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We present a controlled perturbative approach to the low-temperature phase diagram of highly inhomoge-
neous Hubbard models in the limit of small coupling, t�, between clusters. We apply this to the dimerized and
checkerboard models. The dimerized model is found to behave like a doped semiconductor, with a Fermi-liquid
groundstate with parameters �e.g., the effective mass� which are smooth functions of the Hubbard interaction,
U. By contrast, the checkerboard model has a Fermi liquid phase at large U�Uc=4.58, a d-wave supercon-
ducting state with a full gap for Uc�U�0, and a narrow strip of an intermediate d-wave superconducting
phase with gapless “nodal” quasiparticles for �U−Uc � �O�t��.
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In this paper, we report a study of inhomogeneous Hub-
bard models, Eq. �1�, in which the lattice is broken up into a
periodic array of weakly coupled clusters. We focus on the
case of small “doping,” �x � �1, where 1±x is the number of
electrons per site, and on the limit in which the coupling
between clusters, t�, is much less than the relevant energy
scales within a cluster. Exploiting these small parameters, we
obtain a well-controlled solution of the ground-state and
low-energy excited states.

There are two purposes of this study: �1� With t� as the
small parameter, we can trace the nonperturbative evolution
of the electronic structure as a function of the strength of the
Hubbard interaction, U, all the way from the weak to the
strong coupling limit. �2� In light of the increasing evidence1

that some form of self-organized electronic inhomogeneity is
widespread in the cuprate superconductors, it is reasonable to
explore the circumstances in which high-temperature super-
conductivity from purely repulsive interactions may be en-
hanced by certain forms of inhomogeneity.2–7

We develop a general strategy for such problems which
we apply explicitly to the case of the dimerized Hubbard
model �Fig. 1�a�� and the checkerboard Hubbard model �Fig.
1�b��. In both these cases, the undoped �x=0� “parent” Mott
insulating system has a unique, insulating ground state with a
large spin-gap, �s:

�1� The doped dimerized Hubbard model has a spectacu-
larly featureless phase diagram. At energies small compared
to �s, it behaves like a doped semiconductor, with a small
Fermi surface enclosing a Luttinger volume equal to x, and
with an effective mass which changes by a factor of 2 as U is
increased from U=0 to U�1. If some form of attractive
interaction is added to the dimerized Hubbard model, such as
an additional nearest-neighbor exchange energy, J, there is a
transition to a singlet superconducting phase for sufficiently
large J, as indicated in Fig. 2. However, the superconducting
state has mixed d- and s-wave symmetry, and a full gap to
quasiparticle excitations.

�2� The doped checkerboard Hubbard model exhibits four
distinct zero-temperature phases as a function of U, as shown
in Fig. 3�a�: For 0�U�Uc�4.58, the system is supercon-
ducting while for U�Uc it is a non-superconducting Fermi
liquid. The superconducting state has d-wave symmetry. De-

spite this, the quasiparticle spectrum in the superconducting
state is fully gapped, except in a narrow range of U within
O�t�� of Uc, where gapless “nodal” quasi-particles emerge.
The Fermi liquid phase is unusual in the sense that there are
two degenerate bands �“flavors”� of fermions with plus and
minus chirality �in addition to the two spin polarizations�. At
very large U�18.6 there is an additional transition to a
Fermi liquid with spin 3/2 quasiparticles.

It is also worth noting that inhomogeneous systems natu-
rally exhibit precursor superconducting correlations well
above the actual superconducting Tc, reminiscent of some of
the pseudo-gap phenomena seen in underdoped cuprate
superconductors.8 This tendency is apparent in our results,
where, under many circumstances, the pairing scale is deter-
mined by interactions within a cluster, while Tc is propor-
tional to �t��2. As a consequence, pairing persists to a tem-
perature Tpair��t��0, while the superfluid density, and hence
the phase ordering temperature, is parametrically smaller,
Tc��t��2, as can be seen in Fig. 4.

I. THE INHOMOGENEOUS HUBBARD MODEL

While ideally we would like to consider a system in
which any inhomogeneity is self-organized, in the present
paper the inhomogeneity is introduced explicitly from the

FIG. 1. Schematic representation of the �a� dimerized and �b�
checkerboard models. The hopping matrix elements are t=1 on the
bold lines and t��1 on the thin lines.
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beginning. We therefore consider the Hubbard model on a
square lattice

H = − �
	r,r�
,�

tr,r��cr,�
† cr�,� + H . c . � + U�

r
nr,↑nr,↓, �1�

where 	r ,r�
 indicates nearest-neighbor sites, and cr,�
† creates

an electron on site r with spin polarization �= ±1/2. The
term with U�0 represents the on-site repulsion between
electrons and nr,�=cr,�

† cr,�. The usual �homogeneous� limit
of this model is obtained by taking tr,r�= t=1, where the final
equality defines our units of energy. In the inhomogeneous
versions of this model we consider, the lattice is broken up
into a set of periodically repeated disconnected clusters, with
tr,r�=1 for nearest-neighbor sites within a single cluster, and
tr,r�= t��1 for nearest-neighbor sites belonging to distinct
clusters. Even the inhomogeneous version of this model is
particle-hole symmetric; we will discuss the case of a con-
centration x of doped holes, but the same results apply for
the same concentration of doped electrons.

To zeroth order in t�, the Hamiltonian can be solved for
arbitrary U by diagonalizing it on a single cluster. We then
use low-order �near� degenerate perturbation theory �in pow-
ers of t�� to derive an effective Hamiltonian, Hef f, which
operates in the reduced Hilbert space spanned by the direct
products of the low-energy eigenstates of the isolated cluster.
This is a standard procedure, precisely analogous to that used
to derive the t-J model from the large U limit of the Hubbard
model.9 For all the clusters we consider here, the groundstate
of the isolated undoped cluster �with one electron per site� is
a spin singlet with a finite spin gap �s.

For small x, most clusters must still be in their ground
state, so Hef f operates in a very much smaller Hilbert space
than the starting space. Moreover, defining the unique
ground state with one electron per site to be the vacuum state
of Hef f, it is clear that it can typically be recast as the Hamil-
tonian of a dilute gas of excitations. This is the key feature
that makes the problem tractable in the stated limit of small
x and small t�.

To construct the low-energy Hilbert space, we need to
compute the spectrum of an isolated cluster with different
numbers of doped holes. The eigenstates of each cluster can
be identified by their symmetry-related quantum numbers:
the number of doped holes, Q �Q=0 refers to the case of one
electron per site�, the total spin, S, and those related to the
spatial symmetries. For the dimer, the states are odd or even
under reflection. The isolated square has the same fourfold
rotational symmetry, C4, as the uniform lattice so the states
can be labeled by spectroscopic labels “s” �even under rota-
tion by � /2�, “d” �odd under rotation by � /2�, and “px± ipy”
�changes phase by ±� /2 under rotation by � /2�. In each
charge sector, so long as there is a “large” �order 1� gap, the
excited states can be safely eliminated from the low-energy
sector. Where there is a level crossing within the isolated
cluster, we need to be a bit more careful.

Isolated dimer: For the isolated dimer with Q=0 or Q
=2, there is a unique S=0, even-parity ground state separated
by a large gap from the first excited state. The Q=1 ground
state is a S=1/2 even-parity doublet again with a large gap.

Isolated square: For the isolated square with Q=2, there
is a unique S=0 ground state with s-wave symmetry sepa-
rated by a large gap from the first excited state. For Q=0 and
with U=0, there is a large �sixfold� ground-state degeneracy.

FIG. 2. �Color online� �a� Zero-temperature phase diagram of
the dimerized Hubbard model for small x, and �b� phase diagram of
Hef f on the dimerized lattice as functions of �p /� and g /�. Two
phases, the Fermi liquid phase �FL� and the singlet superconducting
phase �s	d SC�, can be obtained in the effective theory. However,
as shown by the dotted curve with arrows in �b�, the trajectory of
the Hubbard model with fixed t� / t �
0.005� as a function of in-
creasing U only passes through FL. As a result, only FL can be seen
in �a�.

FIG. 3. �Color online� �a� Zero-temperature phase diagram of
the checkerboard Hubbard model for small x and �b� of Hef f on the
checkerboard lattice. The two superconducting phases �d-SC� both
have d-wave symmetry, and are distinguished by the presence �ab-
sence� of nodal quasiparticles. The two Fermi liquid phases �FL and
FL�� are distinguished by the quantum numbers of the quasiparti-
cles, as discussed in the text. The dotted curve with arrows in �b�
represents the effective trajectory corresponding to the Hubbard
model with fixed t� / t�=0.005� as a function of increasing U.
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This degeneracy is lifted2 at nonzero U, and the resulting
ground state is an S=0 singlet with d-wave symmetry. How-
ever, for small enough U the gap to the excited states is
small—the splitting between the lowest lying singlet and
triplet state �the “spin-gap”� is O�U2� for small U. In the
present paper, when dealing with the checkerboard lattice,
we will assume U��t� so that the gap can be treated as
“big,” but the small U limit is probably worth revisiting in
the future. As pointed out by Trugman and Scalapino,10 an
important consequence of the distinct spatial symmetries of
the Q=0 and Q=2 ground states is that the pair creation
operator that connects these two states has d-wave symmetry.
The Q=1 spectrum of the isolated square is a bit more com-
plex: For U�UT=18.6, the ground state is a spin and orbital
doublet, with S=1/2 and px± ipy symmetry. This has the
consequence that the quasiparticles carry an orbital “flavor”
index, �= ±1, in addition to the usual spin polarization in-
dex, �= ±1/2. For U�UT, the ground state, in accordance
with Nagaoka’s theorem,11 is a S=3/2 s-wave state. Except
in the vicinity of U=UT �where the gap is O��U−UT � ��, the
gap to excited states is again large.

Other than the stated level crossings, the precise depen-
dence of the energies of the various states is not important
for present purposes. The energy of the Q=0 ground state
can be absorbed into an overall constant contribution to the
effective Hamiltonian, E0, and the energy of the Q=1 state
into a redefinition of the chemical potential. There is one
important combination of energies,

�p = 2E�1� − E�2� − E�0� , �2�

where E�Q� is the ground-state energy for given Q. This has
the interpretation of the pair binding energy: a positive �p
signifies an effective attraction between doped electrons or
holes in the sense that for two doped holes, it is energetically
preferable to place both on one cluster than to place one on
each of two clusters. For the isolated square, �p is positive

�pair binding� for U�Uc�4.58 and negative for U�Uc. For
the isolated Hubbard dimer, �p�0 for all U, and indeed it
vanishes �linearly� only at U=0. This is the reason the dimer-
ized Hubbard model does not superconduct.

II. THE EFFECTIVE BOSON-FERMION MODEL

It is now straightforward to obtain the effective Hamil-
tonian on the cluster lattice to first order in t� taking the
unique ground-state of the undoped system as the vacuum
state �see the Appendix for the derivation�:

Hef f = E0 + �
j

�− �pnbj − 
�2nbj + nf j��

− �
	ij


�
�,���

�ij,����ai,�,�
† aj,�,�� + H . c . �

+ �
	ij
,���

��g����ijbi
†�ai,↑,�aj,↓,�� − �↑ ↔ ↓�� + H . c . �


+ U��
i

�nfi + nbi��nfi + nbi − 1� , �3�

where ai,�,�
† creates a one-hole fermion on the ith cluster with

spin polarization � and �for the checkerboard case� flavor
index �, and bi

† creates a hole-pair boson on the ith cluster;
nbj =bj

†bj and nf j =��,�aj,�,�
† aj,�,� are, respectively, the boson

and fermion densities on cluster j. The coupling constants, �,
g �both proportional to t��, and our old friend �p, represent
the effective hopping of one-hole fermions, the fermion-
boson Andreev coupling, and the energy difference between
one boson and two fermions, respectively. 	ij
 represents a
pair of nearest-neighbor clusters, and �ijis a geometric factor
discussed below. The effective Hamiltonian operates in a
constrained Hilbert space where nbj +nf j =0 or 1, but, equiva-
lently, it can operate in an unconstrained Hilbert space with
the constraint imposed dynamically by taking the limit U�

→�. The chemical potential is, of course, an implicit func-
tion of the doping concentration x of the original model,
obtained by inverting the relation �i�nfi+2nbi�=Mx, where
M denotes the number of lattice sites in the original Hubbard
model.

This effective Hamiltonian is not only built on a highly
reduced Hilbert space, but also has common structure for
both models of our current study. It has a fermion band �or
multibands with index ��, a boson band �with infinite bare
effective mass�, and the interaction between them which con-
verts a pair of fermions to a boson and vice versa. The ef-
fective theory is analogous in form to the so-called “boson-
fermion” model which has been studied by several people.12

However, because in the present case this model is derived as
the low-energy effective field theory from the inhomoge-
neous Hubbard model, we are led to study it in particular
limits �especially x�1� that were not the focus of previous
studies.

For the dimerized model, the dimers explicitly break the
C4 symmetry of the underlying lattice, and hence Hef f only
has C2 symmetry. Explicit evaluation of the first-order per-
turbation theory leads to the expressions �p=−2t�1+tan ��,
g= �cos �+sin ��t�, and for nearest-neighbor dimers in the

FIG. 4. Schematic finite temperature phase diagram of the
checkerboard Hubbard model. The figure is not drawn to scale and
the U axis has been offset from zero. As in Fig. 3�a�, there are two
superconducting phases, a nodeless and a nodal d-SC, and there is a
Fermi liquid phase. For T�T��O�t��0 �top dashed curve� addi-
tional excitations �beyond those in the effective theory� become
significant. The lower dashed curve, Tp, marks the crossover at
which pair-formation onsets. The solid curve indicates the super-
conducting Tc.
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same column of dimers, �ij = �1−sin 2��t� /2 and �ij =1,
while for dimers in neighboring columns, �ij = �1
−sin 2��t� /4 and �ij =1/2 where tan 2�=−4t /U.

The checkerboard model preserves the C4 symmetry of
the underlying lattice. The eigenvalue problem on the iso-
lated square is more complex, so the expressions for the
effective couplings are somewhat complicated. Some details
are shown in the Appendix . To give representative values,
we give expressions for U in the neighborhood of U=Uc
where �ij,���= i����� with �= ��0+�1�U−Uc�+ ¯ �t� for all
pairs of nearest neighbors ��0=0.2217, �1=−0.0081�, and
g���=g�1−��,��� where g= ��0+�1�U−Uc�+ ¯ �t� and �0

=0.3123, �1=−0.0111, and, as a consequence of the d-wave
symmetry of the pair creation operator �ij =1�−1� for neigh-
boring squares along the x axis �y axis�. �Here ���� is the
Levi-Civita tensor.�

III. T=0 PHASE DIAGRAMS OF THE DIMERIZED AND
THE CHECKERBOARD HUBBARD MODELS

Let us now consider the phase diagram of Hef f. As men-
tioned above, for small x, the density of excitations is small,
so that two particle collisions are rare �order x2� and multi-
particle processes even rarer. Thus, when ��p � � t�, the
phases are pretty obvious:

�1� For �p�0, the bosons appear only as virtual states,
leading to a weak induced attraction between fermions of
order Vind�g2 / ��p�. However, because of the hard-core re-
pulsion between fermions, the net interaction is repulsive,
and hence there is a Fermi liquid phase. �There could be
some form of Kohn-Luttinger instability13 at exponentially
low temperature, but we will not worry about this.� For the
dimerized model, the Fermi surface is a small ellipse closed
about k= �� /2a ,� /a� where a is the lattice constant of the
original square lattice �FL in Fig. 2�a��. In the checkerboard
model with Uc�U�UT, there are two small Fermi surface
circles �due to the flavor degeneracy�; one is closed about
k= �� /2a ,� /2a� and the other about 0 �FL in Fig. 3�a��. For
U�UT, the system forms a Fermi liquid of spin 3/2 fermi-
ons �FL� in Fig. 3�a��. There is a �presumably first-order�
transition between these two sorts of Fermi liquid which oc-
curs at U=UT+O�t��.

�2� For �p�0, it is the charge Q=1 quasiparticles that are
virtual excitations. Integrating them out generates an effec-
tive nearest-neighbor hopping matrix �b

ef f �g2 /�p, and a
nearest-neighbor boson-boson repulsion of the same order.16

Thus, in this limit, the system has a singlet superconducting
groundstate. In the dimerized model there is no other sym-
metry classification of the superconducting state possible �it
is an admixture of d- and s-wave states�, but for the check-
erboard model, the superconducting state inherits the d-wave
symmetry of the constituent bosons. This d-wave symmetry
could be observed in any of the phase-sensitive measure-
ments that have been discussed in the context of the cuprates
themselves. However, it is important to realize that, for both
the dimerized and checkerboard models, there are no gapless
spin 1/2 excitations, and hence no nodal quasiparticles. In
the language of BCS theory, one can think of the d-wave
state in the checkerboard lattice as being in a strong-coupling

limit in which the chemical potential has passed below the
band bottom.

There are several features of the thermal evolution of the
system in this limit that warrant mention. The first is that,
since it is a system of preformed bosons, Tc is determined by
the zero-temperature superfluid density, Tc��b

ef fx
��t��2�p

−1x. Of course, since the model is two-dimensional,
this also means that there should be a vortex gas regime
above Tc with a Kosterlitz-Thouless transition to a phase
with quasi-long-range superconducting order. In addition,
there can be two other pseudo-gap scales apparent up to tem-
peratures which are parametrically larger than Tc: First, Tp
��p / �ln�2x�� is the characteristic temperature at which pairs
thermally dissociate. Above this, there is a temperature T�

�O�t�0�, at which excitations beyond those in the effective
model become significant. Our finite temperature results dis-
cussed above are summarized in a schematic diagram, Fig. 4.

�3� The only part of the phase diagram that is at all subtle
is where �p� t�, where both bosonic and fermionic excita-
tions participate in the low-energy physics. However, this is
also in some ways the most interesting regime. In the first
place, approaching this regime from �p�0, we see that the
superconducting Tc�1/�p reaches its maximum in this re-
gime. Moreover, it is only in this regime that we can possibly
have a superconducting state with gapless nodal quasiparti-
cles.

The feature that makes this regime tractable is that the
transition from the Fermi liquid to the superconducting phase
is BCS-like. This is because, for small x, it is only the pair-
wise interactions between quasiparticles that are relevant.
The effective interaction is the sum of the induced attraction,
Vind, and the hard-core repulsion between quasiparticles,
which, treated in the T-matrix approximation, gives rise to an
effective repulsion V0� t�. Where the sum VT of these two
terms switches from being a net repulsive to a net attractive
interaction, it passes through a transition point at which VT
=0. Even though the Fermi energy is only of order t�, arbi-
trarily near the transition point, �VT � �EF, justifying the use
of BCS mean-field theory. For Hef f on the dimerized lattice,
since the superconducting state has a substantial s-wave
component, we generally expect the superconducting state
near the critical value of �p to be nodeless, and thus adia-
batically connected to the superconducting phase at large �p.
However, for the checkerboard lattice, the d-wave symmetry

FIG. 5. �Color online� The effective parameters, � / t�, g / t�, and
�p / t as a function of U / t.
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and the fact that the Fermi surface encloses the origin of the
BZ imply that the initial superconducting state must have
gapless nodal quasiparticles. A second �Lifshitz� transition,
in which the nodal points collide and annihilate, must occur
at a larger value of �p, as discussed in Ref. 14.

To obtain the explicit phase diagram for Hef f presented in
Figs. 2 and 3, we have made use of a mean-field approxima-
tion which, none-the-less, reproduces all the qualitative fea-
tures required by the above qualitative analysis. Specifically,
we perform a standard mean-field decomposition of Hef f and
solve self-consistently for the anomalous expectation values
	bj

†
 and 	aj,↑
† ai,↓

† 
. To avoid repetition, we would like to refer
the readers to Refs. 12 and 15. In this analysis, the hard-core
constraint for the bosons is treated exactly, but the onsite
repulsion involving the fermions is treated as an effective
repulsion, V0� t�; predictably, the results do not depend sub-
stantially on V0.

On the dimer lattice, the phase diagram of Hef f as a func-
tion of �p /� and g /�, shown in Fig. 2�b�, exhibits a Fermi
liquid and a nodeless s+d superconducting phase. If we con-
sider only the allowable region of parameters that can be
derived from the dimerized Hubbard model, these always lie
within the Fermi liquid phase as indicated by the dotted
curve in Fig. 2�b�. The arrow on the curve represents the
direction of change as U increases from 0 to a large value. If
we had instead considered the dimerized t-J model, then for
J / t�2−22.9�t� / t� the system is superconducting.

The phase diagram of Hef f on the checkerboard lattice is
shown in Fig. 3�b�. The dotted curve in Fig. 3�b� is the tra-
jectory through the phase diagram derived from the checker-
board Hubbard model with fixed t�=0.005, where the arrow
indicates the direction of change as U increases from 0 to a
large value not too close to UT. It is worth emphasizing that,
in this case, superconductivity with d-wave symmetry is ob-
tained from purely repulsive interaction and, in a narrow
strip, it has the requisite nodal quasiparticles, as well.

PERSPECTIVE

In the present study, the translational symmetry of the
lattice is explicitly broken and the inhomogeneity is taken to
be large, t�� t. While various sorts of inhomogeneities have
been found to be widespread in the cuprates, it is currently
unclear if they are relevant for the mechanism of the high-
temperature superconductivity. In part, this is a theoretical
issue that hinges on the still unsettled issue of what is the
superconducting Tc �if any� of the uniform Hubbard model.
Clearly, when there is a superconducting groundstate in the
highly inhomogeneous limit �t� / t�1�, Tc is generally an in-
creasing function of t�. If Tc is small or 0 in the homoge-
neous Hubbard model, there must be an intermediate value
of t� �“optimal inhomogeneity”� at which Tc is maximized,
as suggested in Refs. 4–6. If this is the case, it is suggestive
that the self-organized inhomogeneities found in the cuprates
may be important for the mechanism of superconductivity.
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APPENDIX: A DERIVATION OF THE EFFECTIVE
THEORY FOR THE CHECKERBOARD HUBBARD MODEL

Taking the checkerboard Hubbard model as an example,
here we would like to show how the effective Hamiltonian
can be derived by using �degenerate� perturbation theory. To
begin with, it is necessary to determine the low-energy, re-
duced Hilbert space. All eigenstates of a four-site Hubbard
model can be calculated analytically by taking advantage of
the symmetries of the model. Although conceptually simple,
there are totally 256 eigenstates, making the actual calcula-
tions involved. Fortunately, the results have been published
by R. Schumann17 and explicit eigenstates can be found on
his website. For U�Uc, the chosen lowest energy states in
each charge Q sector are summarized �using Schumann’s
notation� in Table I.

For t�=0 and 1�x�0, the groundstate of the model is
highly degenerate since the doped holes can be distributed
among the decoupled squares in many ways. To an effective
model in powers of t�, we employ standard degenerate per-
turbation theory. Write Eq. �1� as H=H0+H� �H� represents
the t� term� and let P be the projection operator onto the
subspace spanned by the direct product of the states shown
in Table I. Then

Hef f = PHP + PH��1 − P�
1

E0 − H0
�1 − P�H�P + ¯ .

�A1�

For our present study, we keep only terms to first order in
t�. Specifically, labelling the states in accord with the nota-
tion of Ref. 17, the various matrix elements of H� between
the unperturbed groundstates can be expressed as follows:
the only nonvanishing matrix elements are �1� elements re-
lated to the effective hopping amplitude �,

i� = 	�111�j���	�46�j��H���111�j�
��50�j��


= − 	�111�j���	�50�j��H���111�j�
��46�j��


= 	�111�j���	�70�j��H���111�j�
��74�j��


TABLE I. The eigenstates and eigenvalues of a four-site Hub-
bard model in the low-energy Hilbert space. The corresponding
charge sector �Q�, total spin �S�, spin z component �Sz�, symmetry
under � /2 rotation, and eigenstate number used in Schumann’s pa-
per are also given �cos �= ��36t2U−U3� /27� / ��48t2+U2� /9�3/2,
cos �=4t2U / ��16t2+U2� /3�3/2�.

Q E�Q� S Sz symmetry eigenstate

0 �3U−2�16t2+U2cos��/3�
�3

0 0 d wave �111

�46,�70

1 U−�32t2+U2+4�64t4+3t2U2

2

1
2 ± 1

2 px± ipy

�50,�74

2 U−2�48t2+U2cos��/3�
3

0 0 s wave �22
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= − 	�111�j���	�74�j��H���111�j�
��70�j��
 , �A2�

with j , j� representing nearest-neighbor unit cells, and �2�
elements related to the boson-fermion coupling g,

g = 	�111�j���	�22�j��H���46�j�
��74�j��


= 	�22�j���	�111�j��H���46�j�
��74�j��


= 	�111�j���	�22�j��H���50�j�
��70�j��


= 	�22�j���	�111�j��H���50�j�
��70�j��


= − 	�111�j���	�22�j��H���74�j�
��46�j��


= − 	�22�j���	�111�j��H���74�j�
��46�j��


= − 	�111�j���	�22�j��H���70�j�
��50�j��


= − 	�22�j���	�111�j��H���70�j�
��50�j��
 . �A3�

Explicit expressions for these matrix elements as a function
of U can be obtained using the explicit wave functions given
in Ref. 17 �See Fig. 5�. When expressed in second quantized
form, the resulting effective Hamiltonian is given in Eq. �3�,
above.
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