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How the vortex lattice orders at long range in a layered superconductor with weak point pinning centers is
studied through a duality analysis of the corresponding frustrated XY model. Vortex-glass order emerges out of
the vortex liquid across a macroscopic number of weakly coupled layers in a perpendicular magnetic field as
the system cools down. Further, the naive magnetic-field scale determined by the Josephson coupling between
adjacent layers is found to serve as an upper bound for the stability of any possible conventional vortex lattice
phase at low temperature in the extreme type-II limit.
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I. INTRODUCTION

It is well known that an external magnetic field can pen-
etrate a type-II superconductor in the form of lines of flux
quanta.1 The repulsive forces that such flux lines experience
favor the creation of a triangular vortex lattice, while the
quenched point disorder present to some degree in all super-
conductors frustrates that tendency. Three thermodynamic
ground states are then likely. Either the triangular vortex lat-
tice is robust to weak point pinning and assumes a Bragg
glass state with no lines of dislocations that thread it,2 or it
will transit into a defective state with quenched-in lines of
dislocations that thread it. The latter, in turn, has two pos-
sible outcomes: a vortex glass state that retains macroscopic
phase coherence of the superconducting order parameter,3 or
a pinned liquid state that does not.2

High-temperature superconductors, in particular, are ex-
tremely type-II and layered.1 Below, we shall study how a
vortex lattice pinned by material point defects orders at long
range in such materials. The vortex lattice in layered super-
conductors with weak random point pins shall be described
theoretically in terms of the phase of the superconducting
order parameter via the corresponding frustrated XY model.4

This model notably neglects the effects of magnetic coupling
between layers, while it treats the Josephson coupling be-
tween them exactly. The growth of long-range order across
layers is then computed from the XY model through a duality
analysis,5 where the ratio of the energy of the Josephson
coupling between adjacent layers to the temperature emerges
as a small parameter. We find first that the correlation length
for vortex-glass order3 across weakly coupled layers diverges
as temperature cools down from the vortex liquid toward the
two-dimensional �2D� ordering transition. The divergence
signals a transition to a vortex glass phase.6–9 Second, we
find no evidence for the divergence of conventional super-
conducting phase correlations across layers from inside the
latter vortex glass to lowest order in the interlayer Josephson
coupling. This indicates ultimately that the naive decoupling
field for the pristine vortex lattice10 serves as an upper bound
for a stable Bragg glass phase2 in the extreme type-II limit.
Comparisons with previous numerical,4 theoretical,11 and
experimental12 determinations of the stability line for the
Bragg glass in layered superconductors are made at the end
of the paper.

II. TWO DIMENSIONS

The XY model with uniform frustration is the minimum
theoretical description of vortex matter in extremely type-II
superconductors. Both fluctuations of the magnetic induction
and of the magnitude of the superconducting order parameter
are neglected within this approximation. The model hence is
valid deep inside the interior of the mixed phase. The ther-
modynamics of an isolated layer with uniform frustration is
determined by its superfluid kinetic energy

EXY
�2� = − �

r�
�

�=x,y
J� cos����� − A���r�, �1�

which is a functional of the phase of the superconducting
order parameter, ei�, over the square lattice, r�. Here, Jx and
Jy are the local phase rigidities that are equal and constant,
except over links in the vicinity of a pinning center. The

vector potential A� = �0,2�fx /a� represents the magnetic in-
duction oriented perpendicular to the layers, B�=�0f /a2.
Here a denotes the square lattice constant, which is of order
the coherence length of the Cooper pairs, �0 denotes the flux
quantum, and f denotes the concentration of vortices per site.

Analytical and numerical work indicates that the 2D vor-
tex lattice is invaded by quenched-in dislocations in the pres-
ence of any degree of random point pinning.13 The author
has argued14 that the dislocations quenched into each 2D
vortex lattice described by the frustrated XY model �1� nota-
bly do not line up to form low-angle grain boundaries, how-
ever �cf. Ref. 15�. That argument is based on the incompress-
ible nature of 2D vortex matter in the extreme type-II limit.
The absence of grain boundaries is consistent with Monte
Carlo simulations16 of the equivalent 2D Coulomb gas en-
semble with random point pins,8 as well as with Monte Carlo
simulations of the frustrated XY model in three dimensions
with randomly located columnar pins.17 Secondly, a net su-
perfluid density is predicted at zero temperature for perpen-
dicular magnetic fields above the collective-pinning thresh-
old, Bcp

�2D�, in which case the number of pinned vortices is
greater than the number of isolated dislocations quenched
into the 2D vortex lattice.18 Here, the scale of the Larkin
domains1 is set by the separation between neighboring dislo-
cations quenched into the vortex lattice. A variational calcu-
lation by Mullock and Evetts yields the estimate
Bcp

�2D���4fp /�0d�2�0 for the threshold field,19 where fp de-
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notes the maximum pinning force, where �0= ��0 /4��L�2 is
the maximum tension of a fluxline in the superconductor, and
where d denotes the separation between adjacent layers. Here
�L represents the London penetration depth. The pinning of
the vortex lattice in isolated layers shall be assumed to be
collective henceforth: B��Bcp

�2D�.
The previous paragraph indicates that a hexatic vortex

glass characterized by a homogeneous distribution of
quenched-in dislocations and by a net superfluid density ex-
ists in isolated layers of the frustrated XY model �1� with
weak random point pins at zero temperature.18 The transition
temperature Tg

�2D� that separates the low-temperature hexatic
vortex glass from the high-temperature vortex liquid must
therefore be equal to zero or greater. Recent current-voltage
measurements of 2D arrays of Josephson junctions in weak
external magnetic field indicate that the 2D superconducting/
normal transition at T=Tg

�2D� is second order,20 with Tg
�2D�

much larger than the 2D melting temperature of the pristine
vortex lattice, Tm

�2D��J /20. Since the previous is a faithful
realization of the frustrated XY model �1� in 2D with random
point pinning centers, we shall assume henceforth that the
hexatic vortex glass melts into a vortex liquid at temperature
Tg

�2D��0 via a second-order phase transition.

III. THREE DIMENSIONS

We shall now demonstrate how long-range vortex-glass
order emerges across layers from the vortex liquid phase of
layered superconductors with weak random point pins. Let
us first couple the layers through the Josephson effect by
adding a term −Jz cos��z�−Az� to the internal energy of the
frustrated XY model for each nearest-neighbor link across
adjacent layers. The component of the magnetic induction
parallel to the layers is taken to be null throughout. At weak
coupling, Jz	kBT, phase correlations across N layers can
then be determined from the quotient

	exp
i�
r

p�r���r��� = ZCG�p�/ZCG�0� �2�

of partition functions for a layered Coulomb gas �CG�
ensemble,5

ZCG�p� = �
nz�r��

y0
N�nz�
lCl�ql�e−i�rnzAz. �3�

Above, nz�r� , l� is a dual charge/integer field that lives on
links between adjacent layers l and l+1, located at 2D points
r�, and p�r�=�r�,0 · ��l,1−�l,N� is the external integer probe
field. The ensemble is weighted by a product of phase auto-
correlation functions for isolated layers l,

Cl�q� = 	exp
i�
r�

q�r����r�,l���
Jz=0

, �4�

probed at the dual charge that accumulates onto that layer,

ql�r�� = p�r�,l� + nz�r�,l − 1� − nz�r�,l� . �5�

It is also weighted by a bare fugacity y0 that is raised to the
power N�nz� equal to the total number of dual charges,

nz= ±1. The fugacity of the dual CG ensemble �3� is given
by y0=Jz /2kBT in the selective high-temperature regime,
Jz	kBT, reached at large model anisotropy. It is small com-
pared to unity in such a case, which implies a dilute concen-
tration of dual nz charges.5 The dual CG ensemble �3� is
valid in that regime.

The above duality analysis is particularly natural and ef-
fective in the vortex-liquid phase, where autocorrelations of
the superconducting order parameter in isolated layers �4� are
short range. They shall be assumed to take to the form that is
characteristic of a hexatic vortex liquid between points r�1
and r�2 in an isolated layer l,18,21

Cl�1,2� = g0e−r1,2/�2De−i�0�1�ei�0�2�. �6�

Here ei�0 is the superconducting order parameter of layer l in
isolation at zero temperature, �2D denotes the phase correla-
tion length of the 2D hexatic vortex liquid, and g0 is a
prefactor of order unity. Also, r�1,2=r�1−r�2 is the displacement
between the probes within layer l. To lowest order in the
�dual� fugacity, y0, Eqs. �2� and �3� then yield the expression

�ei�l,l+n� � y0
n�

1
¯ �

n

Cl�0,1�Cl+1�1,2� ¯ Cl+n�n,0� �7�

for the bulk average �overbar� of the gauge-invariant auto-
correlation function of the conventional superconducting or-
der parameter ei� across n layers, at zero parallel field.
Above and hereafter, we take the gauge Az=0. The uncorre-
lated nature of point pinning centers across layers implies the
form


m=0
n e−i�0�r�m,l+m�ei�0�r�m+1,l+m� = 
m=0

n e−rm,m+1/2l� �8�

for the bulk average of the relevant product of zero-
temperature order parameters, with matching end points
r�0=r�n+1. Here, l� is a quenched disorder scale that is set by
the density of lines of dislocations quenched into the vortex
lattice at Jz=0 that begin or end at a given layer. We remind
the reader that l� is believed to be finite �in the absence of
interlayer coupling� for any nonzero strength of quenched
point disorder.13 Substitution of Eq. �8� into expression �7�
then yields the principal dependence22

�ei�l,l+n�  g0�J/kBT���l�
−1 + ��

−1�−1/�0�2�n �9�

for the correlation of the conventional superconducting order
parameter across n layers. Here, J is the macroscopic
phase rigidity of an isolated layers at zero temperature,
�0= �J /Jz�1/2a is the Josephson penetration depth, and
��=�2D/2. Notice that the existence of the disorder scale l�

implies that the perturbative result �9� above does not di-
verge with the 2D phase correlation length �2D in the vicinity
of the 2D ordered phase. We conclude that conventional su-
perconducting phase coherence across many layers �n→��
does not emerge out of the vortex liquid at weak Josephson
coupling between adjacent layers.

The growth of macroscopic vortex-glass order across
layers3 from inside of the vortex liquid is still possible, how-
ever. We shall test for it by computing the corresponding
autocorrelation function,3 which is given by
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��ei�l,l+n��2 � y0
2n�

1,1̄

¯ �
n,n̄

Cl�0,1�Cl
*�0,1̄�Cl+1�1,2�Cl+1

* �1̄, 2̄� ¯ Cl+n�n,0�Cl+n
* �n̄,0� �10�

to lowest order in the �dual� fugacity, y0. It is natural to look
for vortex-glass order to emerge from within the 2D critical
regime: �2D�2l� at T�Tg

�2D�, where Tg
�2D� denotes the tran-

sition temperature of the 2D hexatic vortex glass. The bulk
average of the product of zero-temperature order parameters
that appears in the integrand above can then be approximated
by the corresponding product of the bulk averages limited to
adjacent layers, l�= l+m−1 and l�+1, only,

exp�i�l�,l�+1
�0� �m��exp�− i�l�,l�+1

�0� �m̄�� = e−rm,m̄/l�. �11�

Here �
l�,l�+1
�0� �r��=�0�r� , l�+1�−�0�r� , l��−Az�r�� is the

quenched interlayer phase difference. Converting to center-
of-mass variables among the interlayer coordinates, r�m and
r�m̄, then yields the principal dependence22

��ei�l,l+n��2  �g0�J/kBT��l���/�0
2��2n �12�

for the vortex-glass correlations across layers in the 2D criti-
cal regime, �2D�2l�, at zero parallel field. The correspond-
ing correlation length ���� is equal to the layer spacing �d�
when the argument in brackets above is set to 1/e. This
occurs at a crossover field

B� � g0�J/kBT��l���/avx
2 ���0/�0

2� �13�

that separates two-dimensional from three-dimensional �3D�
vortex-liquid behavior �see Table I�. Above, avx denotes the
square root of the area per vortex inside of a given layer.
Also, the argument between brackets on the right-hand side
of Eq. �12� notably diverges with �2D in the vicinity of the
2D ordering transition. This indicates that a transition to a
vortex glass that orders across a macroscopic number of
layers,4,6 ��→�, occurs at a critical temperature Tg that lies
inside of the window �Tg

�2D� ,T��. Indeed, setting the argu-
ment of the exponent on the right-hand side of Eq. �12� to
unity yields a critical field Bg=B� /e, below which a vortex
glass exists �see Table I�.

Lastly, recall that the superfluid density across layers,
�s

�=−N−1kBT�2 ln ZCG/ ��Az
2�0, is given by the expression5

�s
� = N−1	
�

r�,l

nz�r�,l��2�kBT , �14�

where N counts the number of nearest-neighbor links be-
tween layers, and where periodic boundary conditions are
assumed across layers. Study of Eqs. �2�–�5� yields that the
tension for a line across layers of dual nz quanta is equal to
��

−1, where �� denotes the correlation length for vortex-glass
order across layers. The corresponding superfluid density
�14� is then null in the limit of a macroscopic number of
layers inside of the vortex liquid, where ���� �see Table I�.

The previous result �12� clearly demonstrates that a selec-
tive high-temperature expansion in powers of the fugacity y0

necessarily breaks down in the 2D ordered phase, T�Tg
�2D�,

where �2D is infinite. A direct analysis of the frustrated XY
model for an isolated layer finds, in particular, that long-
range correlations of the superconducting order parameter
�4� decay algebraicly instead at such low temperatures,8,21

Cl�q� = g0
n+ exp
�2D �

�1,2�
q�r�1�ln�r1,2/r0�q�r�2��

· exp
i�
1

q�r�1��0�r�1,l�� . �15�

The exponent �2D that characterizes the algebraic decay of
2D phase coherence is related to the 2D superfluid density by
�s

�2D�=kBT /2��2D. Above, g0=�s
�2D� /J is the ratio of the 2D

phase stiffness with its value at zero temperature, J, while n+
counts half the number of probes in q�r��. Also, r0 denotes the
natural ultraviolet scale. It is important to observe at this
stage that the loop excitations in the �completely� dual rep-
resentation of the 3D XY model5 lose their integrity in the
ordered phase. This translates into the absence of charge con-
servation in the �partially� dual CG ensemble �3�. In other
words, the dual nz charges form a plasma in the ordered
phase. A Hubbard-Stratonovich transformation of the CG
partition function �3� followed by the unrestricted summation
of configurations of charges with values nz=0, ±1 then
yields the equivalent partition function23 ZLD�p�

TABLE I. Listed are the conventional phase correlation length �L�� and the vortex-glass phase correlation
length ���� across equally spaced �d� layers, as well as the corresponding “cosine” and phase rigidity �see
Ref. 8�, for the various regimes found inside the mixed phase of an extremely type-II superconductor at weak
Josephson coupling between layers, with weak point pinning.

Disorder index Regime/phase �cos �l,l+1� �s
� /Jz L� /d �� /d

1 Bragg glass unity unity � �

2 Defective vortex lattice unity unity unity, or greater �

3 Vortex glass fraction fraction fraction �

4 Critical vortex liquid fraction 0 fraction unity, or greater

5 Decoupled vortex liquid fraction 0 fraction fraction
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=�D�e−ELD/kBT+i�p� for a renormalized Lawrence-Doniach
�LD� model that shows no explicit dependence on the per-
pendicular magnetic field. Its energy functional is specifi-
cally given by5,8

ELD = �s
�2D� � d2r�

l

1

2
��� �l�2 − �0

−2 cos �l,l+1� , �16�

where �l,l+1=�l,l+1
�0� +�l+1−�l. The above continuum descrip-

tion is understood to have an ultraviolet cut off r0 of order
the intervortex spacing avx.

We can now determine the growth of correlations across
layers of the conventional superconducting order parameter
deep inside of the vortex glass phase, T�Tg

�2D�, at weak Jo-
sephson coupling between layers, �0→�. The physics de-
scribed by the original layered XY model coincides directly
with that of the renormalized LD model described above at
large scales in distance compared to the ultraviolet cutoff, r0.
Asymptotic correlations of the conventional superconducting
order parameter across layers, for example, are identical to
those of the LD model: limn→� �ei�l,l+n�= �ei�l,l+n�. The con-
figuration that optimizes ELD must be determined first in or-
der to compute the later near-zero temperature. The LD en-
ergy functional �16� implies that it satisfies the field equation

− �2��l�+1
�0� − �l�

�0�� = �0
−2 sin �l�+1,l�+2

�0� − 2�1
−2 sin �l�,l�+1

�0�

+ �0
−2 sin �l�−1,l�

�0� , �17�

where �1=�0 �cf. Refs. 24 and 25�. The phase angles �
l�
�0�

are then constant inside of a given layer l� in the weak-
coupling limit,8 �0 ,�1→�. Next, if ��

l�
�0� denotes the fluc-

tuation in the phase angles, the autocorrelation function for
conventional superconducting order across many layers is
then approximated by the expression

ei�l,l+n � 
l�=l
l+n−1ei�

l�,l�+1
�0�

i���l�+1
�0� − ��l�

�0�� �18�

near zero temperature, to lowest order in the fluctuation.26

After inverting the field equation �17� for the fluctuation of
the phase difference between adjacent layers, substitution
into the expression above yields the result

ei�l,l+n � an�1
−2n

m=1

n � d2rmG�2��0,m��
�
m=1

n ei�ł+m−1,l+m
�0� �0�e−i�ł+m−1,l+m

�0� �m� �19�

for the autocorrelation of the superconducting order param-
eter across layers. The prefactor on the right-hand side satis-
fies the recursion relation an+1=an+ ��1

2 /2�0
2�2an−1, with

a0=1 and a−1=0. Also,

G�2� = �− �2 + 2�1
−2 cos �l�,l�+1

�0� �−1 �20�

is the 2D Green’s function. The eigenstates of the latter op-
erator within brackets are localized, with a localization
length27 R0��1

2 / l�. We therefore have G�2��1,2�
= �2��−1 ln�R0 /r1,2� at separations r1,2	R0 in the weak-
coupling limit, �0 ,�1→� �cf. Ref. 7�. A scale transforma-

tion r�m= l� ·x�m of the 2n-dimensional integral above �19�
yields the final result

ei�l,l+n � ��l�/�1�2 ln��1/l��2�n �21�

for the asymptotic correlations of the superconducting order
parameter across layers near zero temperature. The weakly
coupled vortex-glass crosses over to a 3D vortex lattice
threaded by lines of dislocations when the phase correlation
length across layers, L�, exceeds the spacing between adja-
cent layers, d. This crossover occurs at a magnetic field

BD�0� � �l�/avx�2��0/�1
2� �22�

near zero temperature, at which point the argument between
brackets on the right-hand side of Eq. �21� is set to 1 /e. The
defective vortex lattice is decoupled across layers at perpen-
dicular magnetic fields above BD �see Table I�, where
l�	�1.

Consider again very weak Josephson coupling between
adjacent layers, such that l�	�1. Notice that this limit nec-
essarily requires high perpendicular magnetic fields com-
pared to the naive decoupling scale, �0 /�1

2, by the inequality
avx� l�. Equation �21� then predicts short-range correlations
of the superconducting order parameter across layers, with a
correlation length L� that is less than the layer spacing d.
Imagine next that the quenched disorder is reduced, such that
l���1. The argument in brackets on the right-hand side of
Eq. �21� then notably does not diverge toward positive infin-
ity with the ratio l� /�1 because of the logarithmic factor that
originates from the 2D Green’s function. Instead, it attains a
maximum value of order unity at l���1. Like in the cool-
down from the vortex liquid, Eq. �9�, these observations in-
dicate that the correlation length L� for conventional super-
conducting order across layers does not diverge at
perpendicular magnetic fields above the naive decoupling
scale, B���0 /�1

2. Unlike the case of vanishing thermal dis-
order ���→�� in Eq. �9�, however, the argument in brackets
on the right-hand side of Eq. �21� diverges toward negative
infinity with vanishing quenched disorder �l�→��
because of the logarithmic factor. That divergence is
spurious. The 2D Green’s function �20� is given by
G�2��1,2�= �2��−1K0�r1,2 /R0� in the limit l�→�, where
cos �

l�,l�+1
�0� =1. Here, K0�x� is a modified Bessel function, and

R0=�1 /21/2. Inspection of the original expression �19� for
the autocorrelator across layers of the quenched supercon-
ducting order parameter then yields the asymptotic result
limn→� an�R0 /�1�2n= (1+ �1+ ��1 /�0�4�1/2� /4)n for that
quantity as l� diverges. Notice that the latter argument raised
to the power n instead saturates to a value that lies inside of
the range �0.5,0.6�, which is notably less than unity. No evi-
dence for conventional superconducting order of the vortex
lattice across a macroscopic number of layers therefore
emerges from the above perturbative analysis to lowest non-
trivial order in the Josephson coupling between layers, at
B���0 /�1

2.

IV. DISCUSSION AND CONCLUSIONS

In conclusion, a duality analysis of the frustrated XY
model for the mixed phase of layered superconductors with
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weak point defects finds that long-range vortex-glass order
across layers emerges out of the vortex liquid at weak Jo-
sephson coupling between layers. This is consistent with re-
cent Monte Carlo simulations of the same XY model that find
evidence for a thermodynamic vortex glass phase.4,6 It also
potentially accounts for the recent observation of a thermo-
dynamic vortex glass state in the mixed phase of high-
temperature superconductors that show extreme layer
anisotropy.9 The analysis also indicates that the naive decou-
pling scale,25 �0 /�1

2, serves as an upper bound for the sta-
bility of the Bragg glass phase as a function of perpendicular
magnetic field in the extreme type-II limit. Previous theoret-
ical work on layered superconductors predicts that the Bragg
glass is stable to weak point pinning in general at the ex-
treme type-II limit.11 The discrepancy with the present work
is likely due to the use there of a criterion for the destruction
of the Bragg glass phase that is too stringent. In particular,
the length L� along the field over which the vortex lattice
tilts by a lattice constant is not divergent in Ref. 11. Also, the
general robustness of the Bragg glass predicted by Ref. 11 at
weak pinning conflicts with the belief that the Bragg glass is
generally unstable to invasion by dislocations in the limit of
decoupled layers,13 �1→�. A Bragg glass is also reported at
fields beyond the naive decoupling scale in Ref. 4, where the
same XY model is studied numerically by Monte Carlo simu-
lation. The discrepancy with the stability bound established
here is likely due to a combination of finite-size effects and
of intrinsic pinning by the grid in each 2D XY model �1�. The
last effect has been neglected here throughout. Finally,
Bragg peaks in neutron scattering that signal conventional
vortex-lattice order at long range have been observed in the
mixed phase of extremely layered high-temperature

superconductors,12 at fields below 500 G. That threshold is
consistent with the stability bound established here, �0 /�1

2,
if the Josephson penetration depth is bounded by
�0�200 nm. Note that high layer anisotropy implies that the
correction due to magnetic screening ��c� suggested by Ref.
25 can be ignored: �1��0.

The two theoretical results just reviewed depend critically
on the existence of a vortex-glass state for isolated layers in
the vicinity of zero temperature. Although recent experimen-
tal determinations of the current-voltage characteristic in 2D
arrays of Josephson junctions in weak magnetic field obtain
evidence for melting of the 2D vortex lattice at transition
temperatures Tg

�2D� that are in fact much greater than the 2D
melting temperature of the pristine vortex lattice,20 theoreti-
cal arguments suggest that a perfectly conducting vortex
glass can exist only at zero temperature in two dimensions.10

Let us therefore consider the worst-case scenario, Tg
�2D�→0.

The emergence of long-range vortex-glass order across lay-
ers from inside the weakly coupled vortex liquid �12� sur-
vives this limit, since the 2D phase correlation length �2D
remains divergent. Secondly, it is important to notice that the
field equation �17� used to obtain conventional phase corre-
lations across layers �21� inside of the vortex glass is inde-
pendent of the superfluid density �s

�2D�. This indicates that the
stability bound in perpendicular magnetic field for the con-
ventional vortex lattice, �0 /�1

2, survives the limit Tg
�2D�→0

as well.
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