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We investigated decoherence of a Josephson vortex quantum bit �qubit� in dissipative and noisy environ-
ment. As the Josephson vortex qubit �JVQ� is fabricated by using a long Josephson junction �LJJ�, we use the
perturbed sine-Gordon equation to describe the phase dynamics representing a two-state system and estimate
the effects of quasiparticle dissipation and weakly fluctuating critical and bias currents on the relaxation time
T1 and on the dephasing time T�. We show that the critical current fluctuation does not contribute to dephasing
of the qubit in the lowest order approximation. Modeling the weak current variation from magnetic field
fluctuations in the LJJ by using the Gaussian colored noise with long correlation time, we show that the
coherence time T2 is limited by the low frequency current noise at very low temperatures. Also, we show that
a ultra-long coherence time may be obtained from the JVQ by using experimentally accessible value of
physical parameters.
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I. INTRODUCTION

Superconducting quantum bits �qubits�, such as charge
�i.e., Cooper-pair box�,1 flux,2 and phase qubits,3 are good
candidates for quantum information processing because
these can be manufactured, controlled, and scaled more eas-
ily. Tens of quantum oscillations had been observed in these
qubits, but a low level of decay which yields thousands of
coherence oscillations is essential for realization of quantum
computation. The longest coherence time of 0.5 �s has been
reported for the quantronium4 �i.e., hybrid charge-flux qubit�,
but longer time may still be necessary. As many decoherence
sources reduce the quantum oscillations, the measured value
of the coherence time for the superconducting qubits is sub-
stantially shorter5 than that predicted by the simplest models
of decoherence and that needed for the operation of a quan-
tum computer. This requirement of obtaining ultra-long co-
herence time in the presence of the interaction between the
qubit system and noisy environment is one of major chal-
lenges.

Understanding the mechanisms of decoherence became a
focus of much attention recently, and it remains an important
challenge for the superconducting qubits. An ideal solution is
to isolate the qubit system from uncontrolled degree of free-
dom in its environment and in the device itself. However, it
is difficult to isolate the qubit system completely from the
decoherence sources. These sources include, but may not be
limited to, background charge fluctuations in the substrate,6

fluctuations in the tunnel barrier which produce microscopic
tunneling resonance,7 and fluctuating electromagnetic back-
ground. Also, low frequency variation in the critical current5

is present in all superconducting qubits. One way to obtain
the ultra-long coherence time is to use the Josephson vortex
qubit �JVQ� since it may be immune to these sources.

Recently, JVQ has been proposed as a new superconduct-
ing qubit.8 This qubit has two important advantages over
other superconducting qubits. First, coupling between the qu-
bit system and the decoherence sources is weak at very low
temperatures. For example, a Josephson vortex �i.e., fluxon�
in a uniform long Josephson junction �LJJ� does not generate
any radiation during its motion and is almost decoupled from
other electromagnetic excitations in the junction. Also the
qubit is immune to fluctuations in the critical current. Con-
sequently, quantum coherence can be maintained much
longer than other qubits which are susceptible to these deco-
herence sources. Second, as the fluxon dynamics in LJJ is
described by using the perturbed sine-Gordon equation,9 the
decoherence sources for the qubit may be easily identified.
For example, two important sources are the quasiparticle dis-
sipation and weak current noise. Hence, the coherence time
may be estimated more easily, but the effect of these sources
has not yet been estimated for the JVQ.

The JVQ exploits the property of fluxon,10,11 which be-
haves as a quantum particle at ultra-low temperatures. The
fluxon trapped in a controllable potential well in a single
annular LJJ shows �i� energy quantization in the potential
well and �ii� macroscopic quantum tunneling �MQT� from a
metastable state.12 Also, it was shown that the two quantum
states for the qubit can be created by using a heart-shaped12

annular LJJ and by trapping a fluxon in a magnetic field-
controlled double-well potential. These quantum states may
also be created using a linear LJJ with two closely implanted
defect sites in the insulator layer.10 A Nb-AlOx-Nb junction
may be used to fabricate the JVQ, as shown schematically in
Fig. 1. The dimensions of the junction, compared to the Jo-
sephson length �J, are Lx��J and Ly ��J. The separation
distance � between the defect sites must be larger than the
critical distance �o, as discussed below. Also, the preparation
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of initial state and the read-out of the final qubit state may be
performed by using classical circuits.13

As the effect of the decoherence sources in the LJJ is
described by using the perturbed sine-Gordon equation, the
coherence time T2,

1

T2
=

1

2T1
+

1

T�

, �1�

for the JVQ may be estimated without making further as-
sumptions about the nature of the qubit-environment interac-
tion. Here T1 is the relaxation time, and T� is the dephasing
time. Since T� is most sensitive to the decoherence sources,
extending T� for the superconducting qubits is important for
quantum computing applications. We compute T2 by ac-
counting for the two sources: �i� Quasiparticle dissipation
and �ii� weak current noise. It is noted that the JVQ may also
couple to other sources, such as microwave and phonon ra-
diation, but the effect of these sources is expected to be small
as they lead to higher order14 contribution in the perturbation
expansion than that considered in the present paper. In the
JVQ, the weak current noise represents the low frequency
magnetic field and current fluctuations in the junction. We
focus on slow fluctuations since the qubits suffer from the
presence of strong low frequency noise sources. The effects
of these two decoherence sources have been investigated also
for other superconducting qubits15 and were found to be im-
portant.

In this paper, we show that the JVQ can yield ultra-long
coherence time because it couples very weakly to noisy en-
vironment at low temperatures. Before proceeding further,
we outline the main result. �i� Starting from the perturbed
sine-Gordon equation, we show that the critical current fluc-
tuation does not couple to the JVQ within the lowest order
approximation. Consequently, this fluctuation effect does not
lead to decoherence of the qubit; �ii� we show that T2 at
ultra-low temperatures is determined by the low frequency
current noise since the dissipation effect due to qubit-
environment coupling is exponentially small; �iii� using ex-
perimentally obtained physical parameters, we show that the
effect of this current noise on decoherence is weak in the
JVQ. This weak coupling between the JVQ and current noise
leads to the coherence time of several tens of microseconds
for the JVQ.

We outline the remainder of the paper. In Sec. II, we
express the phase dynamics of LJJ in the collective coordi-

nate representation and transform the perturbed sine-Gordon
equation onto the double-well potential problem. In Sec. III,
we obtain the two-state system, described by the spin-boson
model with low frequency current noise. Here, the quasipar-
ticle dissipation is described by using Ohmic environment,
and the effects of low frequency noise in LJJ is described by
using the fluctuating weak bias current. In Sec. IV, we derive
the relaxation time �T1� and the dephasing time �T�� due to
these two decoherence sources. In Sec. V, we estimate nu-
merically the coherence time �T2� by using the experimen-
tally accessible parameters for LJJ and compare it to that
obtained for other superconducting qubits. Finally, in Sec.
VI, we summarize the result and conclude.

II. LONG JOSEPHSON JUNCTION QUBIT

In this section, we discuss how the LJJ may be used to
obtain a JVQ by starting from the perturbed sine-Gordon
equation. First, a double-well potential for the fluxon needs
to be created in the LJJ to obtain the two quantum states of
the JVQ. Several approaches are used to accomplish this.
Each of these approaches yields a slightly different form of
the potential function. In this paper, we consider the ap-
proach of implanting two closely spaced microresistors in
the insulator �I� layer. When the fluxon does not have enough
kinetic energy, the microresistor attracts the fluxon and traps
it at the defect site. The effects of quasiparticle dissipation
and low frequency weak current noise may be examined by
starting with

�2�

�x2 −
�2�

�t2 − sin � = F , �2�

where x and t are the dimensionless coordinates in units of �J
and �p

−1, respectively. Here �p denotes the plasma frequency.
The dynamic variable � represents the difference between
the phase of order parameter for the superconductor �S� lay-
ers. The perturbation term F=	��� /�t�−	s��3� /�t�2x�
+ f�t�+
J̄c�t�sin �−�i�i
�x−xi

o�sin � includes the effects due
to quasiparticle dissipation �	 and 	s�, bias current �f

=JB /Jc�, critical current fluctuation �
J̄c�t�=
Jc�t� /Jc�, and
microresistors ��i= �Jc−Jc��lb /Jc�J�. We note that the critical
current Jc�t� may be expressed as the sum of uniform �Jc�
and weak fluctuation parts �
Jc�t��: Jc�t�=Jc+
Jc�t�. Here xi

o,
JB, Jc�, and lb ���J� denote, respectively, the position of in-
homogeneity in the I layer, the bias current density, the
modified critical current density at the defect site, and the
length of the LJJ in which Jc is modified. In the discussion
below, we neglect the term 	s��3� /�t�2x� due to the quasi-
particle �surface� current along the junction layer, for sim-
plicity, since both 	��� /�t� and 	s��3� /�t�2x� terms yield
similar dissipation effects.

The perturbation term F in Eq. �2� is small, and conse-
quently, it does not change the form of the kink within the
framework of the lowest approximation.9 We describe the
motion of the fluxon in terms of the center coordinates q�t�,
which are obtained by neglecting F. In the absence of the
perturbation terms �F=0�, the fluxon solution to Eq. �2� in

FIG. 1. A LJJ stack is shown schematically as alternating layers
of superconductors �S� and insulator �I�. Lx and Ly denote the di-
mensions in x- and y- direction, respectively. JB�t� denotes the time
dependent bias current density. The filled dashed circles represent
the microresistors which behave as pinning centers for fluxon.
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the nonrelativistic limit �i.e., v�1� is given by

��x,t� � 4 tan−1�e��v��x−q�t��� , �3�

where �−1�v�=�1−v2, q�t�=vt denotes the center coordinate
of the fluxon, and v is the fluxon speed in units of Swihart
velocity c. q�t� is also known as collective coordinate and
represents a dynamical variable. We note that this solution
represents propagation of nonlinear wave as a ballistic par-
ticle and that the perturbation terms in F only affect dynam-
ics of the center coordinates.

Applying the kink solution of Eq. �3� to Eq. �2� for car-
rying out the classical perturbation theory within the frame-
work of lowest order approximation,9 we obtain the equation
of motion for the center coordinate q�t� in the nonrelativistic
limit as

M
d2q�t�

dt2 + 	M
dq�t�

dt
+

�V�q�
�q

= 0. �4�

Here M =8 denotes the rest mass of the fluxon which is ob-
tained by inserting the waveform of Eq. �3� into the Hamil-
tonian corresponding to the unperturbed sine-Gordon equa-
tion �i.e., Eq. �2� with F=0�.9 V�q� is the effective potential
for the fluxon due to the nondissipative perturbation terms in
F.

The phase dynamics in the center coordinate may be seen
easily from the Euclidean Lagrangian, L=Lo+LP, where Lo
and LP describes the unperturbed phase dynamic of LJJ and
the perturbation contribution, respectively. The unperturbed
part of the Lagrangian Lo is given by Lo=��dx /2�

���� /���2+ ��� /�x�2+2�1−cos ���. The perturbation part
of the Lagrangian LP=Lnd+Ld can be expressed as the sum
of the nondissipative part �Lnd� due to the bias current, criti-
cal current fluctuation and inhomogeneities, and the quasi-
particle dissipation part �Ld�. The nondissipative contribu-
tion may be expressed as Lnd=Lbias+L
Jc

+Lpin. Here Lbias

=�dxf�, L
Jc
=
J̄c����dx�1−cos ��, and

Lpin = �
i=1

2 	 dx�i
�x − xi
o��1 − cos �� �5�

are the Lagrangian for the bias current, critical current fluc-
tuation, and two defect sites, respectively. Following Cal-
deira and Leggett,16 we account for the quasiparticle dissipa-
tion �i.e., 	� by representing the environment as a heat bath.
The heat bath may be described as a reservoir of harmonic
oscillators with generalized momenta Pi and coordinates Qi.
The dissipation effect due to coupling between the phase
variables � and the heat bath is described as

Ld =	 dx�
i

 Pi

2

2mi
+

mi�i
2

2
�Qi −

ci�

mi�i
2�2
 . �6�

Here, the heat bath parameters mi, �i, and ci characterize the
reservoir’s spectral function J	���, which is written as

J	��� =
�

2 �
i

ci
2

mi�i

�� − �i� = 	� . �7�

This spectral function reproduces the dissipation term in Eq.
�4� when the heat bath degrees of freedom are integrated out.

We describe the fluxon dynamics by using semiclassical
theory as usually done17 and by reexpressing the partition
function, Z=�D���exp�−S����, with S���=�d�L, in terms
of the collective coordinates q�t� as Z=�D�q�exp�−S�q��.
We take the perturbation expansion in terms of 	, f , 
J̄c, and
�i, assuming that all of these parameters are small. The low-
est order contribution from this expansion is obtained by
substituting the soliton solution of Eq. �3� to the action S���
since the perturbation term F does not modify the soliton
waveform in the lowest order.9,17 In this center coordinate
representation, the bias current contribution to the action
�i.e., Sbias���=�d�Lbias� yields10

Sbias�q� = Sbias���x − q�� − Sbias���x�� = −	 d��2�fq� .

�8�

Here the constant Sbias���x�� is subtracted since we have cho-
sen the origin of potential energy for the center coordinate at
q=0. On the other hand, the critical current fluctuation con-
tribution �i.e., S
Jc

=�d�L
Jc
� becomes

S
Jc
�q� = S
Jc

���x − q�� = S
Jc
���x�� , �9�

indicating that S
Jc
�q� is independent of q. This suggests

that the critical current fluctuations do not modify the
fluxon potential. Within the lowest order approximation, the
low frequency noise corresponding to the critical current
fluctuation does not couple to the JVQ, and it does not con-
tribute to decoherence. Also, other perturbation contributions
Spin=�d�Lpin and Sd=�d�Ld can be expressed in the q
representation. Combining these perturbation contributions,
we may express the partition function as Z=�D�q����

exp �−Sef f�q�����, where the effective action Sef f�q� is
given by

Sef f�q� =	 d�
1

2
Mq̇2 + V�q�
 +

M

2
	 d�	 d��K�� − ���


�q��� − q�����2. �10�

The quasiparticle dissipation effect �i.e., 	� at the finite tem-
perature T is described by the kernel K���

K��� =
1

�
	

0

�

d�J	���
cosh��/2T − �����

sinh��/2T�
. �11�

Here we set �=kB=c=1 for convenience. The potential func-
tion V�q� for the fluxon in the collective coordinates is given
by
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V�q� = − 2�f�t�q −
2�1

cosh2�q −
�

2
� −

2�2

cosh2�q +
�

2
� ,

�12�

where � is the separation distance between two defect sites,
as shown in Fig. 1. The fluxon potential V�q� includes the
potential tilting effect of the bias current �f� and the pinning
effect ��i� of the two defect sites.

The potential function V�q� of Eq. �12� for f�t�=0 has two
noteworthy features: �i� Finite number of bound states, and
�ii� double-well structure. For physical values of �i, at most,
several states may be trapped by the fluxon potential. This
can be seen easily from the energy eigenstate of the trapped
fluxon via a single microresistor,18 which is given by

En = −
1

64
�− �1 + 2n� + �1 + 128��2 �13�

where n=0,1 ,2 , . . . . For �=0.27, only n=0, 1, and 2 states,
corresponding to the eigenstate energy E0=−0.383, E1
=−0.136, and E2=−0.0142, respectively, are bounded by the
potential. Also, the double-well structure can be seen easily
by setting �1=�2=� �i.e., symmetric double-well� �see Fig.
2�a�� and by expanding the function V�q� about the critical
separation distance �o. We note that a small asymmetry �or
bias� of �̄�8qo
� may be easily introduced, as shown in Fig.
2�b�, since the critical current Jc� at each microresistor is
slightly different. This yields a small variation in �i between
the two defect sites �i.e., ��1−�2�=
� and 
��1�. The sym-
metric potential V�q� shown in Fig. 2�a� has the single-well
structure for ���o=ln���3+1� / ��3−1���1.317, but it has
the double-well structure for ���o. For �=�o+a, with a
�1, the fluxon potential V�q� may be expanded around q
=0 to obtain

V�q� − V�0� � −
16�

3�3
aq2 +

32�

27
q4. �14�

The potential function of Eq. �14� has the stable states at q
= ±qo /2 with qo=3�a /�3�1/2. The barrier height Vo between
two stable states is Vo=2�a2 and the frequency �o of small
oscillation around the stable minimum is �o

=��d2V�q� /dq2� /M = �8�a /3�3�1/2, indicating that �o�Vo.
This suggests that the JVQ cannot be obtained by placing
two microresistors too closely �i.e., ���o� since the poten-
tial barrier Vo may not be strong enough to localize the
fluxon to either well. Hence a larger separation distance � is
needed to localize the bound states in either potential well.

The barrier potential Vo must be larger than �o in order to
obtain a localized ground state in either well without mixing
it with the excited state of the system. As � increases from
�o, the value of both Vo and �o increases, but this increase
depends on �. As �→�, Vo approaches 2� while �o ap-
proaches �� /2. This indicates that, when � is less than the
critical value �c �i.e., ���c�, Vo remains smaller than �o for
all �. However, when ���c, Vo becomes larger than �o as �
is increased, as shown schematically in Fig. 3. We estimate
�c=0.125, assuming that �o��c�=Vo��c� at �=�. We will
consider ���c in the discussion below, so that Vo��o.

For the fluxon localized at either the left or right side of
the symmetric double-well shown in Fig. 2�a�, the energy of
the ground state is degenerate. We use eigenstates �R� and �L�
of the operator �̂z with eigenvalues +1 and −1 to represent
the right-localized and left-localized state, respectively.
These two states are exploited in the JVQ. To do this, we
need to ensure that the tunneling rate between the two wells
does not mix the ground state with the excited states.

The fluxon in the ground state of the symmetric double-
well potential can tunnel from the left side to the right side
�and vice versa�. This MQT yields splitting of two degener-
ate fluxon ground states. Within the semiclassical Wentzel–
Kramers–Brillouin �WKB� approximation,19 the tunneling
rate � is given by

FIG. 2. A double-well potential due to two microresistors is
schematically shown for �a� �1=�2=� �symmetric� and �b� �1��2

�asymmetric�. The potential barrier and the oscillation frequency at
the stable minimum are denoted by Vo and �o, respectively. Here
f�t� is set to zero.

FIG. 3. Dependence of the barrier potential Vo �dashed line� and
the frequency of small oscillations �o �solid line� for the symmetric
double-well potential on the separation distance � between the two
defect sites is schematically illustrated for �a� ���c and �b� ���c.
The critical pinning strength �c is 0.125.
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� = A�0�e−B�0�, �15�

where

A�0� = �8�o
3qo

2

�
�1/2

e2�0
qo/2dq��o/�V̄�q�−1/�qo−2q��, �16�

B�0� = 4	
−qo/2

qo/2

dq�V̄�q� , �17�

and V̄�q�=V�q�−V�±qo /2� denotes the potential energy mea-
sured from the bottom of the well. The MQT in the real
space represents particle-like collective excitation, reflecting
the behavior of the fluxon as a quantum particle. The com-
puted tunneling rate, using the WKB approximation, yields
good agreement with the quantum result when many states
are bounded by the double-well potential, but this agreement
is poor when only the ground state is bounded. In Fig. 4, we
compare the result of the semiclassical WKB calculation us-
ing Eqs. �15�–�17� and the quantum mechanical calculation
to illustrate this difference. The difference between these two
results is noteworthy: The WKB calculation overestimates �.
This difference is large when � is small �i.e., small Vo� but
decreases with increasing � �i.e., increasing Vo�. We will use
the quantum result for � in the discussion below since the
coherence time depends on �.

Numerical solution of the bound state energy for the po-
tential of Eq. �12� �with f�t�=0� indicates that the ground
state is localized at the either side of the double-well for only
a limited value of �, as shown in Fig. 5. The lower and upper
shaded areas in Fig. 5 represent the regions in the ��, ��
parameter space where the tunneling rate between the two
degenerate ground states and the excited states, respectively,
are large so that these states cannot be localized in either
well. For a fixed �, the number of localized states in either
well increases with �. This indicates that the separation dis-
tance � and the pinning strength � may be chosen so that
only the ground state is localized in either well. The param-
eters which yield localization of only the ground state (i.e.,
between two shaded regions) may be ideal for obtaining the
JVQ.

III. SPIN-BOSON MODEL

In this section, we describe the interaction between the
JVQ and noisy environment. We proceed by describing the
fluxon dynamics of Eq. �10� in terms of the well-known spin-
boson model. This may be carried out by using the two-
dimensional Hilbert space spanned by the two degenerate
ground states: The fluxon localized at the left well �i.e., �L��
and at the right well �i.e., �R��. Following earlier studies, we
consider the parameter regime of Vo��o�� , �̄ ,T and in-
clude the effects of quasiparticle dissipation and fluctuating
weak bias current in the spin-boson model.20,21 The Hamil-
tonian for this model is written as

H = HS + HSB + HB. �18�

The spin �S� Hamiltonian HS,

HS = −
1

2
��̂x −

1

2
��̄ + f̄�t���̂z, �19�

describes the two-state qubit system, which is obtained from
the double-well potential of Eq. �12�. Here � is the tunneling
rate between the two wells. The Pauli operators, �̂z and �̂x, in
Eq. �19� represent

�̂z = �R��R� − �L��L� �20�

and

�̂x = �R��L� + �L��R� , �21�

respectively. The Hamiltonian HS also accounts for a modi-
fication of the simple two-state system by a small asymmetry
in the potential due to slight variation in the pinning strength
of the microresistors �i.e., �1��2� and by fluctuating bias

current �i.e., f�t��. The bias current density f̄�t�=qof�t�, rep-
resenting the driving force for the fluxon, consists of two
parts

f�t� = fo + 
f�t� , �22�

where fo and 
f�t� denote the homogeneous and randomly
fluctuating weak bias current components, respectively. Here

f�t� accounts for the current noise in the JVQ. The Ohmic
environment,16 which accounts for the quasiparticle dissipa-
tion, is described by the bath �B� Hamiltonian HB,

FIG. 4. The splitting � of the ground state for �=0.27 is plotted
to compare the results obtained from the WKB approximation and
that obtained from the quantum mechanical calculation.

FIG. 5. The diagram in the �� ,�� parameter space illustrating
that bound fluxon states localized in either side of the double-well
potential. The shaded areas represent the region with large tunneling
rate.
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HB =
1

2�
i=1

N �Pi
2

mi
+ mi�i

2Qi
2� . �23�

The interaction between the qubit system and the dissipative
environment is described by the spin-bath �SB� Hamiltonian
HSB,

HSB = − �̂z
qo

2 �
i=1

N

ciQi. �24�

It is noted that the spin-boson model of Eqs. �18�, �19�, �23�,
and �24� neglects the contributions from the excited states
that are bounded by the potential well. Hence, thermally ac-
tivated leakage,22 which may also contribute to decoherence
at finite T, is not accounted for in this work. However, we
may safely assume that this contribution is negligible at
ultra-low temperatures. Consequently, the weakly fluctuating
bias current �i.e., current noise� at low frequency is the domi-
nant source for dephasing at these temperatures.

We now discuss the time dependent bias current f�t� of
Eq. �22�. We set the externally applied homogeneous com-
ponent of the bias current to zero �i.e., fo=0� since it yields
unwanted asymmetry in the double-well potential �see Fig.
2�b�� for the fluxon. The weak bias current fluctuation
�
f�t��, representing random force in the LJJ due to nonequi-
librium states, yields small time-dependent asymmetry in the
double-well potential. This asymmetry may be made small
but cannot be turned off completely as it arises from the
noise-producing environment. This current noise leads the
basis states ��L� , �R�� to fluctuate weakly, as shown schemati-
cally in Fig. 6. However, this effect on the basis state in the
JVQ is expected to be smaller than that in other supercon-
ducting qubits since the bias current is not used to control the
qubit state. It is noted that the effect of noise in the bias
current for fo�0 has been investigated for the phase qubit23

and for the charge qubit.24 In these qubits, the bias current
�i.e., fo� is used to control the qubit. Noise in the bias current
�i.e., 
f� affects the coherence time of the qubit since it leads
to the fluctuation of the qubit state. The bias current noise
leads to phase noise for the phase qubit23 and radiation noise
for the charge quibit.24

To model the effect of this random force more realistically
in the JVQ, we describe the bias current fluctuation as
Gaussian colored noise with nonzero characteristic correla-
tion time �n. The current noise 
f�t� has two main effects on
the dynamics of qubit density matrix: �i� It leads to transition
between two energy eigenstates, and �ii� it suppresses coher-
ence between the eigenstates by contributing to pure dephas-

ing. The Gaussian colored noise can be used to account for
the noise spectrum with pronounced frequency dependence,
such as Lorentzian noise and low frequency asymmetrical
magnetic field fluctuations25 in the tunnel junction. The char-
acteristics of the bias current are described as

�
f�t�� = 0, �25�

and

�
f�t�
f�t��� = no
2e−�t−t��/�n. �26�

Here �¯� denotes average over different realizations of the
fluctuating current, and no is the typical noise amplitude. We
note that, as �n→0, the colored noise of Eq. �26� becomes
the white noise, which is characterized by the correlation
function �
f�t�
f�t���=no

2
�t− t��. The correlation function of
Eq. �26� indicates that the effects of the current noise for t
��n differ from those for t��n. For t��n, decay of coher-
ence arises from averaging over the distribution of current
noise since the fluctuations appear static. For t��n, on the
other hand, decay of coherence is expected to be exponential
since the fluctuating bias current behaves as white noise. The
crossover behavior occurs at t��n. The spectral density of
the bias current noise can be taken as

Snoise��� =
2no

2�n

1 + ���n�2 . �27�

The Lorentzian spectrum of Eq. �27�, characterizing tele-
graph �diachotomous� noise, was observed in intrinsic LJJ.26

We note that the noise spectrum in a small tunnel junction is
described by the Lorentzian function of Eq. �27�, but the
1/�-like noise spectrum in a larger junction may be obtained
as a result of several superimposed Lorentzian features.27 In
the discussion below, we make few assumptions about the
correlation function of Eq. �26�: The fluctuation is weak and
has small characteristic amplitude �i.e., no���, but it has a
long correlation time �i.e., �n�1/��. Also, we assume that
the temperature �T� of the bias current producing environ-
ment is larger than the cut-off frequency of 1/�n �i.e., T
�1/�n�.

IV. DECOHERENCE DUE TO FLUCTUATING WEAK
BIAS CURRENT IN OHMIC ENVIRONMENT

We now discuss the effect of dissipation and noisy envi-
ronment on the coherence time of the JVQ by using well-
established formalism. Here the coherence time represents
the time scale for decay of macroscopic quantum coherence
�MQC� between the ground states in the double-well poten-
tial. Here MQC is due to quantum tunneling of the fluxon
which leads to coherent oscillations. This MQC is sup-
pressed by the two decoherence sources since the interaction
between the qubit system and its environment can easily de-
stroy the phase coherence between two states. In estimating
T2, we follow the standard theoretical approach of using the
Bloch-Redfield theory and making lowest order Born ap-
proximation. The effects of these two sources may be char-
acterized as follows. The Ohmic environment yields the fi-
nite relaxation time �T1� and dephasing time �T�

B�. However,

FIG. 6. A schematic diagram illustrating the effect of colored
noise on the bounded ground state of Josephson vortex in the sym-
metric double-well potential.
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the fluctuating weak bias current modifies T�
B without signifi-

cantly changing T1. We estimate the effects of the bias cur-
rent noise, restricting our consideration to t��n since the
bias current fluctuation appears as 
-function correlated �i.e.,
white noise�, and the quantum coherence decays exponen-
tially. Hence T� may be expressed simply as

1

T�

=
1

T�
B +

1

T�
noise �28�

where T�
noise is the dephasing time due to weak bias current

noise. This indicates that the divergence in T�
B at ultra-low

temperature may be cut off by T�
noise. The contributions from

the higher-order Born correction and non-Markovian effect,
which are not included in the present work, are small but
yield power-law decay.28 These contributions may also cut
off the diverging T�

B due to significantly reduced interaction
between the qubit system and environment at ultra-low tem-
peratures.

The decay of coherent oscillations is estimated by consid-
ering the generalized master equation for the system’s den-
sity matrix �S�t�,

d�S�t�
dt

= − i�HS,�S�t�� − i	
0

t

dt��S�t − t���S�t�� , �29�

and by assuming that the time dependence of the decoher-
ence source is weak. Here �S�t�=TrB��t�, �=�S � �B, the ker-
nel �S�t� is the self-energy operator

�S�t� = − iTrBHSBe−QHtHSB�B. �30�

HSB is the Liouvillian superoperator defined by HSB �
= �HSB ,��, and Q=1−�B TrB is the projection superoperator.
Here �B is the bath density matrix. Since the studies29 indi-
cate that both Bloch-Redfield theory and path integral theory
yield equivalent results, we employ the former approach for
convenience.

The generalized master equation within the Born approxi-
mation is obtained by using the fact that the coupling be-
tween the qubit system and environment, as described by
J	��� /��	, is small at low temperatures. We follow the
Redfield theory30 and make a systematic perturbation expan-
sion of the kernel �S in powers of the system-bath coupling
�	�. We retain only the lowest order terms in this expansion.

Replacing e−iQHt→e−i�HS +HB�t
and keeping the expansion of

the kernel �S up to the second order in HSB, we obtain

�S
�2��t� = − iTrBHSBe−i�HS+HB�tHSB�B. �31�

Further simplification of Eq. �29� may be made by assuming
Markov system dynamics

�S�t − �o� � eiHS�o�S�t� , �32�

in which the temporal correlation time �o in the dissipative
environment is very short due to very short-lived system-
bath interactions, and the bath correlation function decays to
zero at a very short time. Derivation of the Bloch-Redfield
equation within this Born-Markov approximation is pre-
sented in the Appendix.

Ohmic environment: The Bloch-Redfield equation of Eq.

�A15� can be solved within the secular approximation to the
relaxation and dephasing time due to the Ohmic environ-
ment. The decay of the diagonal element of the qubit’s re-
duced density matrix is written as

�z
S�t� = �z

S�0�e−t/T1. �33�

This yields the relaxation time �T1� which is given22 by

1

T1
= R0000� + R1111� = 2 Re��0110

�+� + �1001
�+� � . �34�

Evaluating the tensors �0110
�+� and �1001

�+� by using Eq. �A13�,
we obtain the relaxation time T1 as

1

T1
=

4�2

�
qo

2	 coth
�

2T
. �35�

This is consistent with the result from the bounce solution.31

The decay of the off-diagonal element of the reduced density
matrix �either �01

S or �10
S � may be expressed as

�01
S �t� = �01

S �0�I�t�e−t/T2
B
e+i��+R0101� �t. �36�

This reduced density matrix includes the effects from both
the Ohmic environment �i.e., T2

B� and the fluctuating weak
bias current �i.e., I�t��. The coherence time T2

B due to Ohmic
environment is obtained as

1

T2
B = Re��

r

�0rr0
�+� + �

r

�1rr1
�−� − �1100

�+� − �1100
�−� � =

1

2T1
+

1

T�
B .

�37�

From Eq. �37�, it is straightforward to obtain the dephasing
time �T�

B� due to the Ohmic environment as

1

T�
B =

16�̄2

�2 qo
2	T . �38�

This indicates that T�
B diverges as either �̄ or 	 vanishes. We

note that �̄ is a temperature independent parameter, but 	
becomes exponentially small at ultra-low temperatures,
yielding strong divergence in T�

B.
Fluctuating weak bias current: The dephasing time T�

noise

due to the weak bias current noise may cut off the divergent
T�

B at ultra-low temperatures. We estimate T�
noise from I�t� of

Eq. �36�. The suppression factor I�t� in the off-diagonal el-
ement of reduced density matrix �01

S represents the decay32 of
coherence due to the bias current noise. This suppression
factor

I�t� = exp�±i	
0

t

dt�
 �̄ f̄�t��
�

+
�2 f̄2�t��

2�3 
� �39�

accounts for the accumulation of the noise induced phase
between two instantaneous energy eigenstates �0� and �1�,
due to long correlation time �n. We estimate T�

noise by aver-
aging I�t� over the realization of the fluctuating bias current
and obtain
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I�t� =�exp�±i	
0

t

dt�
 �̄ f̄�t��
�

+
�2 f̄2�t��

2�3 
�� . �40�

Here �¯� denotes the average over noise realization. For
simplicity, we assume that the fluctuating bias current is de-
scribed as a Gaussian noise with the correlation function of
Eq. �26� and the spectral density of Eq. �27�. We represent
the average �¯� by writing it as a functional integration over
the noise. The transition probability P between different
noise realizations may be described by the Fokker-Planck
equation for the Ornstein-Uhlenbeck process34

�P
�t

=
1

�n

�

� f̄
� f̄P� +

no
2

�n

�2

� f̄2
P . �41�

For this process, the transition probability P� f̄ , t ; f̄� , t�� for

the noise from the value f̄ at time t to the value f̄� after a
time 
t= t− t� is given by

P� f̄ ,t; f̄�,t�� = �2�no
2�1 − e−2
t/�n��−1/2


exp�−
1

2no
2

� f̄ − f̄�e−
t/�n�2

1 − e−2
t/�n
� . �42�

We use this transition probability to express the probability
of specific noise realization as

Po� f̄0�P� f̄0,0; f̄1,t1�P� f̄1,t1; f̄2,t2� ¯ P� f̄ n−1,tn−1; f̄ t,t�

�43�

where f̄ i= f̄�ti� and Po� f̄�= �2�no
2�−1/2 exp�− f̄2 /2no

2� is the sta-

tionary Gaussian probability distribution of f̄ . We note that

ti= �ti− ti−1� /n. In the limit of 
ti→0 �i.e., n→��, the aver-
age over the noise realization may be expressed as

�¯� = � 1

2�no
2�1/2

et/2�n	 df̄0df̄ tD� f̄�t��� ¯


 e−� f̄0
2+ f̄ t

2�/4no
2−�0

t dt���n
2�df̄/dt�2+ f̄2�/4no

2�n, �44�

where D� f̄�=�i=1
n−1�df̄ i / �4�no

2 sinh�
ti /�n��1/2� denotes the
measure. The functional integral of Eqs. �40� and �44� is
similar to that for a driven harmonic oscillator.33 Using this
similarity, we may carry out the average over the realization
of fluctuating bias current straightforwardly and obtain

I�t̄� = Io�t̄�exp�− bo��̄t̄ −
2

coth� �̄t̄

2
� + �̄�� �45�

where t̄= t /�n,

Io�t̄� = et̄/2
cosh��̄t̄� +
1 + �̄2

2�̄
sinh��̄t̄�
−1/2

, �46�

�̄=�1+2in̄o
2�̄n�� /��3, and bo= �̄2n̄o

2�̄n
2 / ��2 / �̄3�. Here the

two dimensionless parameters, n̄o=no /� and �̄n=�n�, char-
acterize the amplitude and correlation time for the fluctuating
bias current, respectively. For t̄�1, the fluctuation appears

static. Hence the average �¯�, which is over the static dis-
tribution of noises, yields

I�t̄� = � 1 + t̄

1 + t̄ + i2n̄o
2�̄nt̄

�1/2

exp�−
�̄2n̄o

2�̄n
2t̄2

2�2 � . �47�

For t̄�1, on the other hand, the fluctuation appears to be

-function correlated �i.e., white noise�, and hence, we obtain
that I�t��exp�−t /T�

noise�. This exponential decay indicates
that the dephasing time T�

noise may be expressed as

1

T�
noise =

�

2�2�̄n���1 + 4n̄o
4�̄n

2 �6

�6 + 1�1/2

− �2 +
�̄2

�2

2�2n̄o
2�̄n

2

�1 + 4n̄o
4�̄n

2 �6

�6 � . �48�

We note that T�
noise is independent of T. Consequently, this

will eventually cut off the divergent T�
B due to small coupling

between the qubit system and environment at ultra-low T.
Also, the effects due to the bias current is reduced, as ex-
pected, when asymmetry in the double-well potential van-
ishes �i.e., �̄=0�.

V. DISCUSSION

We now estimate numerically the coherence time for the
JVQ and show that ultra-long coherence time can be ob-
tained by using the experimental value for the parameters.
Since a long Nb-AlOx-Nb junction may be used to fabricate
the qubit, we use the following experimental values in esti-
mating T2:35,36 �L�90 nm, �J�25 �m, Jc�2
106 A/m2,
and �p�90 GHz. For definiteness, we chose a narrow width
�i.e., Ly �0.2 �m� for the junction so that the quantum effect
is enhanced. Also, we set that �̄ /�=0.01 since the variation
in the pinning strength �i.e., �̄� for the two defect sites can be
made small. Here we use the tunneling rate � which is ob-
tained from quantum calculation of the ground state splitting,
as shown in Fig. 4.

As the coherence time T2 depends strongly on �, we dis-
cuss, first, the dependence of � on the separation distance �
between two defect sites and the pinning strength �. In Fig.
7, the tunneling rate for the ground state of the symmetric

FIG. 7. The dependence of the tunneling rate on the defect sepa-
ration distance � and on the pinning strength � is illustrated.

KIM, DHUNGANA, AND PARK PHYSICAL REVIEW B 73, 214506 �2006�

214506-8



double-well potential �i.e., �̄=0� is plotted as a function of �
for �=0.21 �dashed line�, 0.27 �solid line�, and 0.33 �dot-
dashed line�. The curves show that MQT in LJJ depends
strongly on both � and �, as indicated by earlier studies.37

The decrease in � with increasing � and/or � reflects that the
tunneling rate decreases with increasing barrier potential Vo.
We use this numerical result, below, in estimating T�.

Ohmic environment: The relaxation time T1 and the
dephasing time T�

B due to the interaction between the qubit
system and environment are estimated by using Eqs. �35�
and �38�, respectively. These two characteristic times depend
strongly on the quasiparticle dissipation effect �i.e., 	�. For
definiteness, we chose �=0.27 and T=25 mK. This ultra-low
T is chosen because the experiments show12 that the local-
ized fluxon behaves as a quantum particle. For ��−�o� /�o

=1.0, the estimated values are T1��0.005/	� ns and T�
B

��28/	� ns, indicating that both T1 and T�
B become diver-

gently long since 	 is strongly reduced at this temperature.
The estimated value35 for 	 is roughly 0.03 at T�4 K, and it
is found to decrease exponentially with T,38 below the super-
conducting transition temperature. Phenomenologically,38 the
dissipation effect represents the losses due to the tunnel bar-
riers. These losses are related to the quasiparticle resistance
Rqp�T� as

	 =
1

�pCRqp�T�
�49�

where C is the capacitance associated with the tunnel barrier.
The T dependence of the quasiparticle resistance below the
superconducting gap energy �sc�T� is given by

Rqp�T� = RTe�sc�T�/T �50�

where RT is the normal state tunneling resistance. The expo-
nential T dependence for 	, as indicated in Eq. �49�, has been
observed to low temperatures38 �i.e., T�Tc�. We note that
the dissipation coefficient 	s, which represents the contribu-
tion from the quasiparticle current along the junction layer,
also decreases exponentially with T,39 but this contribution is
not included in this work. This exponential T dependence for
	 suggests that both T1 and T�

B become divergently long at
T=25 mK since T1→0 and T�

B →0 as T→0. Both T1 and T�
B

are cut off by the decoherence due to weak bias current fluc-
tuations. This suggests that the measured coherence time T2
at T=25 mK may be estimated as T2�T�

noise since 1/T2
�1/T�

noise.
Fluctuating weak bias current: The dephasing time T� is

limited by the contribution due to the fluctuating bias current
�i.e., current noise�. As indicated in Eq. �48�, the dephasing
time due to the bias current fluctuation depends on the spec-
tral density Snoise�0�=2�n̄o

2�̄n of Eq. �27�. The value of the
spectral density Snoise�0� may be estimated by using the line-
width, 
�FFO, data for the Nb-AlOx-Nb flux flow oscillator
�FFO�. In estimating Snoise�0� we may use the relation be-
tween the magnetic field and bias current fluctuations. Re-
cent measurements40 of the linewidth in FFO indicate that
fluctuating bias current 
f�t� in the control line generates
magnetic field fluctuation 
B�t� in the LJJ. In reverse, mag-
netic field fluctuations due to both external and internal

sources produce bias current fluctuations.41 This suggests
that, when magnetic field in the LJJ fluctuates, dephasing due
to the bias current fluctuation may arise. Since the fluctua-
tions are wide-band noises and are small, the relation be-
tween the bias current and magnetic field fluctuations may be
expressed as


B�t� = K
f�t� , �51�

where K is the parameter of the order unity, describing con-
version between the bias current and magnetic field fluctua-
tions. We note that K depends on the geometry of the LJJ.
The relation between the linewidth 
�FFO and the spectral
density Snoise�0� for the current noise is given41 by


�FFO =
2�

�o
2 �RB + KRH�2Snoise�0� , �52�

where �o is the flux quantum in the superconducting state,
RB is the differential resistance associated with the bias
current, and RH is the differential resistance associated with
the magnetic field. The current noise spectral density mea-
sured from the FFO is Snoise

FFO �0��2.8
10−22 C2/s. Account-
ing for the geometry of the LJJ used in the experiment, the
spectral density Snoise

FFO �0� is given by Snoise
FFO �0�= �2.5


10−19 C2/s�Snoise�0�, yielding Snoise�0��0.0011. Here we
used the following parameters that are obtained from the
experimental data for the FFO:40 RB�0.03 �, RH
�0.005 �, and K�1. Also we chose 
�FFO�500 kHz, for
definiteness, since the data indicate that the FFO linewidth at
the plateau of Fiske steps does not decrease below few hun-
dred kHz at low values of RB.

In Fig. 8, we plot the dephasing time T�
noise versus the

defect separation distance � for �=0.21 �dashed line�, 0.27
�solid line�, and 0.33 �dot-dashed line�. Here T�

noise is com-
puted from Eq. �48� by using the experimental value of

FIG. 8. The dephasing time T�
noise vs the defect separation dis-

tance � is plotted for �=0.21 �dashed line�, 0.27 �solid line�, and
0.33 �dot-dashed line� to illustrate the dependence of T�

noise on both
� and �. The computed T�

noise for �a� �n=1000 and �b� 500 illustrate
the dependence on the correlation time.
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Snoise�0��0.0011 and by assuming, for definiteness, that
�n=1000 �Fig. 8�a�� and �n=500 �Fig. 8�b��, which corre-
spond to 10 and 5 ns, respectively. The curves indicate that
T�

noise increases with �n. Also, T�
noise decreases and increases

with � and �, respectively, but it depends strongly on � and
weakly on �. The decrease in T�

noise with � is due to the
decrease in the tunneling rate, as shown in Fig. 7. We note
that for ��−�o� /�o=1.3 the condition of �̄n�1 is becoming
difficult to satisfy due to small tunneling rate. For �n=500
and ��−�o� /�o=1.3, the computed value for �̄n is 5.8, 4.2,
and 3.1 for �=0.33, 0.27, and 0.21, respectively. For a
smaller defect separation distance, say ��−�o� /�o=1.0, the
condition of �̄n�1 is more easily satisfied and the computed
value for T�

noise is in the microsecond range for both �n
=1000 and 500. For �=0.27, T�

noise is roughly 55 and 30 �s
for �n=1000 and 500, respectively. We compare this result
with T� for other superconducting qubits. The measured val-
ues of T� are 20 ns for the flux qubit2 at 25 mK, 10 ns for
the phase qubit3 at 25 mK, and 500 ns for the quantronium4

at 15 mK. These values indicate that T�
noise for the JVQ is

orders of magnitude larger than the observed dephasing time
in other qubits. This difference represents the fact that the
fluxon’s coupling to noisy environment is substantially
weaker than other superconducting qubits. This indicates that
longer coherence time may be obtained as fluctuating mag-
netic field in the LJJ is further reduced. Moreover, phenom-
enological comparison of these qubits indicates5 that the
ultra-long dephasing time may also be attributed5 to the fact
that the JVQ has much larger junction area than other qubits.

VI. SUMMARY AND CONCLUSION

In summary, we investigated the coherence time for the
JVQ which may be fabricated by using a long Nb-AlOx-Nb
junction. Since the critical current fluctuation does not con-
tribute to dephasing of the JVQ system, we estimate the co-
herence time by accounting for two sources of decoherence:
�i� Quasiparticle dissipation and �ii� current noise in the junc-
tion. We note that, within the lowest order approximation,
the low frequency noise due to critical current fluctuation
does not couple to the JVQ, and consequently it does not
contribute to decoherence. However, the low frequency noise
due to bias current fluctuation is an important decoherence
source. We showed that T1 and T�

B due to the quasiparticle
dissipation �i.e., Ohmic environment� diverge at ultra-low
temperatures �i.e., �25 mK� since the dissipation effect �i.e.,
	� becomes exponentially small for T below the supercon-
ducting transition temperature. In this case, the coherence
time T2 is determined by the bias current noise in the junc-
tion, as in many superconducting qubits. We estimated T�

noise

by accounting for the fact that the current noise may arise
from the magnetic field fluctuations in the junction. This bias
current fluctuation is described realistically by using the
Gaussian colored noise with a long correlation time. Our
estimated value of T�

noise for the JVQ, which is obtained by
using the experimental data from the Nb-AlOx-Nb FFO, is in
the microsecond range because the spectral density for fluc-
tuating magnetic field is very low. The value for T� is a few
orders of magnitude larger than that measured for the quant-

ronium, suggesting that the JVQ may also be a good candi-
date for quantum computer. This surprisingly long coherence
time for the JVQ is due to the fact that the fluxon, which
behaves as a topologically stable quantum particle at ultra-
low temperature, couples very weakly to both internal and
external noise sources. The current estimate for T2 may be
extended further if the magnetic field fluctuations, which are
considered as the dominant decoherence source in LJJ, can
be further reduced.

This work suggests the possibility that a superconducting
qubit with an ultra-long coherence time may be realized by
exploiting quantum property of fluxon pinned in a double-
well potential in LJJ. This work also provides insight into
design and fabrication of the JVQ. The current approach may
be easily extended37 to realize multiple noninteracting qubits
in quasi-one-dimensional LJJ stacks. Hence, it would be in-
teresting to verify macroscopic quantum coherence behavior
by either spectroscopic measurement of level splitting or by
observation of Rabi oscillations in the JVQ.
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APPENDIX: BLOCH-REDFIELD EQUATION

For completeness, we present the derivation of the Bloch-
Redfield equation following the formalism discussed in Ref.
22. In examining the decoherence effects, the Hilbert space
spanned by the ground states of the two wells �Fig. 2�a�� is
not convenient since the spin Hamiltonian of Eq. �19� is not
diagonal in the basis ��L� , �R��. We represent the two-state
system in new basis ��0�, �1�� given by

�0� = − �L�sin � + �R�cos � , �A1�

�1� = �L�cos � + �R�sin � , �A2�

where sin �=���− �̄� /� /�2, cos �=���+ �̄� /� /�2, and �

=��̄2+�2. In this new basis ��0�, �1��, we estimate T2 by
making the Born-Markov approximation and by obtaining
the Bloch-Redfield equations. Taking matrix elements in the
eigenbasis �n� of HS �i.e., �0� and �1��, we may write the
Redfield equations as

d�nm
S �t�
dt

= − iEnm�nm
S �t� − �

kl

Rnmkl�kl
S �t� , �A3�

where �nm
S = �n ��S�m�, Rnmkl is the Redfield tensor, Enm=En

−Em, and En is the eigenstate energy of HS �i.e., HS�n�
=En�n��. In the absence of the fluctuating bias current �
f�,
the eigenstate energies in the diagonal basis, representing the
ground state splitting, are expressed as

E0 = −
1

2
��̄2 + �2, �A4�
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E1 = +
1

2
��̄2 + �2. �A5�

In the presence of the low frequency bias current fluctua-
tions, these energies fluctuate slowly as shown schematically
in Fig. 6. We assume that the eigenstate energies are almost
constant in the time scale relevant for the evolution of the
density matrix.

The Redfield tensor Rnmkl is defined by

Rnmkl = 	
0

�

dtTrB�n��HSB�t�,�HSB�0�, �k�t���l�t���B���m�

�A6�

where the spin-bath Hamiltonian HSB and qubit system
eigenstate �k� in the interaction picture are written as

HSB�t� = ei�HS+HB�tHSBe−i�HS+HB�t, �A7�

�k�t�� = eitHS�k� = eitEk�k� , �A8�

respectively. The Redfield tensor may be expressed as

Rnmkl = 
lm�
r

�nrrk
�+� + 
nk�

r

�lrrm
�−� − �lmnk

�+� − �lmnk
�−� �A9�

by evaluating the commutators in Eq. �A6�. Here

�lmnk
�+� = 	

0

�

dte−it�nkTrBH̄lm
SB�t�H̄nk

SB�0��B, �A10�

�lmnk
�−� = 	

0

�

dte−it�lmTrBH̄lm
SB�0�H̄nk

SB�t��B, �A11�

and H̄nm
SB�t�= �n�eitHBHSBe−itHB�m�. The relation

��lmnk
�+� �* = �knml

�−� �A12�

may be used to write the Redfield tensor in terms of only the
complex �lmnk

�+� tensor

�lmnk
�+� = 2qo

2�l��̂z�m��n��̂z�k�	
0

� dt

2�
e−iEnkt


	
0

�

d�J	���
coth
�

2T
cos �t − i sin �t


�A13�

with the spectral function J	��� of Eq. �7� representing
Ohmic environment.

The dynamics of the two-state system may be described
by using a 2-by-2 density matrix which is written in the

Bloch vector form �i.e., three real variables�. The Bloch vec-
tor p is written as

p = Tr���S� = � �01
S + �10

S

i��01
S − �10

S �
�00

S − �11
S � = ��+

S

�−
S

�z
S � �A14�

where �= ��x ,�y ,�z� represents the vector composed of the
three Pauli matrices. The Bloch vector of Eq. �A14� may be
combined with the Redfield equation of Eq. �A3� to obtain
the Bloch-Redfield equation

dp

dt
= e 
 p − Rp + po, �A15�

where e= �0,0 ,E01�T, the relaxation matrix R is given by

R = � R0101� + R0110� R0101� − R0110� R0100� − R0111�

− R0101� − R0110� R0101� − R0110� R0111� − R0100�

2R0001� 2R0001� R0000� + R1111�
�

�A16�

and

po = �− �R0111� + R0100� �

R0100� + R0111�

− �R0000� − R1111� �
� . �A17�

Here Rnmkl� and Rnmkl� are the real and the imaginary part of
the Redfield tensor, respectively.

The Bloch-Redfield equation of Eq. �A15� may be simpli-
fied within the secular approximation. Within this random
phase type approximation which corresponds to retaining
only the terms Rnmkl with the indices n−m=k− l, the Red-
field tensor simplifies to R�Rsec and

Rsec = � R0101� R0101� 0

− R0101� R0101� 0

0 0 R0000� + R1111�
� . �A18�

This approximation is valid for the spin-boson model of Eq.
�18�. We note that E01=� while Rnmkl�O�	�, when n−m
�k− l. Since ��	 at ultra-low temperatures, E01�Rnmkl.
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