding that m0

2=	�T /T0−1�, gives

m2�L� = 	 T

T0
− 1� +

�

8�

1

L
ln�1 − e−m�L�L�

+
��

8�2��3L2 �ln�1 − e−m�L�L��2. �19�

In Eq. �18� m�L� may have any strictly positive value and
this condition ensures that we are on a point on the critical
line for a first-order phase transition. Then introducing the
value of the mass, Eq. �18�, in Eq. �19�, we obtain the critical
temperature

Tc�L� = Tc1 − 1 +
3�2

16�	
�−1� �

8�	L
ln„1 − e−
�3�2/16��L

…

+
�

64�2	L2 �ln„1 − e−
�3�2/16��L
…�2�� , �20�

where

Tc = T01 +
3�

16�	
� �21�

is the bulk �L→ � � critical temperature for the first-order
phase transition.

III. PHENOMENOLOGICAL EVALUATION
OF THE CONSTANT �

Our aim in this section is to generalize Gorkov’s24–26 mi-
croscopic derivation done for the ��4 model in order to in-
clude the additional interaction term ��6 in the free energy.
Here, our interest is to determine the phenomenological con-
stant � as a function of the microscopic parameters of the
material, in an analogous way as it has been done for the
constant � in the ��4 model. Using Gorkov’s equations com-
bined with the self-consistent gap condition25 the free energy
density may be written in terms of the gap energy ��x� as

f��� = N�0���0
2����2 +  T

T0
− 1����2 +

3�0
2

�2vF
2 ���4

+
1674��5��0

4

147�4vF
4�2�3�

���6� , �22�

where N�0� is the density of states at the Fermi surface, �0 is
the coherence length, vF the Fermi velocity, and ��x� is the
Riemann zeta function. N�0� and �0 are given by

N�0� =
1

4�2kBTF
 pF

�
�3

, �0 � 0.13
�vF

kBT0
, �23�

where TF is the Fermi temperature, pF is the Fermi momen-
tum, and kB is Boltzmann’s constant. T0 is the temperature
parameter introduced in Eq. �1� that can be obtained from the
first-order bulk critical temperature by means of Eq. �21�.
Introducing the order parameter �=
2N�0��0� in Eq. �22�
we obtain
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f��� =
1

2
����2 +

1

2�0
2 T

T0
− 1����2 +

3

4�2vF
2�0

2N�0�
���4

+
1

6

1674��5�
196N�0�2�4vF

4�2�3��0
2 ���6. �24�

In order to be able to compare our results with some ex-
perimental observation, we should restore Systeme Interna-
tional �SI� units �remember that so far we have used natural
units, c= � =kB=1�.26 In SI units, the exponent in the parti-
tion function �2� has a factor 1 /kBT0. Then, we must divide
by kBT the free energy density in Eq. �24�. Moreover, we
rescale the fields and coordinates by �new=
�0 /kBT0� and
xnew=x /�0, which gives the dimensionless energy density
and, comparing with Eq. �1�, we can identify the phenom-
enological dimensionless constants �, �, and m0, with 	=1
�Ref. 26�

� � 111.08 T0

TF
�2

, � � 0.04257�2, m0
2 =

T

T0
− 1.

�25�

By replacing the above constants in Eq. �20�, we get the
critical temperature as a function of the film thickness and in
terms of microscopic tabulated parameters for specific mate-
rials.

IV. COMPARISON WITH EXPERIMENTAL DATA

We remark that Gorkov’s original derivation of the phe-
nomenological constants is valid only for perfect crystals,
where the electron mean free path l is infinite. However, we
know that in many superconductors the attractive interaction
between electrons �necessary for pairing� is brought about
indirectly by the interaction between the electrons and the
vibrating crystal lattice �the phonons�. Considering that this
interaction will be greater if we have impurities within the
crystal lattice, consequently the electron mean free path is
actually finite. The Ginzburg-Landau phenomenological con-
stants � and � and the coherence length are somehow related
to the interaction of the electron pairs with the crystal lattice
and the impurities. A way of taking these facts into account
preserving the form of the Ginzburg-Landau free energy is to
modify the intrinsic coherence length and the coupling
constants. Accordingly,26 �0→r1/2�0, �→2r−3/2�, and
�→4r−3�, where r�0.18R−1, with R=�0 / l. Then, Eq. �20�
becomes

Tc�L� = Tc�1 − 1 +
3�2

16�
�−1� 2R�

0.18 · 8�

�0

L
ln„1

− e�−L/�0�
�3�2/16���R/0.18�
… +

4R2�

0.18232�2 �0

L
�2

��ln„1 − e−�L/�0�
�3�2/16���R/0.18�
…�2�� . �26�

We consider that other effects, such that of the substrate
over which the superconductor film is deposited, should be
taken into account. In the context of our model, however, we

are not able to describe such effects at a microscopic level.
We therefore assume that they will be translated in changes
on the values of the coupling constants � and �. So, we
propose as an Ansatz the rescaling of the constants in the
form �→a� and �→a2�. We may still combine both pa-
rameters R and a as r=aR. Eq. �26� is then written as

Tc�L� = Tc�1 − 1 +
3�2

16�
�−1� 2r�

0.18 · 8�

�0

L
ln„1

− e�−L/�0�
�3�2/16���R/0.18�
… +

4r2�

0.18232�2 �0

L
�2

��ln„1 − e−�L/�0�
�3�2/16���R/0.18�
…�2�� . �27�

In Fig. 2 we plot Eq. �27� to show the behavior of the
transition temperature as a function of the thickness for a
film made from aluminum. The values for Al of the
Fermi temperature and the bulk critical temperature are
TF=13.53�104 K and Tc=1.2 K, respectively, and Fermi
velocity vF=2.02�106 m/s.

We see from the figure that the critical temperature grows
from zero at a nonnull minimal allowed film thickness above
the bulk transition temperature Tc as the thickness is en-
larged, reaching a maximum and afterwards starting to de-
crease, going asymptotically to Tc as L→�. We also plot for
comparison some experimental data obtained from Ref. 27.
We see that our theoretical curve is in qualitatively good
agreement with measurements, especially for thin films.

The experimental evidence showing that in some super-
conducting films the transition temperature is well above the
bulk one has been reported in the literature since the 1950s
and 1960s.28–31 On the theoretical side, a formula for the
transition temperature was written within BCS theory in
terms of the electron-phonon coupling constant, the Debye
temperature and the Coulomb coupling constant.32 This for-
mula was used to explain observed increases in the critical

FIG. 2. Critical temperature Tc �K� as function of thickness
L �Å�, from Eq. �27� and data from Ref. 27 for a superconducting
film made from aluminum.
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temperature of thin composite films consisting of alternating
layers of dissimilar metals.29 In Ref. 33 a molecular-dynamic
technique was applied to obtain the phonon frequency spec-
trum which led to the same results. Mechanisms accounting
for the sharp drop in Tc�L� for very thin films were also
discussed in Ref. 27. The authors conclude that the most
important influence on Tc�L� was the interaction of the film
with the substrate, described by a model in Ref. 34.

It is interesting that in recent reports on copper oxide
high-transition-temperature superconductors, the critical
temperature depends on the number of layers of CuO2 in a
similar way as above: first it rises with the number of layers
and, after reaching a maximum value, then declines. See Ref.
35 and references therein.

This behavior may be contrasted with the one shown by
the critical temperature for a second-order transition. In this
case, the critical temperature increases monotonically from
zero, again corresponding to a finite minimal film thickness,
going asymptotically to the bulk transition temperature as
L→�. This is illustrated in Fig. 3, adapted from Ref. 36,
with experimental data from Ref. 37. �Such behavior has also
been experimentally found by some other groups for a vari-
ety of transition-metal materials, see Refs. 38–40.� Since in
the present work a first-order transition is explicitly assumed,

it is tempting to infer that the transition described in the
experiments of Ref. 27 is first order. In other words, one
could say that an experimentally observed behavior of the
critical temperature as a function of the film thickness may
serve as a possible criterion to decide about the order of the
superconductivity transition: a monotonically increasing
critical temperature as L grows would indicate that the sys-
tem undergoes a second-order transition, whereas if the criti-
cal temperature presents a maximum for a value of L larger
than the minimal allowed one, this would be signalling the
occurrence of a first-order transition.

V. CONCLUSIONS

As seen in previous works, a superconducting system
confined in some region of space may lose its characteristics
if the dimensions of this region become sufficiently small.
This is due to the fact that the critical temperature depends
on these dimensions in such a way that it vanishes below
some finite minimal size. This has been verified in a field-
theoretical framework for a Ginzburg-Landau model describ-
ing a second-order phase transition. In the present paper, we
have studied the critical temperature behavior of a sample of
superconducting material in the form of a film, but we have
included in the model a �6 self-interaction term, thus imply-
ing that we are now dealing with a first-order transition. In
the case we have treated, a sharply contrasting behavior of
the critical temperature, as a function of the film thickness,
was obtained with respect to the corresponding one for a
second-order transition. This possibly indicates a way of dis-
cerning the order of a superconducting transition from ex-
perimental data, according to the profile of the curve Tc vs L.

Also importantly, for our derivation of the first-order tran-
sition critical temperature curve, we needed to phenomeno-
logically evaluate the �6 coupling constant, which, as far as
we know, is not present in the literature.

Finally, we also remark that in D=3, for second-order
transitions, one considers m=0 and that leads to the need of
a pole-subtraction procedure for the mass.10 In our case such
a procedure is not necessary, as a first-order transition must
occur for a nonzero value of the mass. This fact, together
with the closed formula for the Bessel function for D=3,
allows us to obtain the exact expression �20� for the critical
temperature.
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