
Nonlocal electrodynamics of fluxons and nonlinear plasma oscillations in a distributed Josephson
junction with electrodes of arbitrary thickness

G. L. Alfimov1 and A. F. Popkov1,2

1Moscow Institute of Electronic Engineering, Zelenograd, Moscow, 124498, Russia
2F.V. Lukin’s Institute of Physical Problems, Zelenograd, Moscow, 103460, Russia

�Received 27 February 2006; published 12 June 2006�

We considered a distributed Josephson junction formed by superconducting plates of arbitrary thickness in
the case of high critical current density when Josephson penetration depth � j is less than London length �L. A
nonlocal equation describing electrodynamics of such a junction in nondissipative approximation is derived.
The soliton-like excitations of kink type �fluxons� and of breather type are studied. It is shown that the role of
nonlocality is crucial for the dynamical properties of these entities: if the nonlocality is strong enough, fluxons
can lose their mobility. Interactions between fluxons in the nonlocal model are studied. It is shown that for
some interval of fluxon velocities and for some parameters of the junction the interactions are of solitonic type.
Also the interaction may result in the emergence of a robust and long-living oscillating state of breather type.
These states are studied separately using the approximation of the solution profile by one temporal Fourier
harmonic.
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I. INTRODUCTION

In the last decade much attention has been given
to Josephson junctions with so-called nonlocal
electrodynamics.1–7 The distributed Josephson junction with
nonlocal electrodynamics is a junction with high critical cur-
rent js, large London screening length �L, small coherence
length � and small Josephson penetration depth � j, where the
relation ��� j��L holds. Here

� j =� c�0

16�2�Ljs
, �1�

where c is the velocity of light and �0 is the quantum of
magnetic flux. For the first time nonlocal properties of the
junction of such kind were discussed in Ref. 1 when consid-
ering a junction in thin superconductive film where the thick-
ness of the superconductive layer d is far less then London
screening depth in the material, d��L. It was found that the
magnetostatics of the junction becomes nonlocal due to the
influence of the magnetic field outside the junction. Since the
internal structure of the magnetic vortex in the nonlocal
model differs essentially from the one for traditional electro-
dynamics, the dynamical properties of the magnetic vortex
also change. Recently this theoretical prediction has been
confirmed by experimental study of artificially fabricated Jo-
sephson junction of this kind.11 It has been shown in Ref. 11
that in very narrow long Josephson junction the dependence
of the magnetic vortex mass on the junction width is no
longer linear and the corrections can be explained by taking
into account nonlocal electrodynamics of the junction. Also
the nonlocal electrodynamics has been derived for a system
of magnetically coupled Josephson junctions,8–10 which can
be described by coupled integrodifferential equations.

Nonlocal Josephson electrodynamics appears in a
natural way when describing weak links inside high-Tc
superconductors.2,3 The nonideal crystalline structure of the
superconductor includes extensive defects of packing, grain
boundaries, and other imperfections which reduce locally the

depairing current.12 Such defects of the crystalline lattice can
be treated as natural weak links. The role of the weak links is
especially important for YBa2Cu3O7−� superconductors.13,14

In these superconductors the magnitude of the local depair-
ing current jb at the grain boundaries is very sensitive to the
misorientation angle and can vary from the bulk depairing
current jd to very small values jb� jd.13,15,17 These facts fol-
low from the general theory of the Josephson effect in aniso-
tropic superconductors with d-wave symmetry.18 According
to Ref. 19, the variation of HTS crystal orientation at the
junction changes both the critical current and sin-like depen-
dence of the supercurrent versus the phase jump on the junc-
tion. When the temperature is not too low this dependence
remains nearly harmonic �sin-like� whereas the range of the
critical current variation is quite significant. Experimentally
this theory was confirmed by several papers where tempera-
ture and field features of critical currents of HTS Josephson
junctions were studied �see, e.g., Ref. 20�, including ones on
bi-crystal substrate �see Ref. 21�. It seems quite attractive to
investigate also the dynamical properties of such a supercon-
ducting junction connected with nonlocal electrodynamics.

As the misorientation angle decreases the local descrip-
tion fails and the magnetic vortices inside the weak link
should be described by the nonlocal model. In this model the
vortices pinned on the weak link approach in shape Abriko-
sov vortices with Josephson cores �AJ vortices�. Correspond-
ingly, the energy, mass and viscosity of the vortex change.
This results in change of both the critical magnetic field for
penetration of magnetic flux into the superconductor along
the weak links22 and the general critical current, associated
with the motion of the vortices along the weak links.13,15

Also the frequency spectrum of plasma oscillations in the
junction changes in the short wavelength region.16 Recent
experimental study of high-Tc superconductors13 has con-
firmed these theoretical predictions.

A significant part of theoretical studies of nonlocal Jo-
sephson junctions concerns dynamics of magnetic vortices.
In particular, the steady motion of vortices and multi-vortex
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states in nonlocal Josephson junction has been
discussed.23–25 It has been shown that besides the traditional
2� kinks, quite rapid 4� kinks of various shape can appear
in the nonlocal junction.23,26 The spectra of linear oscillations
in the Josephson junction has been studied also, both in pres-
ence of magnetic vortices27 or without it.16 However, many
issues related to the nonlocal electrodynamics of the Joseph-
son junctions remain unclear. One of them is the mobility of
fluxons and multi-fluxon states. It was shown26 that in non-
dissipative approximation the traditional 2�-kinks can lose
the mobility. This statement has been made based on the
mathematical study of an idealized model, so it seems natu-
ral to verify this fact by means of numerical simulations.
Another important issue is the presence of long-lived oscil-
lating states of breather type. In traditional Josephson elec-
trodynamics these objects are as fundamental as the fluxons
and correspond to envelope solitons of the phase
oscillations.28,29 So, the study of nonstationary dynamics of
fluxons and such oscillatory states is important for under-
standing of nonlinear dynamics of Josephson junctions in
general and for the description of the mechanism for mag-
netic flux penetration into the superconductor.30 In the
present paper some of these problems are discussed.

Our analysis is based on a nonstationary and nondissipa-
tive equation for the nonlocal Josephson junction with super-
conductive leads of arbitrary thickness. We deduce this equa-
tion in Sec. II. Similar equations have been derived
before,2–4,31 including also dissipation.32,33 In these papers
the resulting equations have been derived starting from sta-
tionary London equations and neglecting the displacement
currents inside the junction leads. At the same time the va-
lidity of these assumptions needs some discussion. Specifi-
cally, it is known that if the frequency of electromagnetic
oscillations is high enough, the superconducting leads be-
come transparent for electromagnetic field. There are two
mechanisms which cause this phenomenon. On the one hand,
when the frequency of electromagnetic oscillations becomes
comparable with the frequency of the superconductive gap,
the order parameter sharply decreases. In the case of high-Tc
superconductors this occurs for higher frequencies than in
the case of low-Tc superconductors. Moreover, the London
screening length �L in high-Tc superconductors is also
greater than that in low-Tc superconductors. On the other
hand, when taking into account the displacement currents in
the junction leads, the London screening length �L should be
renormalized. Both these points impose some restrictions for
the frequencies of electromagnetic oscillations which can be
described by the model. We show that the first mechanism is
more restrictive than the second one and we estimate the
interval of frequencies where the model remains valid.

The paper is organized as follows. In Sec. II we deduce a
nonstationary equation to describe the nonlocal electrody-
namics of the Josephson junction with superconductive leads
of arbitrary thickness. We found the conditions when this
nonlocal equation is applicable and we show that these con-
ditions are different for steadily moving vortices and for os-
cillating breather-like objects. Section III is devoted to the
mobility of fluxons in a nonlocal junction and their interac-
tion with each other. It is shown that collisions of two flux-
ons can result in long-lived breather-like pulsating objects.

Section IV is devoted completely to the breather-like objects.
The results of numerical simulations are reported and the
conditions for the existence and the stability of these entities
are discussed. Section V contains a summary and discussion.

II. BASIC EQUATIONS AND MODEL ASSUMPTIONS

Let us consider a distributed Josephson junction �see Fig.
1� formed by two superconductive electrodes. Let � be the
wave function of the condensate of superconductive elec-
trons, �=�0 exp�i��. We assume that the amplitude �0 is a
constant inside the electrodes �the “stiff wavefunction” as-
sumption�. This assumption is valid if the coherence length �
inside the electrodes is small, ���L ,�J, where �L and �J are
the London penetration depth and Josephson length corre-
spondingly. In this case the temporal frequencies of currents
and fields inside the leads should lie far from the supercon-
ductive gap 	c. This implies that


 � 	c =
kBTc

�
�2�

where Tc is the temperature of the junction. In the case of
high-Tc superconductor �e.g., YBiBaCu�, where Tc�100 K,
Eq. �2� yields the condition 
�	c�1013 s−1. The electric
�E� and magnetic �H� fields inside the superconductive lay-
ers are related to the current J by means of the London’s
equations

E =
4��L

2

c2

�J

�t
, �3�

H = −
4��L

2

c
rot J , �4�

where c is the velocity of light. After elimination of the cur-
rent J, Eqs. �3� and �4� are equivalent to one of the Maxwell
equations, rot E=− 1

c
�H
�t . It follows from the second Maxwell

equation,

rot H =
4�

c
J +

�

c

�E

�t
, �5�

and formulas �3� and �4� that the currents inside the super-
conductors satisfy the equation

FIG. 1. Scheme of a Josephson junction: 1—superconductor,
2—tunnel layer.
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	J − ���J� −
1

�L
2 J =

�

c2

�2J

�t2 �6�

�here � is the permittivity of the junction�. The right-hand
side term in Eq. �6� corresponds to the displacement currents
inside the superconductive leads, the term �

c
�E
�t in Maxwell

equation �5�. It can be neglected if temporal frequencies of
currents and fields inside the leads satisfy the relation


 �
c

�L
��

.

Assuming that c=3
108 m/s, �L=0.1 �m, and ��10, one
has 
�1015 s−1. This condition is weaker than �2�. Never-
theless, as we show below, this condition leads to some ad-
ditional restrictions for the junction parameters for which the
developed model is applicable.

Due to the “stiff wave function” assumption the supercon-
ductive current Ji in ith electrode is related to the phase �i of
the wave function �i and vector potential of the magnetic
field A, rot A=H, by the well-known relation

Ji =
c�0

8�2�L
2 ��i −

c

4��L
2 A . �7�

Consider the Cartesian coordinates �x ,y ,z�. The plane x=0
coincides with the plane of symmetry of the junction �see
Fig. 1�. In order to deduce the boundary conditions we as-
sume that the thickness 	0 of the oxide layer is small. Also
we admit that the screening currents at both sides of the
junction are antisymmetric to each other, i.e., Jy,1

�x=
	0

2
�

=−Jy,2
�x=−

	0

2
�. Then, integrating Eq. �7� along the contour �

shown in Fig. 1 yields

Jy�x = + 0� =
1

2
�Jy,1�x =

	0

2
� − Jy,2�x = −

	0

2
��

=
c�0

16�2�L
2

���1 − �2�
�y

−
c

8��L
2�Ay�x =

	0

2
� − Ay�x = −

	0

2
�� .

�8�

The last term in Eq. �8� is of the order of 	0 /�L and can be
neglected. We arrive at the first boundary condition for the
current,

Jy�x = + 0� =
c�0

16�2�L
2

��

�y
, �9�

where �	�1−�2. The second boundary condition for the x
component of the current follows from the fact that the com-
plete perpendicular current is a sum of the superconductive
component and the bias current,

Jx�x = + 0� = Jx�x = − 0� = js sin � +
�

4�

�Ex

�t
. �10�

Taking into account the second Josephson equation,

Ex�x = 0� =
�0

2�c	0

��

�t
,

we arrive at the relation

Jx�x = + 0� = js sin � +
��0

8�2c	0

�2�

�t2 . �11�

If no external magnetic field is applied, the screening cur-
rents at the external boundaries x= ±d of the electrodes van-
ish, i.e.,

Jx,y�
x
 = d� = 0. �12�

In order to deduce the evolution equation for the phase jump
of the wave function at the junction, ��y , t�, we employ an
approach similar to one used in Refs. 2, 4, 22, and 31. The
current J can be represented using the Fourier transform with
respect to y and t:

J�x,y,t� =
1

�2��2�
−�

+�

eikydk�
−�

+�

Jk,
�x�e−i
td
 . �13�

Solving vector equation �6� with boundary conditions �12�
one obtains the following relation for the Fourier transforms
of the components of the current �Jx,y �0, Jz=0�:

Jx
k,
�x� =

ik�L
2

1 + k2�L
2 − �
2�L

2/c2

�Jy
k,
�x�
�x

= − Jy
k,
�x�

ik�L

�1 + k2�L
2 − �
2�L

2/c2


tanh� �d − 
x
�
�L

�1 + k2�L
2 − �
2�L

2/c2� �14�

Taking into account relations �9�, �11�, and �14� for the lon-
gitudinal and transverse currents at x=0, after an inverse
Fourier transform one arrives at the equation

sin � + 
0
−2�2�

�t2 =

1�J

2

�L
�

−�

� �
−�

�


G�� 
y − u

�L

,
c
t − �


�L
��

� �2�

�u2 dud� .

�15�

Here


0
2 =

8�2js	0c

��0
=

c2	0

2��J
2�L

, 
1 =
c

�L
��

,

and the kernel of the convolution operator is

G���,�� =
1

�2��2�
−�

�

exp�ik̃��dk̃�
−�

� tanh���1 + k̃2 − 
̃2�
�1 + k̃2 − 
̃2


exp�− i
̃��d
̃ , �16�

where �=d /�L, k̃=k�L, and 
̃=
 /
1. If the temporal fre-
quencies lie around 
0, i.e., 
�
0, and if 
̃�
0 /
1

=�	0�L /�J
2�1, then one can neglect the time dependence

NONLOCAL ELECTRODYNAMICS OF FLUXONS AND¼ PHYSICAL REVIEW B 73, 214512 �2006�

214512-3



in the integral term in �15�. This is equivalent to neglecting
the temporal dependence in Eq. �6� discussed above. This
approximation is valid if

	0 �
�J

2

�L
. �17�

In this case Eq. �15� can be replaced by a simple one:

sin � + 
0
−2�2�

�t2 =
�J

2

�L
�

−�

�

G�� 
y − u

�L

� �2�

�u2 du , �18�

where

G���� =
1

2�
�

−�

� tanh���1 + k2�
�1 + k2

exp�ik��dk . �19�

Let us normalize t and y by �t
=
0
−1 and �y
=�J, correspond-

ingly, and define �=�L /�J. Then Eq. �18� can be rewritten in
more a compact form that includes the two parameters � and
� only:

sin � +
�2�

�t2 =
1

�
�

−�

�

G�� 
y − u

�

� �2�

�u2 du 	 L�,���
 .

�20�

Here we introduce the Fourier multiplying operator L�,�,
which has the symbol

L̂�,��k� = −
k2 tanh���1 + �2k2�

�1 + �2k2
. �21�

It worth mentioning some limit cases of Eq. �20�:
�a� ��1. In this case the Fourier symbol �21� can be

approximately replaced by

L̂�,��k� � − k2 tanh���

and Eq. �20� transforms into the sine-Gordon equation with
renormalized screening depth

sin � +
�2�

�t2 = �ef f
2 �2�

�y2 , �ef f = �tanh � . �22�

This limit corresponds to the traditional Josephson electro-
dynamics.

�b� ��1. In this case expanding the Fourier symbol �21�
for small � one arrives at

L̂�,��k� = −
k2 tanh���1 + �2k2�

�1 + �2k2
� − �k2

and the equation becomes again the sine-Gordon one:

sin � +
�2�

�t2 = �
�2�

�y2 . �23�

�c� �→�. This is the case of “infinitely thick” supercon-
ductive electrodes. In this case the equation �20� transforms
into the equation

sin � +
�2�

�t2 =
1

��
�

−�

�

K0� 
y − u

�

� �2�

�u2 du �24�

derived in Refs. 2–4.
In some situations the condition �17� for the applicability

of Eq. �20� can be replaced by the condition 	0��L. This
restriction is weaker than �17�, since in the nonlocal case
�J��L. As an example, let us consider the propagation of a
wave of constant profile �e.g., fluxon� and velocity v, when
��y , t�=��y−vt�. The Fourier transforms of the current can
be rewritten in the form

Jk,
�x� = Jk�x���
 − vk� , �25�

where Jk�x� is the Fourier transform of the current with re-
spect to the travelling coordinate ỹ=y−vt,

Jk�x� =
1

2�
�

−�

�

J�x, ỹ�eikỹdk .

Normalizing the spatial coordinate by �ỹ
=�J
�1−�2v2 /c2

and using �14� and �25� one arrives at

�1 − ṽ2�2�sin � + ṽ2�2�

� ỹ2 =
1

�
�

−�

�

G�� 
ỹ − u

�

� �2�

�u2 du .

�26�

Here

ṽ =
v

�J
0
; � =� 	0

2�L
.

If 	0��L then ṽ��1 and Eq. �26� coincides with Eq. �20�
for the solutions of the traveling wave type.

Equation �20� is the basic equation for the analysis in the
rest of this paper.

III. FLUXONS IN DISTRIBUTED JOSEPHSON
JUNCTIONS WITH NONLOCAL ELECTRODYNAMICS

A fluxon is a wave of the flip-over of the phase jump at
the junction. From mathematical viewpoint a fluxon corre-
sponds to the 2� kink �antikink� solution of the equation for
the phase jump �Eq. �20�, in our case
. For the junction with
traditional electrodynamics this equation is the sine-Gordon
one. It is well known that in the sine-Gordon case 2� kinks
are robust and restore their shapes and velocities after inter-
action �solitonic interaction�. This occurs due to complete
integrability of the sine-Gordon equation.29 In the junction
with nonlocal electrodynamics the governing equation is no
longer integrable and 2� kinks lose the solitonic properties.
Moreover, even the existence of the travelling kink needs
special investigation. It has been shown26 that switching
from the local to the nonlocal model can lead to the phenom-
enon of discretization of kink velocities. Below we summa-
rize some analytical results on 2� kinks for Eq. �20� �Sec.
III A�, set out the results of numerical investigation for free
propagation of travelling fronts of 2�-kink type �Sec. III B�,
and report on numerical simulation of their interactions �Sec.
III C�.
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A. Analytical results

From the mathematical viewpoint the moving 2k� kinks
of constant profile described by Eq. �20� satisfy the equation

sin � + v2d2�

d�2 =
1

�
�

−�

�

G� 
� − �

�

�d2�

d�2du �27�

with G���=G���� and with the boundary conditions

lim
�→−�

���� = 0; lim
�→+�

���� = 2k� . �28�

Here v is the 2k�-kink velocity and �=y−vt. If the kernel
G��� is of the form

G��� = � j=1

N
� je

−�j
�, � j � 0, � j � 0, j = 1,2, . . . ,N

�29�

��E� kernel, in terms of Ref. 26
 then the following state-
ments holds:

Statement:26 Let the kernel G��� be of (E) type and
v�0. For v=v* let there exist a kink solution of (27) of the
symmetry ����+��−��=2k�, of topological charge k. Then,
generically, there are no kink solutions of the same topologi-
cal charge with velocity v� �v*−� ,v*+�� for several value
of ��0.

The word “generically” implies some transversality con-
dition. It is shown in Ref. 26 that the existence of 2k� kink
with symmetry ����+��−��=2k� is a phenomenon of codi-
mension 1 in the space of parameters v ,� j ,� j , j=1, . . . ,N.
So, fixing all these parameters except the velocity v, one can
expect that these entities can exist for some isolated values of
v. The existence of 2k� kink without this symmetry is a
phenomenon of codimension 2 and hardly can be expected,
if the parameters of the kernel � j ,� j , j=1, . . . ,N, are fixed. It
was suggested in Ref. 26 that this phenomenon �called dis-
cretization of kink velocities� takes place not only for �E�
kernels, but in a more general case also. In particular, nu-
merical calculations shows that it takes place for kink solu-
tions of Eq. �24�. It was shown also in Ref. 26 that in the
case v=0 a degeneration occurs and the existence of 2k�
kink becomes a phenomenon of codimension 0 in the space
of parameters � j ,� j , j=1, . . . ,N. So, the existence of at-rest
2k� kink is in some sense “more probably”that the existence
of the kink with any other velocity.

Returning to the kernel G����, one can rewrite it in the
form of the following series:22

G���� =
1

�
�
n=0

� exp�−�1 + � �

2�
�2

�1 + 2n�2
�
�
�1 + � �

2�
�2

�1 + 2n�2

. �30�

So, by truncating the expansion �30�, the kernel G���� can be
approximated by �E� kernels with arbitrary accuracy. One
can expect that Eq. �27� with the kernel G���� inherits the
features of the model with �E� kernels and the phenomenon
of discretization of kink velocities takes place in this case
also. Since there is no rigorous proof of this statement we
formulate it as a conjecture as follows:

Conjecture 1: For any value of � the velocities of the 2k�
kinks described by Eq. (27) with the boundary conditions
(28) and G���=G���� are isolated. This means that if
v*�0 is a velocity of some 2k� kink solution of Eq. (27),
then there exists an interval �v*−� ;v*+�� for some ��0
such that there is no other 2k� kink solution with velocity v
within this interval.

The discretization of kink velocities contrasts with tradi-
tional �local� description of the Josephson junction based on
the sine-Gordon model, where there exists a continuous set
of 2�-kink velocities. Moreover, the results of our numerical
analysis of Eq. �27� with G���=G���� and boundary condi-
tions �28� for the solution of 2�-kink type allows one to put
forward a stronger hypothesis:

Conjecture 2: There is no solution of Eq. (27) with the
boundary conditions (28) and G���=G���� with v�0.

In the case v=0 the 2� kinks can be found numerically
�see Ref. 22�.

B. The propagation of 2� kink: Numerical analysis

Evidently, the approximation �27� and �28� is very restric-
tive for physical applications. It corresponds to the idealized
situation when a strictly localized fluxon moves without any
change of its form in infinitely long Josephson contact. At
the same time one can expect that in the limit when the
governing equation �20� can be approximately replaced by
the sine-Gordon one it should describe traveling 2� fronts of
nearly constant shape. In particular,

�a� if ��1 Eq. �20� can be replaced by Eq. �22�, which
admits traveling 2�-kink �antikink� solution,

��t,y� = 4 arctan�exp�±
y − vt

�tanh � − v2�� .

�b� If ��1, the dynamics can be described approxi-
mately by Eq. �23�. The 2�-kink solution of this equation is

��t,y� = 4 arctan�exp�±
y − vt

�� − v2�� ,

which exist for small values of velocity v2��.
In order to study the dynamics described by �20�, the

following numerical experiments have been fulfilled. We
have used the profiles of at-rest 2� kinks (antikinks) de-
scribed by Eq. �20� as the initial data for the evolution. These
profiles have been found numerically by solving Eq. �27�
with boundary conditions �28�. Then these 2� kinks �anti-
kinks� have been provided with some velocity v. It has been
observed that if � is small enough, the kinks continue the
motion emitting the radiation and can move for a long dis-
tances. At the same time the numerical experiments show
that if � is large, the 2� kinks lose the mobility conforming
the results of Sec. III A.

The results of the numerical simulations of fluxon motion
for three different values of nonlocality parameter � and for
the value of �=1 are represented in Fig. 2. It follows from
Fig. 2 that for �=3 the fluxon moves with constant velocity
but its motion is accompanied by plasma oscillations �Fig. 2
�panel a�
. Such a situation is typical of traditional Josephson
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electrodynamics. As � grows �Fig. 2�b�
 the part of the en-
ergy emitted by plasma oscillations also grows and this leads
to fluxon braking. At �=7 all the kinetic energy of the fluxon
transforms into the plasma oscillations and the fluxon com-
pletely loses the mobility �Fig. 2�c�
.

C. Interactions of kinks

Now let us turn to the question of how the variation of
parameters � and � affects solitonic properties of the flux-
ons. For this purpose we simulated the collisions of 2� kinks
and antikinks described by Eq. �20�. Again, we have used the
profiles of at-rest 2� kink �antikink� described by Eq. �20�
for the initial data. Initially, these profiles have been placed
at some distance from each other. Then both the kink and the
antikink have been provided with the velocities that are equal
in modulus and directed toward each other. We observed
that, in general, if �, �, and the velocity v are not too large,
two types of behavior after the collision have been observed:

�i� In some range of parameters � and � the kink and
antikink restore �approximately, up to some ripple� the shape
after the interaction �see Fig. 3�. It was natural to expect such
a solitonic behavior in the limit cases �a� and �b� mentioned
in Sec. III B, since in these cases the model under consider-
ation is close to the sine-Gordon model. However, it turns
out that the kinks and antikinks of Eq. �20� reveal soliton
properties not only in the two limit cases but in the wider
range of parameters. We observed that this kind of interac-
tion takes place if the starting velocity v of the kink and the
antikink is not too large, but it is greater than some critical
value v2 that depends on � and �.

�ii� Another possibility is binding of the kink and antikink
and the forming of some localized long-lived pulsating ob-
ject, similar to the breather of the sine-Gordon equation �see
Fig. 3�. This object has a well-pronounced basic period.
Sometimes, in addition to this period, it may have amplitude
modulations of a greater period or stochastic amplitude

modulations. This creation of a breather-like entity takes
place if the starting velocity of the kink and antikink lies
within the interval 0�v�v1, where v1 is another critical
value depending on � and �. More detailed discussion of
these breather-like objects for Eq. �20� can be found in Sec.
IV.

The diagram in Fig. 4 is calculated for �=1 and exhibits
the regions on the plane �� ,v� with different behavior after
the kink-antikink collision. It shows that if the initial kinetic
energy of kink and antikink is large enough, it covers the loss
of energy by radiation that accompanies the collision of
kink-antikink pair in a nonintegrable system. In this case
kink and antikink restores their shapes after the collision.
The threshold velocity v2 for the solitonic behavior grows
when the system moves away from sine-Gordon limit ��1.
One can observe that there is a gap between the values v2
and v1. This gap is filled with alternating layers, ones where
the interaction is solitonic and others where a pulsating
bound state emerges. This situation is similar to one discov-
ered for the �4 equation and described in Ref. 34.

As one of the parameters �, � grows more, another type
of the behavior can appear. In some cases we observed re-
pulsion of the kink and the antikink without passing through
each other. Also, in some other cases kink-antikink collision
results in chaotic oscillation without any regular structure.

FIG. 2. Contour plots illustrating the motion of 2� kink. The
initial kink profiles correspond to at-rest 2�-kink profiles �the solu-
tion of Eq. �20�
; the initial velocity is v=0.1. Kink moves from
right to left; the bold lines in the figures are the lines of motion of
the kink front. The pattern to the right of the bold line corresponds
to the radiation which propagate backward. �a� �=3, �=1, the bold
line is inclined and nearly straight that corresponds to uniform mo-
tion of the kink; �b� �=5, �=1, the kink motion is not uniform; and
�c� �=7, �=1, kink remains motionless, extra energy transforms
into radiation.

FIG. 3. Collision of 2� kink and 2� antikink for �=1, �=0.5
and the kink/antikink velocities equal v=0.4 �upper panel� and
v=0.2 �lower panel�.
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IV. NONLINEAR PLASMA OSCILLATIONS
(AKIN BREATHERS) IN THE DISTRIBUTED JOSEPHSON

JUNCTIONS WITH NONLOCAL ELECTRODYNAMICS

In the limit of local electrodynamics nonlinear plasma os-
cillation of breather type correspond to exact solutions of the
sine-Gordon equation.29 The results of the simulations of
kink-antikink interactions described above allow us to sup-
pose that the nonlocal model under consideration also admits
some class of breather-like excitations. These objects merit a
separate analysis. They can be treated as localized in space
and periodic in time solutions of Eq. �20� such that

��t,y� → 0, y → ± � ,

��t,y� = ��y,t +
2�



� ,

where 2� /
 is the period of oscillations. Due to periodicity,
these solutions can be thought of a Fourier series with re-
spect to t. Moreover, since the nonlinearity is odd, Eq. �20�
admits a specific class of periodic solutions such that their
Fourier expansions include odd cosine terms only:

��t,y� = �
n=0

�

�2n+1�y�cos�2n + 1�
t . �31�

Assuming the form �31� for the desired breather-like solution
and substituting it into Eq. �20�, we obtain the following
infinite system of nonlocal equations for the harmonics
�n�y�:

L�,��d�1

dy
� − �1 − 
2��1 = F1��1,�3, . . . �;

L�,��d�3

dy
� − �1 − 9
2��3 = F3��1,�3, . . . �;

�

L�,��d�2n+1

dy
� − �1 − �2n + 1�2
2
�2n+1 = F2n+1��1,�3, . . . �;

� �32�

where F2m+1��1 ,�3 , . . . � is the coefficient in front of
cos�2m+1�
t in the Fourier expansion of the nonlinearity
sin��n�2n+1�y�cos�2n+1�
t
. The solutions to the finite sys-
tems obtained by truncating �32� can be taken as approxima-
tions of the desired solution. It is well known that, in some
cases, even a single harmonic �1�y� provides a good approxi-
mation for ��t ,y�. This approach sometimes called rotating
wave approximation35� was successfully used to construct
discrete breathers in nonlinear lattices,35,36 radial breather-
like states of the multidimensional sine-Gordon equation37,38

and fractional sine-Gordon equation,39,40 gap solitons,41 and
other nonlinear problems.

Restricting the consideration to the case of a single har-
monic,

��t,y� � �1�y�cos 
t , �33�

we obtain the equation

L�,��d�1

dy
� + 
2�1 − 2J1��1� = 0, �34�

where J1��� is the Bessel function. Equation �34� was solved
numerically. The profiles of the solutions of Eq. �34� for
various values of 
 are represented in Fig. 5�a�. Figure 5�b�
exhibits how the amplitude of �1�y� depends on 
. It appears
that as 
 tends to unity, the amplitude of �1�y� tends to zero.
Numerical solution of Eq. �20� under the initial conditions
��0,y�=�1�y�, �t�0,y�=0 shows that for some interval of 

adjacent to 1 the temporal evolution of the spatial profile is
quite close to periodic �see Fig. 6�.

Let us turn now to more detailed analysis of the situation.
Consider the temporal evolution ��t ,y� at y=0. Let t= t0 and
t= t1 be the points of two consecutive maxima of the
function ��t ,0�. At the point t= t1 we define the value

̃�t1�	2� / �t1− t0�; for our analysis this value can be re-
garded as the “current” value of frequency. In particular, if
��t ,0� is exactly periodic with the frequency 
 and it has a
single maximum point on the period, then 
̃=
 for any point
of maximum. Let us associate each point of maximum t= tk
of ��t ,0� with the point on the plane �� ; 
̃� with coordinates
(��tk ,0� ; 
̃�tk�). So, ��t ,0� can be characterized by a se-
quence of points on the plane �� ; 
̃�. We denote this se-
quence by T�.

At first we consider the sequences T� constructed for the
initial data given by one harmonic approximation. We ob-
served that at the first cycle of oscillations some jump of the
amplitude occurs. This fact is associated with the generation
of higher temporal harmonics �specifically, third and fifth
ones�, which can be distinguished in the temporal Fourier
spectrum. The greater the amplitude of the initial profile is,
the greater is the jump of the amplitude at the first cycle; if 

is close to 1, this jump is small, since higher harmonics are

FIG. 4. The regions on the plane �� ,v� where �1� the interac-
tions between 2� kink and antikink result in oscillating bound state;
�3� their interactions are of solitonic type; and �2� a intermediate
layered region where either of the two types of the interaction may
occur.
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negligible. The sequence T� for the initial data given by one
harmonic approximation 
=0.75 is shown in Fig. 7 �gray
points marked by the number 3�.

Then, the amplitude of oscillation smoothly decreases.
This fact is associated with losing energy through the radia-
tion. This process becomes slower with time. For 
=0.7 the
amplitude falls from 3.38 to 3.16 for 750 temporal units;
simultaneously the value 
̃ grows from 0.69 to 0.72. The
sequence T� for 
=0.75 shown in Fig. 7 also is not a point

but seems like a segment of a curve. However, for the pro-
files corresponding to 0.8�
�1 the amplitude of the oscil-
lations and the value 
̃ change very slowly, so the oscilla-
tions can be regarded �for the physical applications� as
periodic ones.

Figure 7 exhibits the sequence T� corresponding to the
kink-antikink collision depicted in Fig. 3 �right panel�. The
simulation has been fulfilled until t=3000. It follows from
Fig. 7 that the points of T� approach the zone of the �� ; 
̃�
plane, where the periodic oscillations have been found. It
follows from the figure that long-time simulation results in
the “settling down” to the breather-like oscillations corre-
sponding to 
�0.75.

The analysis given above does not imply that the oscilla-
tory object that has been found corresponds to the exact
breather solution of Eq. �20� i.e., is exactly spatially local-
ized and periodic in time. We believe that after some time

FIG. 5. �a� The graphs of ��y� for �=1, �=1 and 
=0.7 �graph
1�; 
=0.8 �graph 2�; 
=0.95 �graph 3�; �b� The graph of the am-
plitude ��0� versus 
 for �=1 and �=1.

FIG. 6. The evolution of the initial profile given by the first
harmonics �1�y�, 
=0.8.

FIG. 7. The sequence T� �see the description in the text� corre-
sponding to the kink-antikink collision depicted in Fig. 3 �black
points, marked by the number 2� and the sequence T� for the initial
profile given by one-harmonic approximation, 
=0.75, 730 tempo-
ral units �gray points marked by the number 3�. The initial velocity
of kink and antikink is v=0.2, �=1, �=0.5. �a� The first 170 points
of the sequence T� for kink-antikink collision; �b� Next 170 point of
the same sequence. The curve marked by �1� is the dependence of
the amplitude ��0� versus 
, a segment of the curve given in Fig.
5�b�.
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this oscillatory state should decay due to the presence of
higher harmonics, which can be delocalized. However, the
lifetime of this entity can be very large, as this takes place in
the famous problem on a breather in the �4-model42,43 or
on the radial breather for the 2D and 3D sine-Gordon
equation37,38 where it runs to thousands of time units.

V. SUMMARY

To conclude, we have studied the electrodynamics of a
nonlocal superconductive junction without dissipation and
with electrodes of arbitrary thickness. The results of this
study can be summarized as follows:

�i� The electrodynamics of the Josephson junction can be
described by the nonlocal equation �20� if characteristic fre-
quencies of the fields and currents in the junctions are not too
high. There are two limits when this model becomes local.
One of them corresponds to traditional electrodynamics
when �L��J. Another one corresponds to the junctions with
thin electrodes, d��L.

�ii� Involving nonlocality results in a change of dynamical
properties of fluxons. Specifically, if the nonlocality is weak,
fluxons conserve restricted mobility whereas if the nonlocal-
ity is strong they cannot move and remain fixed.

�iii� In both the limit cases mentioned in �i� the interac-
tions between fluxons are of solitonic type. Moreover, they
are solitonic in a wider region of parameters if the velocities
of fluxons are greater than some threshold velocity. If the
velocities of fluxons lie below another threshold value, their
interaction results in creation of a long-lived oscillating state
of breather type. Between these two threshold values the
interaction can be both solitonic and nonsolitonic. Both the
threshold values of velocity depend on physical and geomet-
ric parameters of the junction. Specifically, both these critical
velocities grow if the thickness of the leads or the nonlocal-
ity parameter �=�L /�J increases.

�iv� The nonlinear oscillations of breather type mentioned
in �iii� are quite robust, long lived, and arise as a result of the
evolution of initial states which have no instilled semblance
to the “breather” forms that eventually emerged. Another pe-

culiarity of these entities is that they can be described well
by one harmonic of temporal Fourier expansion.

Let us make some comments to these results. First, the
drastic reduction of fluxon mobility when the parameter of
nonlocality grows can result in an increase of the critical
currents corresponding to the vortex motion. This phenom-
enon can occur in both artificially fabricated Josephson junc-
tion and granulated superconductor. Second, the emission of
plasma oscillations observed in our numerical experiments
which accompanies moving fluxon can result in amplifica-
tion of the noise component of the signal in the current-
voltage characteristic. The radiation of the moving fluxon in
nonlocal Josephson electrodynamics has been discussed
before25,44,45 and recently has been observed experimentally
in a narrow Josephson junction described also by similar
nonlocal equation.46 The excitation of Cherenkov resonant
plasma oscillations by a moving vortex leads to additional
current steps on the current-voltage characteristics of the dis-
tributed Josephson junction with nonlocal electrodynamics.
The generation of long-lived large amplitude oscillations of
breather type, which can appear under the collisions of vor-
tices moving in opposite directions in the junction, may also
result in the volt-ampere characteristics. Third, in the nonlo-
cal case, in the absence of moving single-quantum fluxons,
the role of multi-quantum vortices �corresponding to 4�
kinks, 6� kinks etc.� in the magnetic field transport in-
creases. It is known that these entities can travel in nonlocal
Josephson junction23,47,48 with high velocities and their con-
tribution to current-voltage characteristics in the nonlocal
model should be much more important in the nonlocal elec-
trodynamics.
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