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An array of coupled short junctions �Josephson junction parallel array� is shown to be able to response to
ultra-weak signals when it is worked at the onset of nonlinear supratransmission in the hysteresis loop of
bistability. The theory is based on the fundamental solutions of the continuous limit �the sine-Gordon equation
on the finite interval submitted to Neuman boundary conditions� that result from synchronization and adapta-
tion to the external driving. This provides the solution to a problem that dates back to 1986 �O. H. Olsen and
M. R. Samulsen, Phys. Rev. B 34, 3510 �1986��, namely the complete analytical understanding of the bista-
bility in a long Josephson junction or in an array of short junctions. The property allows to conceive ultrasen-
sitive detectors or else, by convenient modulation of the seed, efficient digital amplifiers. Numerical simula-
tions reveal that such a bistable behavior occurs also in two-dimensional lattices where no theory is available
yet.
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I. INTRODUCTION

Nonlinearly induced bistability has become a major issue
in recent years to conceive ultrasensitive detectors, switches,
amplifiers, or permanent memories. In particular, nonlinear
bistability in a long Josephson junction submitted to micro-
wave irradiation has been unveiled two decades ago by
means of numerical simulations of the driven and damped
sine-Gordon equation.1 It has been further extended in Ref. 2
to arrays of short superconducting tunnel junctions coupled
through superconducting wires, the so called Josephson
junction (JJ) parallel array.3 An interpretation of nonlinear
bistability in that context has been built by perturbative
analysis in Ref. 4, but a comprehensive analytical description
was still missing. The story of nonlinear bistability actually
began in periodic dielectric �Bragg� media when they are
worked in the Kerr regime within the forbidden bandgap.5

This theoretical study intends first to provide the complete
analytical background for the bistability property of a JJ par-
allel array, as well as of a long Josephson junction �for a
review, see Refs. 6 and 7�. It allows us, in particular, to
determine the supratransmission threshold where the system
starts to absorb energy from the external driving, undergoing
a bifurcation from a state of low transmissivity to a state of
high transmissivity.

As an important application of this result, we then dem-
onstrate that one may use a JJ parallel array at the onset of
supratransmission to conceive detectors of ultraweak sig-
nals. A scheme of the device is represented in Fig. 1, where
Is�t� is the radio-frequency seed with a frequency � in the
forbidden band, S�t� is the signal to be detected, and Iout is
the measured output rf current �one actually measures its root
of the mean square value�.

Highly sensitive detectors have been recently conceived
with a short Josephson junction. In that case it is not nonlin-
ear bistability but rather nonlinear bifurcation �separatirx
crossing� that is used to realize an amplificator that “remains
efficient at the quantum limit.”8,9 The single junction is

driven by an external rf seed tuned to the resonant frequency
at an amplitude such that the oscillations reach the separa-
trix. Any superimposed rf signal at the same �resonant� fre-
quency will then make the junction to jump to the rotating
state.

Our device, thought of as a detector, will then be shown to
possess a set of intrinsic qualities. First, the detection of any
signal �no condition on the frequency�, second a working
regime at tunable seed intensity �tuned by choosing the fre-
quency value�, third an adjustable sensitivity �adjusted by
choosing the seed intensity value, respectively, with the su-
pratransmission threshold�. These properties are demon-
strated by deriving analytical expressions of the solutions
and by checking the predicted behaviors on numerical simu-
lations. We display, for instance, later in Fig. 5, a typical
numerical simulation with four junctions that shows the out-
put current intensity Iout when the first junction is subjected
to a driving seed Is�t� and a low amplitude signal kick S�t�,
as described in the caption.

The bistability property of the device is then shown also
to be a means to realize a digital amplifier by a convenient

FIG. 1. Schematic representation of the JJ parallel array built
with N junctions. IS�t� is the injected seed current with frequency �
in the forbidden bandgap and intensity b. S�t� represents the signal
to be detected by reading the output current intensity Iout. When b is
tuned close to the supratransmission threshold, the device works as
an ultrasensitive detector. By a convenient slow modulation of b, it
then works as a digital amplifier.
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modulation of the seed. In that case the seed and the signal
�to be amplified� possess the same frequecy, and the role of
the seed modulation is to allow the system to jump to an
excited state �under action of the signal� and to settle back
�after signal extinction�. An instance of such a working re-
gime is displayed later in Fig. 6.

In the continuous limit, used to derive explicit solutions,
the model describes a long Josephson junction for which our
analysis thus allows us to conceive also ultrasensitive detec-
tors or digital amplifiers. Last, in the case of a two-
dimensional �square� lattice we have obtained by numerical
simulations that the bistability still works, though no theoret-
ical prediction has been made so far. This result opens inter-
esting theoretical problems for the sine-Gordon model in
2+1 dimensions, together with appealing experimental
questions.

II. THE JOSEPHSON JUNCTION PARALLEL ARRAY

Let us consider a one-dimensional array of N short Jo-
sephson junctions coupled through superconducting wires, as
represented by Fig. 1. It obeys the following model:3

ü1 + �u̇1 − �J
2�u2 − u1� + sin u1 = f�t� , �1�

ün + �u̇n − �J
2�un+1 + un−1 − 2un� + sin un = 0, �2�

üN + �u̇N − �J
2�uN−1 − uN� + sin uN = − Iout, �3�

for n=2, . . . ,N−1 and where both f�t� and Iout are normal-
ized to the Josephson critical current Ic in the single junction.
The time is normalized to the inverse plasma frequency �p

=1/�LJC, C stands for the junction capacitance, and LJ
=� / �2eIc� is the Josephson inductance. The parameter �J is
defined by �J

2=LJ /LS, where LS is the inductance represent-
ing by the superconducting wires connecting the junctions.
�=�� / �2eIcR

2C� is a damping parameter, and R the junction
resistance. In typical experiments on the Josephson junction
parallel array, as in, Ref. 3 the parameters have the values:
R�100 �, C�300 fF, Ic�10 �A, LS�pH and thus �
�0.1 and �J�3. However, by changing the critcal current
density and the temperature, one can easily control the two
parameters of the mode � and �J. For our numerical simula-
tions we choose �J=2 and �=0.02.

By using now the Ohmic law Iout=Vout /R= u̇N /R, where R
is the output reading resistance, �3� can be rewritten as

üN + �� + 1/R�u̇N − �J
2�uN−1 − uN� + sin uN = 0. �4�

The driving f�t� is made of a periodic seed Is�t� with its
frequency � in the natural band gap ���1�, to which an
arbitrary, low amplitude, finite time signal S�t� is superim-
posed, namely

f�t� = Is�t� + S�t� . �5�

As the presence of an external signal actually modifies the
value of the seed, the above summation of the seed and the
signal is not exact. However, as far as the signal is assumed
to be very small, it makes inessential changes to the finite

seed current. Moreover, it should be mentioned that S�t� ex-
presses the contribution of electric and magnetic fields of the
signal, as found in Refs. 10 and 11. In order to avoid the
initial shock on a system initially at rest, Is�t� will be settled
after a transient sequence, where it grows from a vanishing
amplitude to its actual value.

It is convenient to define two virtual junctions in n=0 and
n=N+1 by setting

u0 − u1 � f�t�, uN+1 − uN � 0, �6�

such that the continuous limit �large �J and N� becomes the
sine-Gordon equation,

x � �0,L�:utt + �ut − uxx + sin u = 0, �7�

in the variable x=n /�J. It is associated to the Neuman
boundary value problem that automatically follows from �6�,

ux�0,t� = − f�t�/�J, ux�L,t� = 0, �8�

on a vanishing initial state u�x ,0�=ut�x ,0�=0.
The measure of Iout as indicated in Fig. 1 implies that the

value of the damping coefficient � in �7� should be changed
to �+1/R in x=L. Thus, keeping � constant �as we do here-
after to derive explicit solutions� simply means that our re-
sults hold for large values of R. However, the nature of the
observed phenomena does not change for smaller R, only the
agreement between numerical simulations and theory will be
less accurate.

Let us remark that the above continuous version is also a
model for a long Josephson junction whose extremity x=0 is
submitted to external microwave irradiation, f�t� being then
related to the external magnetic field intensity.12

III. METHOD AND SOLUTIONS

In order to describe the periodic stationary asymptotic re-
gimes, we seek a solution to �7� with �=0, submitted to the
Neuman boundary condition �8�, where f�t� has the periodic
structure

f�t� = b sin��t�, � � 1, �9�

under the general expression13

u�x,t� = 4 arctan�X�x�T�t�� . �10�

The product XT allowing for an arbitrary normalization, we
choose to scale T�t�, over a period, to the amplitude value 1,
namely

max
t

�T�t�� = 1. �11�

Then the boundary-value problem is solved by requiring ad-
aptation and synchronization to the driver, namely,

4X��0�
1 + X�0�2 =

b

�J
, T	t +

2	

�

 = T�t� . �12�

Note that the adaptation to the driver is nothing but the ex-
pression of the boundary value �8� in x=0, while the syn-
chronization condition, namely that the solution acquires the
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period of the driver, is by no way evident in a nonlinear
system. Here it is actually validated by numerical simula-
tions where the damping allows the system to settle down to
the predicted stationary regimes.

Finally, the right-hand side Neuman boundary condition
ux�L , t�=0 can be written as

X��L� = 0, X�L� = A , �13�

where the amplitude parameter A is the unknown to be
solved for. Actually, our method consists in fixing the un-
known A and seeking the corresponding values of the input
b. Indeed the exact analytical solution of �7� is uniquely de-
fined from the values L, A, and �. The adaptation condition
in �12� then provides a closed relation between the driving
amplitude b and the output amplitude A �or equivalently B
=4 arctan A� for each given length L and frequency �.

The solutions are now obtained by inserting the expres-
sion �10� in the sine-Gordon equation and expressing the
above four boundary constraints in �12� and �13�. The tech-
nical calculation is standard �see, e.g., Ref. 14�, and we shall
not give details here. The point is that there are three differ-
ent ranges for the value of A which give rise to three differ-
ent solutions, and consequently to the bistable nature of the
system.

Solution of type I. For A
A1=�1−�2 /�, we obtain the
solution

uI�x,t� = 4 arctan�A cn�k1�x − L�,�1�cn��1t,�1�� , �14�

where cn�· ,m� is the cosine-amplitude Jacobi elliptic func-
tion of modulus m. The parameters �1 and �1 are expressed
via A and � by the solution of the system

�1
2 =

A2

1 + A2

1

A2 − �1
2�1 + A2�

,
	

2

�1

�
= K��1� , �15�

where K is the complete elliptic integral of the first kind. The
second relation of �15� guarantees that the actual period of
�14� obeys the synchronization condition �12�. The remain-
ing parameters k1, and �1 are finally defined explicitly from
A, �, and �1 by

k1
2 =

1

1 + A2

A4 − A4�1
2 + �1

2

A2 − �1
2�1 + A2�

, �1
2 =

A4�1 − �1
2�

A4�1 − �1
2� + �1

2 .

�16�

Solution of type II. Another solution holds in the case
A0�A�A1, where A0 is the solution of

�K�A0
2� =

	

2�1 + A0
2�

. �17�

This solution reads as

uII�x,t� = 4 arctan�Adn�k2�x − L�,�2�sn��2t,�2�� , �18�

where similarly �2 and �2 solve the system

�2
2 =

A2

�1 + A2��A2 + �2
2�

,
	

2

�2

�
= K��2� , �19�

and where k2 and �2 are given by the expressions

k2
2 =

A4

�1 + A2��A2 + �2
2�

, �2
2 = 1 −

�2
2

A4 . �20�

Solution of type III. Finally, for A�A0 we have the solu-
tion

uIII�x,t� = 4 arctan	 A sn��2t,�2�
dn�k3�x − L�,�3�
 , �21�

where �2 and �2 are already expressed by �19� and where the
explicit values of the parameters k3 and �3 are

k3
2 =

�2
2

�1 + A2��A2 + �2
2�

, �3
2 = 1 −

A4

�2
2 . �22�

For a given driving intensity b=0.1 at frequency �=0.9,
we display in Fig. 2 the comparison between the actual pro-
files of the amplitudes of the stationary solutions uIII and uII

�dashed lines� and the results of numerical simulations �full
lines� of the sine-Gordon model �7�. Moreover, in the inset of
the same picture we present the root of mean square values
�rms� of the Josephson current,


I��x� = 	 1

T�0

T
dt sin2 u�x,t�
1/2

, �23�

in both regimes �T is the driving period 2	 /��. Note, in
particular, the drastic difference between the rms intensity
values in the last junction �x=L� in the two regimes.15

It is quite remarkable that the solution locks precisely to
one of the particular solutions �here uII or uIII�, which thus
furnish a complete theoretical ground for the bistability
process16 �note that the damping �u̇n allows the solution to
reach effectively the stationary regimes�.

FIG. 2. Analytic solutions �dashed lines� corresponding to the
single driving amplitude b=0.1 and frequency �=0.9, compared to
numerical simulations �solid lines� of the continuous model �7� of
length L=4. The two regimes correspond to the points 1 and 2 of
the picture in Fig. 3. The inset shows the corresponding rms values
of the Josephson current �23�.
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IV. HYSTERESIS LOOP, SUPRATRANSMISSION
THRESHOLD

The explicit solutions �14�, �18�, and �21�, provide the
driving amplitude b by requiring that the system response
adapts according to �12�. Then for the boundary condition �8�
and driver amplitude definition �9� one has the three func-
tions b�A�,

A1 � A, b = 4�J
�

�L
arctan�A cn�k1L,�1�� , �24�

A � �A0,A1�, b = 4�J
�

�L
arctan�A dn�k2L,�2�� , �25�

A � A0, b = 4�J
�

�L
arctan�A/dn�k3L,�3�� , �26�

where the parameters kj and � j are given in terms of A in
�16�, �20�, and �22�.

By inverting the above expressions for a given input am-
plitude b, we obtain three solutions for the output amplitude
B=4 arctan A. Figure 3 displays the plot of B�b� compared to
numerical simulations of �2�. Though being done for the dis-
crete system �N=8, �J=2� the agreement with the continuous
theory is striking. In practice, the system first jumps to the
state uI and then, by the effect of damping, settles down to
the regime uII. The jump in the hysteresis loop works by
exceeding the threshold bs referred to as nonlinear su-
pratransmission threshold defined in the the semi-infinite
line case.17 The threshold bs is defined here as the value of b,
where the derivative of the function b�B� in �26� diverges. It

provides a quite involved implicit expression wich is evalu-
ated numerically and displayed in Fig. 4.

It is remarkable that the supratransmission threshold of
the infinite line case given in Ref. 18, namely,

b���� = 2�1 − �2� , �27�

fits reasonably well the L=4 case, the agreement being better
for larger L. The knowledge of bs���, or its approximate
value b����, then provides a useful tool to determine either
at which frequency one has to work when the seed intensity
is constrained, or else what should be the intensity when the
frequency is fixed. The sensitivity then depends on how far
from the threshold curve of Fig. 4 one is working.

V. ULTRASENSITIVE SIGNAL DETECTOR

In order to show that the JJ parallel array can be used as a
detector sensitive to a very weak arbitrary signal, we chose
for the definition �5� the following class of external driving:

Is�t� = b sin��t�, S�t� =



cosh���t − t0��
. �28�

The seed Is�t� has a frequency in the forbidden bandgap ��
�1� and an amplitude close to the supratransmission thresh-
old bs���. The signal S�t� is chosen here as a localized kick
and we solve numerically the system �1�–�3�.

A typical result is displayed in Fig. 5, where the small
amplitude signal has allowed the system to jump to the ex-
cited state with correspondingly a high output current. The
corresponding rms values, computed from expression �23�,
jump from 0.0041 to 0.01. The seed to signal amplitude ratio
is here about 2�10−2, which can even be improved by work-
ing closer to the threshold, and that justifies the denomina-
tion of the ultrasensitive detector.

FIG. 3. Dependence of the output amplitude �B� on the driving
amplitude �b�. The full line stands for �26�, the dashed line for �25�,
and the dotted line for �24�. Crosses are the results of numerical
simulations of �2� with N=8, �=0.02, and �J=2. The dashed ver-
tical line bs indicates the supratransmission threshold �theory�. The
lower threshold bL is the phenomenological amplitude value where
the solution II settles down to solution III by effect of damping, thus
closing the hysteresis loop.

FIG. 4. Dots: plot of the threshold bs in terms of the driver’s
frequency �, obtained in the continuous case with L=4 �corre-
sponding to the discrete case N=8 and � j =2�. The full line is the
approximate expression �27� predicted by the limit L→�.
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VI. DIGITAL AMPLIFIER

Another application is the digital amplifier, where the
seed signal amplitude is modulated such as to vary between
two values, say A2 and A1, both slightly below the thresholds
bs �supratransmission� and bL �extinction�, respectively, as
obtained by numerical simulations reported in Fig. 3. Pre-
cisely, we set

Is�t� =
1

2
cos��t���A2 − A1�sin��t� + A2 + A1� . �29�

The signal S�t� is made of a sequence of low amplitude finite
time excitations at the frequency � of the seed. The duration
of every individual signal should exceed the period of the
modulation, such as to let the system bifurcate to the excited
state. Moreover, the time separation of two successive sig-
nals should also exceed the modulation period to let the sys-
tem settle back to the nonexcited regime. To give an ex-
ample, we may use the following analytic model of a
sequence of two signals �that can be extended to any num-
ber�,

S�t� = cos��t��
1F�t1,t2� + 
2F�t3,t4�� , �30�

where F�ti , tj� denotes the normalized step of support �ti , tj�
namely �� is the Heaviside distribution�

F�ti,tj� = ��t − ti� − ��t − tj� . �31�

We have then performed numerical simulations of the sys-
tem �1�–�3� for a device of 4 junctions with damping �
=0.03 and output resistance R=10, when the following pa-
rameters are used for the seed:

� = 10−2, A1 = 0.234, A2 = 0.402, � = 0.9, �32�

and for the signal


1 = 0.002, 
2 = 0.008,

t1 = 2000, t2 = 3500, t3 = 5000, t4 = 9000. �33�

The seed and signal are drawn on the left side of Fig. 6, the
result of numerical simulations is displayed on the right side
of Fig. 6. We conclude that the numerical simulation demon-
strates the ability of the JJ parallel array to act as a digital
amplifier with an efficiency �amplitude ratio� of about 50.

In order to check the influence of noise, or thermal fluc-
tuations, we have included in the seed a small duration sig-
nal, as represented in Fig. 6. It appears that the system is
very robust to such excitations, it reacts only on a persistent
signal �with respect to the modulation time of the seed�. The
probability of getting a response to a pulselike fluctuation is
negligible: it would require a fluctuation pulse located pre-
cisely at the time when the seed reaches its maximum value.

VII. CONCLUSION AND COMMENTS

The theory presented here demonstrates the possibility of
realizing ultrasensitive detectors that can work in a large do-
main of frequencies �the whole forbidden bandgap of the
Junction array�, that need to be pumped with reasonable in-
tensities �asymptotically vanishing near the band edge� and
that produce a detection of any type of signal by macro-
scopic output �e.g., the rms intensity in the last junction�. The
realization of such a detector device would be worth it in the
growing field of the q-bit detection problem, as described in
Refs. 8 and 9. This detection ability can also be employed to
conceive efficient digital amplifiers by a convenient modula-
tion of the rf-seed.

By studying this question we have solved a problem that
dates back to 1986,1 namely the complete analytical under-
standing of the bistability in a long Josephson junction or in

FIG. 6. Top: representation of the amplitude modulation of the
rf-seed signal �29� and the corresponding finite time signals defined
in �30�. Bottom: Plot of the output current Iout that shows the net
result of the signal amplification. Besides the two persistent signals,
we also consider the pulselike fluctuation to show that the system is
not sensitive to external small duration fluctuations or noise.

FIG. 5. Time dynamics of of the measurable output current Iout

obtained via numerical simulations of �1�–�3� for N=4, �J=2, �
=0.01, and R=100. The excitation �9� is constituted of an amplitude
seed b=0.363 91, a frequency �=0.9, and a signal S�t�
=0.01/cosh�0.1�t−3000��. The vertical dashed line shows the time
of the signal kick.
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an array of short junctions. The practical usefulness of this
result is the tool that allows us to compute the threshold seed
amplitude where the device must be worked to become an
ultrasensitive detector.

It should be noted here that our results apparently apply
also to a long Josephson junction. However, in that case, the
external driving �by an antenna� would influence the whole
junction while for an array we can expect a device where
only the first junction is excited �or at least only the first few
junctions�. Then we expect to be able to separate the output
signal from the input in an array, which would be quite un-
easy in a single long junction.

A straightforward generalization of the lattice model �2�
to two dimensions allows us to simulate the bistable behav-
ior, in the N�N Josephson junction array,

üm,n + �u̇m,n + sin um,n

− �um,n+1 + um,n−1 + um+1,n + um−1,n − 4um,n�

= ��m1 + �n1�f�t� , �34�

with free end boundary conditions um,1=um,0, um,N=um,N+1,
u1,n=um,0, uN,n=uN+1,n. The driving f�t� is thus applied on the
two boundaries n=1 and m=1 of the square lattice. As dis-
played in Fig. 7, we have obtained by numerical simulations
that bistability is still present in this two dimensional �2D�
system, which opens the interesting problem of the theoreti-
cal description of bistability in 2+1 dimensions.

Another interesting issue is the generalization of this ap-
proach to the Josephson junction ladder,19 where the model
consists is a system of coupled sine-Gordon-like equations.20
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