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By means of perturbation analysis, assuming small inductance values, the dynamical equations for the
gauge-invariant superconducting phase differences in a dc superconducting quantum interference device
�SQUID�, containing junctions with different resistive and coupling parameters, are reduced to a single non-
linear differential equation. The resulting effective reduced potential shows that degenerate phase states exist
for half-integer values of the applied flux number �ex and for zero bias current. It can be also shown that, by
small variations of the externally applied flux, this degeneracy can be removed and, for sufficiently low values
of the SQUID parameter �, different magnetic states, characterized by opposite magnetic moments, can be
reversibly realized.
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I. INTRODUCTION

The static and dynamic properties of dc superconducting
quantum interference devices �SQUIDs� have been widely
investigated in the literature.1–3 Recently, the two-junction
interferometer has been proposed as a phase qubit,4 a basic
unit for quantum computing. Devices containing three5 or
more6 Josephson junctions �JJs� have also been proposed to
obtain better defined minima in their potential energy, when
compared to the two-junction interferometer states. The use
of � junctions has also been proposed7–9 in order to have
“quiet” devices, operated around null magnetic field values,
which are more robust with respect to flux fluctuations. The
analyses of these systems are, in general, carried out by as-
suming negligible values of the inductance L of a single
branch of the device, so that �=LIJ /�0�0, where �0 is the
elementary flux quantum, and IJ= �IJ1+ IJ2� /2 is the mean
value of the maximum Josephson currents of the JJs. In this
limit, indeed, considering a two-junction interferometer, one
can write a single effective dynamical equation for the su-
perconducting phase differences �1 and �2 across the two
JJs, considerably simplifying the analysis, which should be
carried out, in different limits, by considering two coupled
nonlinear differential equations for �1 and �2. By reducing
the dimensionality of the mathematical problem to one, by
simply setting �=0, however, important features of the sys-
tem as a whole are lost. For instance, appearance of half-
integer Shapiro steps, already observed by Vanneste et al.,10

cannot be predicted. Recently, Romeo and De Luca,11 start-
ing from the full dynamical system, assuming a series solu-
tion for the magnetic flux variable in terms of the perturba-
tion parameter �, have noticed that, in the overdamped limit,
the two-junction interferometer model still reduces to a
single nonlinear ordinary differential equation for the super-
conducting phase variable �= ��1+�2� /2. This perturbation
approach allows derivation of the SQUID dynamical proper-
ties in analogy with the well-known results obtained for a
single overdamped Josephson junction, provided that, in car-
rying out the analogy, an effective unconventional current-

phase relation is attributed to the one-junction model for the
device. By this perturbation approach the authors calculate,
in closed analytic form, the amplitude of the half-integer
Shapiro steps appearing in these devices. By a similar ap-
proach, applied to a multijunction interference device con-
taining N JJs on each branch, the same authors predict ap-
pearance of half-integer Shapiro steps only for odd values of
N.12 Furthermore, by the same analytical method, the dynam-
ics of one-dimensional overdamped Josephson junction ar-
rays with an arbitrary number of JJs is described by a single
nonlinear differential equation.13

The same perturbation approach is adopted, in the present
work, to define the phase states of the system by an effective
potential analysis, which correctly gives the reduced dynami-
cal equations in the small � limit, as obtained by applying
the resistively shunted junction �RSJ� model to both JJs. By
retaining finite values of the parameters characterizing the
inhomogeneity in the junction coupling energy and resis-
tance, we find that the metastable energy states of the system
for applied fluxes close to �0 /2 present a double-well degen-
eracy, which is not detectable in the �=0 limit.

The paper is thus organized as follows. In the next section
the effective potential approach, in conjunction with the deri-
vation of dynamical equations of the complete model of a dc
SQUID, is presented. In the third section, by means of a
first-order perturbation analysis, the two-dimensional effec-
tive potential is reduced to a one-dimensional potential,
where the parameters characterizing the resistive and cou-
pling inhomogeneity of the junctions are seen to play an
important role in the system dynamics. Starting from the
reduced effective potential of the system, the phase states are
defined for null values of the bias current and for normalized
fluxes close to half-integer values in the fourth section. Con-
clusions are drawn in the last section and possible applica-
tions of the present study are briefly mentioned.

II. EFFECTIVE POTENTIAL FOR A dc SQUID

In the present section we shall show that the dynamical
equations of a symmetric dc SQUID, containing Josephson
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junctions with nonhomogeneous junction parameters, can be
written from the notion of an effective potential Uef f defined
in terms of the superconducting phase variable � and of the
normalized flux variable �or flux number� �= ���2

−�1� /2��+n, with n being an integer.
Let us assume that the inductance L associated to one

branch of the dc SQUID is such that �=LIJ /�0�1. We start
by noticing that the variables � and � play an important role
in defining the electrodynamic properties of the system. For
example, the instantaneous voltage V across the device can
be expressed as V= ��0 /2���d� /dt�, and the dc magnetic
susceptibility 	d.c. as ��−�ex� /�ex, where �ex=
0HS0 /�0,
with 
0 being the permeability of vacuum, H is the applied
magnetic field, and S0 is the geometric area of the SQUID.

The effective potential of the SQUID must be related to
the Josephson coupling energy and to the electrodynamic
energy due to the presence of the normalized applied mag-
netic flux �ex and to the bias current iB= IB / IJ. Indeed, being
�1 and �2 the gauge-invariant phase differences across the
two JJs, we may define the Josephson coupling energy EJ as
follows:

EJ =
�0IJ

2�
�
k=1

2

�1 + �k��1 − cos �k� , �1�

where we have written the maximum Josephson current of
the kth JJ as IJk= IJ�1+�k�, with �1=� and �2=−�. Further-
more, the electrodynamic potential energy can be written as
follows:

EB = −
�0IJ

2�
�
k=1

2 � ikd�k, �2�

where ik= Ik / IJ is the normalized current flowing in the kth
�k=1,2� SQUID branch. By fluxoid quantization, the same
definition of the flux variable � is recovered,

�1 − �2 + 2�� = 2�n , �3�

where n is an integer. Furthermore, the total flux � is the
result of the superposition of the applied flux �ex and of the
induced flux, so that

� = �ex + ��i1 − i2� . �4�

By now defining � in terms of the phase difference
��2−�1� from Eq. �3� and considering Eq. �4�, by a change
of variables in Eqs. �1� and �2�, we obtain

Uef f��,�� = EJ + EB = E0�2 − �− 1�n2�cos �� cos �

+ � sin �� sin �� − iB� +
�

2�
�� − �ex�2	 ,

�5�

where E0=�0IJ /2�. The time evolution of the variables �1
and �2 in the overdamped regime can be obtained by setting

1

1 + �

d�1

d
= −

�uef f

��1
, �6a�

1

1 − �

d�2

d
= −

�uef f

��2
, �6b�

where uef f =Uef f /E0, = �2�RIJ /�0�t is a normalized time,
and the parameter � takes account of the inhomogeneity of
the resistive junction parameters R1 and R2, so that R1= �1
+��R, R2= �1−��R, where R= �R1+R2� /2. The set of equa-
tions �Eqs. �6a� and �6b�� can be intuitively understood in
terms of the dynamics of a massless point particle moving in
a fictitious two-dimensional space ��1 ,�2� under the action
of velocity dependent damping and of a potential uef f. In
order to prove the validity of Eqs. �6a� and �6b�, it suffices to
show that they give rise to the correct phase dynamics for the
two JJs. Indeed, first notice that uef f��1 ,�2�= �EJ+EB� /E0,
where EJ and EB are given by Eq. �1� and Eq. �2�, respec-
tively. By differentiating uef f��1 ,�2� first with respect to �1

and then with respect to �2, and by substituting the results in
Eq. �6a� and in Eq. �6b�, respectively, we find

1

1 + �

d�1

d
+ �1 + ��sin �1 = i1, �7a�

1

1 − �

d�2

d
+ �1 − ��sin �2 = i2. �7b�

Equations �7a� and �7b� represent the dynamical evolution of
the phase variables �1 and �2 as given by the RSJ model, as
it was to be proven.

By the following change of variables:

� =
�1 + �2

2
, �8a�

� =
�2 − �1

2�
+ n , �8b�

we can rewrite Eqs. �6a� and �6b� as follows:

d�

d
= −

1

2

 �uef f

��
−

�

�

�uef f

��
� , �9a�

�
d�

d
= −

1

2

 1

�

�uef f

��
− �

�uef f

��
� . �9b�

The above equations, together with Eq. �5�, give the follow-
ing dynamical equations for the variables � and �:

d�

d
+ �− 1�n��1 + ���cos �� sin � − �� + ��sin �� cos ��

=
iB

2
+

�

2�
�� − �ex� , �10a�

�
d�

d
+ �− 1�n��1 + ���sin �� cos � − �� + ��cos �� sin ��

= −
1

2�
�� − �ex� − �

iB

2
. �10b�

The above set of equations represents the complete dynami-
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cal model, expressed in terms of the variables � and �, for a
symmetric dc SQUID with inhomogeneous junction param-
eters in the overdamped limit.

III. REDUCED MODELS

Considering the dynamical equations of the system as
written in Eqs. �10a� and �10b�, we notice that, for �=0, the
two equations decouple: Equation �10b� becomes the trivial
identity �=�ex, while Eq. �10a� defines the time evolution
of the average superconducting phase and can be rewritten as
follows:

d�

d
+ �− 1�n��1 + ���cos ��ex sin � − �� + ��sin ��ex cos ��

=
iB

2
. �11�

According to what stated in the previous section, the normal-
ized effective potential uef f =Uef f /E0 becomes a function of
�, and the problem becomes effectively one-dimensional,
since

uef f = uef f��,�ex� = 2 − �− 1�n2�cos ��ex cos �

+ � sin ��ex sin �� − iB� , �12�

where �ex plays the role of a parameter. We notice that in
the �=0 case, the only relevant parameter is �, since the
parameter �, which is linked to the fluxon dynamics through
the dynamical equation for � �Eq. �10b��, does not enter the
expression for the potential uef f, given that � is assumed not
to depend on time. In Figs. 1�a� and 1�b�, we represent the
effective potential for iB=0 and for various values of the
applied flux �ex. In particular, in Fig. 1�a� we report the uef f
versus � curves for �=0.1, while in Fig. 1�b� the parameter �
is doubled. The system is seen to behave much like a sym-
metric SQUID with perfectly identical junctions, so that no
new features are detected in its physical properties. In par-
ticular, we notice that for small field values �take, for ex-
ample, the �ex=0.1 curve in Fig. 1�a��, the system, when
prepared under zero-field-cooling conditions, rests in a phase
state �= �̃�0. At �ex=0.5, however, the phase state �̃ dis-
appears, and the new equilibrium value �̂=� /2 appears. As
the normalized applied flux value goes over �ex=0.5, phase
states closer to �=� arise.

We must thus abandon the trivial case with �=0 in order
to obtain well-defined nontrivial flux states in the device, yet
keeping � small. We thus develop a first-order perturbation
solution in � of the dynamical equation for the flux variable
�, so that we write

��� = �ex + ��1�� + O��2� . �13�

By substituting Eq. �13� into Eq. �10b� we find,

�1�� = − 2�− 1�n��1 + ���sin���ex�cos �

− �� + ��cos���ex�sin �� − �iB. �14�

In this way, Eq. �10a� becomes

d�

d
+ b1 sin � + b2 sin 2� + a1 cos � + a2 cos 2� =

iB

2
�1 − �2� ,

�15�

where

b1 = �− 1�n��1 − � 2�cos���ex� + ��1 + �����iB sin���ex�� ,

b2 = ����1 + ���2 sin2���ex� − �� + ��2 cos2���ex�� ,

a1 = �− 1�n���� + ����iB cos���ex� − ��1 − � 2�sin���ex�� ,

a2 = ���� + ���1 + ���sin�2��ex� .

�16�

In Eq. �15�, which is the reduced version of the symmetric
SQUID model presenting inhomogeneity in the junction pa-
rameters, we notice the appearance of second-harmonic
terms. Solving the stationary part of Eq. �15� for iB and maxi-
mizing this quantity with respect to �, we find the normal-

FIG. 1. Effective potential uef f for iB=0 and for various values
of the applied flux �ex �in the legend� as a function of the average
superconducting phase �. �a� uef f vs � curves for �=0.1, �b� uef f vs
� curves for �=0.2.
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ized critical current of the device, which is represented in
Figs. 2�a� and 2�b� for n=0 and �=0.1. In Fig. 2�a� the
parameters values are �=0.4 and �=0.1, while in Fig. 2�b�
the parameters are �=0.4 and �=0.2. We notice a first im-
portant feature of the system: The periodicity of the critical
current of the device with respect to �ex is twice the period-
icity observed in dc SQUIDs with very low inductance. This
is just a first appearance of nonordinary phenomena in these
rather interesting systems. The change in the dimensionality
of the problem �we are actually also considering the dynam-
ics of flux states� is introducing new interesting properties in
the system.

IV. REDUCED POTENTIAL AND PHASE STATES

The reduced effective potential in the overdamped case
can be obtained by rewriting Eq. �15� in the following form:

d�

d
= −

�ured

��
, �17�

so that

ured = − b1 cos � −
b2

2
cos 2� + a1 sin � +

a2

2
sin 2�

−
iB

2
�1 − � 2�� . �18�

A representation of the reduced potential is given in Figs.
3�a� and 3�b� for n=0, iB=0, and �=0.1. In Fig. 3�a� the
parameters characterizing the inhomogeneity of the JJs are
�=0.6 and �=0.3, while in Fig. 3�b� we have �=0.4 and �
=0.1. Notice that, at the flux value �ex=1/2, the potential

presents a double well with a barrier that is comparable to
the Josephson energy E0=�0IJ /2� �which in normalized
units is 1�. Starting from one of these degenerate states,
one at �0=sin−1�1/��, one �1=�−sin−1�1/��, where
�=b2 /2�a1�, we can smoothly go from one to the next by
small variations of the externally applied flux, as also sug-
gested by Figs. 3�a� and 3�b�. In Fig. 3�a�, indeed, the poten-
tial obtained for �ex=1/2 is represented along with other
two curves, one for �ex=0.4 and one for �ex=0.6. For �ex
=1/2 the energy barrier height can be easily calculated to be
�ured=b2− �a1�. Therefore, in order to have �ured�0 the fol-
lowing inequality must be satisfied: ��−��1−� 2� /��1
+���2, where we have assumed � ,��1. We notice that,
while for �ex=0.4, the metastable state with phase �1 is
unfavored with respect to the stable state �=�0, the contrary
is true for �ex=0.6. The same can also be noticed in Fig.
3�b�, where the field variation necessary to produce the
crossover can be argued to be smaller.

If we compare these features with the ordinary SQUID
behavior, reported in Figs. 1�a� and 1�b�, we notice that states

FIG. 2. Normalized critical current for n=0 and �=0.1. In �a�
the inhomogeneity parameters are �=0.4 and �=0.1, while in �b�
the inhomogeneity parameters are �=0.4 and �=0.2.

FIG. 3. Effective potential ueff for iB=0, n=0, and �=0.1 and
for various values of the applied flux �ex �in the legend� as a func-
tion of the average superconducting phase �. �a� uef f vs � curves for
�=0.6 and �=0.3, �b� uef f vs � curves for �=0.4 and �=0.1.
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close to the zero value of the average superconducting phase
� are neither stable nor metastable for �ex=1/2. Further-
more, while the reduced SQUID model for �=0 does not
allow current states �zero magnetic moment can be associ-
ated to the SQUID loop for every value of the externally
applied flux�, we can see that different current states apply to
the phase states �0 and �1, as it can be inferred from Fig. 4,
where the average time value of the circulating current im
= �i1− i2�= ��−�ex� /�=�1�� is graphed as a function of the
applied flux for n=0, iB=0, �=0.1, and for �=0.4 and �
=0.1. All states are realized by starting from zero trapped
field inside the SQUID loop and by gradually increasing the
applied flux from zero. After each small increase in the �ex,
we let the system reach its equilibrium phase state, from
which we start to further increase �ex and to recalculate the
phase state realized for such flux value. In this curve it is
important to notice how the circulating current, which is zero
at �ex=1/2, goes from positive to negative values for in-
creasing fields around half-integer values of �ex. This feature
is important for detection of the phase state in the dc SQUID
by an external readout unit. Indeed, by starting from a zero
circulating current state and increasing the external applied
flux, the metastable �0 state becomes energetically unfavor-

able, until the system switches to the �1 state in a time that
can be roughly estimated by the Arrhenius formula. Another
important aspect to point out is that the system shows revers-
ible behavior for �=0.1 around �ex=1/2, as it can be nu-
merically detected.

V. CONCLUSIONS

We have solved the analytic problem related to finding the
phase states of a symmetric dc SQUID containing junctions
with inhomogeneous parameters under the influence of a
nonzero applied magnetic flux and zero bias current for low
� values. The analytic investigation of the problem is made
possible by a perturbation solution of the dynamics of the
flux number �, which is used to find the approximated time
evolution of the average superconducting phase difference �.

The solution of the present problem allows us to charac-
terize phase states by means of a one-dimensional effective
reduced potential. From the potential curves at different val-
ues of the applied magnetic flux, it can be argued that degen-
erate phase states exist for half-integer values of the applied
flux number �ex. Nondegenerate states with positive, or
negative, magnetic moments can be realized by increasing,
or decreasing, the applied magnetic flux starting from the
zero circulating current state at �ex=1/2. These features
might suggest that the device has the characteristics of a
phase qubit, in which the degenerate phase states are ob-
tained at half-integer values of the normalized applied mag-
netic flux. However, in order to adapt the above approach to
a genuine quantum system, one needs to remove the assump-
tion of overdamped phase dynamics. Therefore, in the case
of finite values of the capacitance of the Josephson junctions,
reduction of the problem is not possible, so that the potential
energy of the system needs to be defined in the two-
dimensional space ��1 ,�2�. Future work will be devoted to
investigate the system beyond the overdamped limit. Never-
theless, as for an immediate application of the present analy-
sis, we notice that the proposed physical system may provide
an experimental tool to investigate the stochastic dynamics
of asymmetrical bistable systems.
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