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To better understand vortex pinning in thin superconducting slabs, we study the interaction of a single
fluctuating vortex filament with a curved line defect in �1+1� dimensions. This problem is also relevant to the
interaction of scratches with wandering step edges in vicinal surfaces. The equilibrium probability density for
a fluctuating line attracted to a particular fixed defect trajectory is derived analytically by mapping the problem
to a straight line defect in the presence of a space and time-varying external tilt field. The consequences of both
rapid and slow changes in the frozen defect trajectory, as well as finite size effects are discussed. A sudden
change in the defect direction leads to a delocalization transition, accompanied by a divergence in the trapping
length, near a critical angle.
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I. INTRODUCTION

Understanding the physics of thermally wandering lines
interacting with extended defects is crucial in explaining the
properties of planar high-Tc superconductors permeated by
columnar pins or twin boundaries.1 Considerable progress is
possible theoretically in planar superconductors, when plate-
let samples are permeated by a single sheet of vortex lines
due to a small in-plane magnetic field.2,3 Related problems
arise on vicinal surfaces, where thermally fluctuating step
edges4 can interact with scratches, grain boundaries or ter-
races created by lithography. In superconductors, a zoo of
different systems whose properties are determined by the in-
terplay of the interacting vortex filaments, thermal fluctua-
tions and pinning has been thoroughly explored when the
attracting defect is straight or vortices follow trajectories de-
termined by point disorder.1,2,5–8 However, little work has
been done so far when the defects themselves follow a con-
trolled but nontrivial trajectory. On vicinal surfaces, such de-
fects could be created by etching a wavy, semipermanent
scratch, or studied in the context of the square terraces cre-
ated lithographically by Lee and Blakely.9 One might also
consider a thin high-Tc superconductor sample where a wavy
notch has been etched, although curved extended defects can
arise naturally in the form of grain boundaries in polycrys-
talline platelet superconductors.15 Finally, close intersection
of splayed columnar defects10,11 provide preferred vortex
tracks with a sudden change of direction.

In this work we investigate a single thermally fluctuating
line that interacts with a single quenched meandering defect.
This situation mimics the dilute flux line limit of a planar
superconductor with a single pinning defect when the vorti-
ces are far apart enough to be considered noninteracting.
Although we use the terminology of flux lines throughout,
similar results should apply to scratch-step interactions on
vicinal surfaces. The more complicated many body problem
of many step edges �or vortex lines� interacting with a single
curved line defect and with each other will be treated in a
future publication.16

In the spirit of the treatment of high-Tc superconductors in
Ref. 5, we describe the trajectory of a flux line in �1+1�
dimensions as a classical elastic string x��� subject to thermal

fluctuations. We assume high enough temperatures and suf-
ficiently clean samples so that point disorder can be ne-
glected. In a quantum analogy2,3 �see below� the spatial di-
rection labeled by � plays the role of imaginary time. We
assume that overhangs are improbable, so the choice of a
single valued function to describe a stringlike flux line is
adequate. The trajectory of the defect itself �a notch, etched
on the thin superconducting slab, say� will be represented as
x0���, and attracts the vortex with a short range attractive
potential V�x−x0����, �see Fig. 1�.

For the energy of a flux line induced by a magnetic field
along � in �1+1� dimensions, bounded by timelike initial and
final coordinates �i and � f, we take the integral

E�x���� = �
�i

�f

d���

2
�dx���

d�
�2

+ V�x��� − x0����	 , �1�

where � is the coarse-grained line tension. The finite tem-
perature behavior of the string can be determined from the
partition function, which is a functional integral over all pos-
sible vortex configurations x���,

Z =� Dx���e−E�x����/T, �2�

where we have set Boltzmann’s constant kB
1.

FIG. 1. Thermally excited fluctuating string �vortex line or step
edge� interacting with a meandering attractive linelike potential.
The dark line indicates the elastic string trajectory x���, the energy
of which is given by Eq. �1�.
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The statistical physics of the above system is controlled
by a competition between the two terms of the line energy of
Eq. �1�. The “kinetic energy” �corresponding to the line ten-
sion of the string� is minimized when the vortex line is
straight and parallel to the � direction, whereas the “potential
energy” is minimized when the string resides at the deepest
point of V�x���−x0����, namely, exactly on the attracting de-
fect. Depending on the strength of the potential, the stiffness
of the string, the temperature and the trajectory x0��� of the
defect, the elastic string will either localize near the trajec-
tory of the defect or wander far from it. Since in most ex-
perimental realizations the attractive potential is relatively
short ranged, in this work we will take V�x� in Eq. �1� to be
an attractive delta function, which should adequately de-
scribe the long wavelength properties of the system.

The case of x0��� being a zeroth or first order polynomial
of � �i.e., a straight line!� has been studied in detail in Ref. 5,
with emphasis on the delocalization transition that takes
place for large relative tilts of the pinning defect and the flux
line. This work adapts the results and conclusions of that
paper to the case of a “bent defect” with a sudden change in
direction, and considers more general quenched defect tra-
jectories as well.

This paper will be structured as follows. In Sec. II we
review the basic mapping from a classical description of the
thermally fluctuating flux line to a �non-Hermitian� quantum
mechanical problem, and use this mapping to analytically
compute the partition function �i.e., the propagator for the
equivalent quantum problem� for the straight defect case.
Section III explains how to use this propagator to derive
exact expressions for a simple realization of a “bent” defect
trajectory and determine how the defect probability distribu-
tion responds to the presence of the kink. Section IV de-
scribes a perturbative solution in the “Born-Oppenheimer”
limit of a slowly varying x0���. In Sec. V we give a brief
summary of this paper’s conclusions and suggest some pos-
sible experiments that could be done to test them. Finally, the
Appendix contains some calculational details, relevant to
Secs. II and III.

II. PARTITION FUNCTION FOR A FLUX LINE
INTERACTING WITH A LINEAR DEFECT

In this section we briefly review the connection between
the classical path integral of Eq. �2� and the “quantum me-
chanical” formulation, which follows from a transfer matrix
technique.12 We then proceed to analytically compute the
partition function that governs the properties of the thermally
excited vortex line interacting with a straight line defect.

For clarity we denote the partition function of Eq. �2� as
Z�xf ,� f ;xi ,�i ;x0����, where xi and xf are fixed initial and
final positions of the flux line. �We may eventually choose to
integrate over these endpoints.� Since the potential is only
implicitly dependent on � through the defect coordinate
x0���, we can map the problem by a change of variables
x���→y���=x���−x0��� onto one of a straight defect in a
�-dependent external tilt field h���=dx0��� /d� that imposes
tendency to drift on the flux line. The Jacobian of the trans-
formation is unity, so the measure of the path integral re-

mains the same. After this transformation, the partition func-
tion reads

Zt�xf − x0�� f�,� f ;xi − x0��i�,�i;h���� =� Dy���e−E�y����/T,

�3�

where

E�y���� = �
�i

�f

d���

2
�dy���

d�
+ h����2

− V0��y�	 . �4�

The sign of V0�0 is chosen so that the potential is attractive.
By construction, the old and new partition functions must
agree:

Z�xf,� f ;xi,�i;x0���� = Zt�xf − x0�� f�,� f ;xi − x0��i�,�i;h���� .

�5�

One way around the technical difficulties �see, e.g., Ref. 13�
of the evaluation of the partition function of Eq. �3� due to
the singular nature of the delta function, is to recast the prob-
lem in quantum language. The classical partition function
then becomes a matrix element of the imaginary time evolu-
tion operator

Zt�xf,� f ;xi,�i;h���� = �xf�T�e−��i

� f d� H���/T��xi� , �6�

where the time ordering operator T� is required by the time-
dependent Hamiltonian

H��� = −
T2

2�

�2

�x2 − h���T
�

�x
− V0��x� . �7�

The mapping onto imaginary time quantum mechanics is
clear if we let T→� and �→m, where m is a particle mass.
The term h���T �

�x makes the Hamiltonian non-Hermitian.
Before considering curved defect trajectories, we analyti-

cally compute the matrix element Zt�x ,� ;y ,0 ;h� for con-
stant tilt h, by expanding with respect to the complete set of
right and left energy eigenstates ��K�R� and L��K � � of the
non-Hermitian Hamiltonian of Eq. �7�:

Zt�x,�;y,0;h� = �
K

�x��K�Re−EK�/T
L��K�y� , �8�

with EK being the Kth eigenenergy. Since both the Hamil-
tonian and the propagator are �-translationally invariant,
without loss of generality we have chosen zero as the origin
of imaginary time. For notational simplicity we have also
rescaled the spatial coordinates �x ,�� and tilt h so that �x�
=T2 /�V0, ���=2T3 /�V0

2, �h�=V0 /T. After these rescalings,
the evolution equation for Zt�x ,� ;xi ,�i ;h�
Z�x ,�� reads

�Z�x,��
��

= − HZ�x,�� = � �2

�x2 + 2h���
�

�x
+ 2��x��Z�x,�� .

�9�

As explained in Ref. 5, there is a critical value hc of the tilt,
above which the flux line delocalizes from the defect. Our
rescaled units are chosen so that this value is hc=1 for our
delta function potential. Notice that in the rescaled units the
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track of the straight line defect is given by dx0��� /dt=2h.
The set of normalizable eigenstates of Eq. �7� is different

above and below the critical tilt hc �see the Appendix �; how-
ever, the propagator when the lateral dimension Lx of the
sample tends to infinity has the same form for both regimes,
namely,

Zt�x,�;y,0;h� = e−h�x−y�−h2�� e−�x − y�2/4�

2���

+
e−�y�−�x�+�

2
erfc� �y� + �x�

2��
− ���	 , �10�

where erfc�x�= 2
��

�x
�dte−t2. The first term inside the square

brackets is independent of the defect, translationally invari-
ant in the x direction and describes the random thermal “dif-
fusion with drift” of the flux line Z�exp�−�x+2h��2 /4��.17

This term dominates for small times and/or large �x�, �y�, i.e.,
far from the defect. The second term becomes important for
sufficiently large imaginary times or small �x�, �y�. The delo-
calization transition manifests itself in the exponential
growth of the second term for large �x�, �y� when the tilt h in
the prefactor exceeds the critical tilt hc=1. Upon returning to
the original units of x and �, we see that the effect of the
defect becomes apparent for ���c

*�T3 /�V0
2, provided �x�

and �y� are within a localization length x*=T2 /�V0 of the
defect at the origin. For V0→0, the first term in the brackets
scales as 1 /V0 and will dominate over the second term which
becomes independent of V0. This limit leads to the expected
free flux line propagator. These results can be easily trans-
lated in the original frame of reference �where the defect is
tilted� by the use of Eq. �5�.

III. PROBABILITY DISTRIBUTION OF THE
FLUCTUATING VORTEX FILAMENT

In this section we use the above propagator to analytically
compute the probability distribution function of a flux line
interacting with a �-dependent defect. As a simple, yet re-
vealing example we study a line defect consisting of two
straight lines joined at an angle, at �=�1, namely, x0���
=2h��−�1�	��−�1�, see Fig. 2. Here, 	�x� is the step func-
tion, 	�x�=0, x
0, 	�x�=1, x�0. Any sufficiently well
behaved defect trajectory can be approximated by a series of
finite segments; the method described below can be straight-

forwardly generalized to more complicated piecewise linear
configurations.

When h
1, and in particular when h=0 for the first seg-
ment of the defect, the system relaxes to the localized ground
state exponentially fast as � becomes large. A ground state
initial condition ��i�= ��g� at �=0 is thus the experimentally
relevant case when the kink at �1 is sufficiently far from the
boundaries. For �=L� we choose free boundary conditions
embodied in the final state �� f � =�dy�y�, meaning that no
restriction is imposed on the exit point of the vortex from the
sample. In what follows, unless otherwise stated, we work in
the thermodynamic limit in the x direction, so integrations
such as �dx may be understood as �−�

� dx.
The probability distribution for the flux line on some in-

ternal time slice � is formally equal to

P�x,�� =
1

Z
�� f�S�L�,���x��x�S��,0���i� , �11�

where

S�� f,�i� 
 T�e−��i

� f d� H���/T� �12�

is the time ordered evolution operator associated with the
Hamiltonian

H��� = −
T2

2�

�2

�x2 − V0��x − x0���� . �13�

In Eq. �11�, Z is used to represent the partition function for
the entire length of the system on both sides of the kink

Z 
 �� f�S�L�,0���i� . �14�

Since the defect trajectory x0��� is piecewise straight, we
can split the factors in the numerator of Eq. �11� into two
pieces such that dx0 /d�=const. For computational purposes,
the cases ���1 and �
�1 need to be treated separately.

First, for �
�1 we expand the probability distribution in
position eigenstates as

P�x,�� =
1

Z � � dydy��y�S�L�,�1��y���y��S��1,���x�

��x�S��,0���g�

=
1

Z � � dydy�Z�y,L�;y�,�1;x0����Z�y�,�1;x,�;0�

��x�S��,0���g� . �15�

The last propagator inside the integrand effectively localizes
the vortex near the defect at x0���=0 case. Since the initial
condition is the ground state of the time independent Hamil-
tonian, this last factor is just equal to e−�x�e−Eg�=e−�x�e�, since
the ground state energy in our units is Eg=−1. The middle
propagator in Eq. �15� follows from Eq. �10� by setting h
=0. The leftmost factor in the integrand can also be ex-
pressed in terms of Eq. �10�, if we first perform the transfor-
mation of Eq. �5�. Then, since y� is a dummy integration
variable and x0��1�=0, it is easy to see that Eq. �15� can be
rewritten in terms of the transformed partition function ap-
pearing in Eq. �5� as

FIG. 2. Flux line near a kinked defect. The defect, initially par-
allel to the average direction of the freely fluctuating vortex sud-
denly tilts at �=�1.
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P�x,�� =
1

Z � � dydy�Zt�y,L�;y�,�1;h�Zt�y�,�1;x,�;0�

�e−�x�e� �� 
 �1� . �16�

Although the y integration can be computed analytically �see
Appendix�, we have resorted to numerical integration to
handle the integration over y�.

Upon following a similar procedure for ���1, we obtain

P�x,�� =
1

Z � dyZt�y,L�;x − x0���,�;h� � dy�Zt�x

− x0���,�;y�,�1;h�e−�y��e�1 �� � �1� . �17�

As shown in the Appendix , in this case both the integrals
can be done analytically.

Having now computed P�x ,�� for all imaginary times, we
can examine the flux line probability distribution for this
simple realization of an attractive line defect that suddenly
changes direction. We have studied two cases, one where the
tilt of the upper segment of the defect is below the critical
value hc=1 for delocalization �Fig. 3� and one where it is
above �Fig. 4�.

Note the following. For timelike coordinates below the
kink at �1, the probability density does not differ much from
the ground state probability density of Ref. 5, P�x ,��=e−2�x�.
However, as the position �1 of the kink in the scratch is
approached from below, there is a broadening of the prob-
ability density on the right or “concave” side of the defect,
and a similar narrowing on the left or “convex” �see Fig. 3�.

This phenomenon is not directly related to the delocalization
of the flux line that occurs for tilts greater than the critical
tilt, because it is present for both h�1 and h
1 �recall that
the critical tilt is hc=1�. For h
1, after this small shifting of
the probability density in the vicinity of the kink, the prob-
ability again resumes the ground state distribution. When
��L� we notice a small broadening of the probability which
is a boundary condition effect.

When the tilt of the second segment of the defect is above
the critical tilt hc=1 �see Fig. 4�, the probability density re-
mains localized around the defect only for some small dis-
tance above the kink. Two local maxima of probability den-
sity appear, one localized on the defect and the other
representing an approximately Gaussian probability distribu-
tion. As we move further away from the kink, the probability
of observing the flux line close to the defect reduces, and the
weight associated with the delocalizing diffusive part in-
creases.

To better understand the depinning transition as the slope
of the kink angle approaches the critical value hc from below,
we have computed the average position of the fluctuating
line �x��=�dxxP�x ,�� for several tilts and sample lengths. In
Fig. 5 we have plotted the average position of the fluctuating
vortex line for several total lengths in the imaginary time
direction L�. The position of the kink is held fixed at �1=2
and the tilt is h=0.8. We observe that as L� grows, the dis-
tance m of the exit point of the vortex line �x�L�

from the
defect, indicated in the figure, tends to a constant. We have
computed

FIG. 3. Contour plot for the probability density distribution of
the line defect for a scratch everywhere below the critical tilt angle:
pinned regime. The darker areas correspond to higher probability.
The tilt of the upper segment of the defect is
h=0.8
hc=1, the cusp is at �1=7/3�2.33 and the total length of
the sample is L�=7. The inset shows the probability density distri-
bution for �=1 solid line, �=2.33 dashed line, �=3 dashed-dotted
line, �=4 dotted line. Note that the distribution, while remaining
localized, develops an asymmetry for ��7/3.

FIG. 4. Contour plot for the probability density distribution of
the defect line whose upper part is above the critical tilt angle for
the scratch: depinned regime. The tilt of the upper segment of the
defect now is h=1.5�hc=1, while �1=2 and L�=6. The inset
shows the probability density distribution for �=1 solid line, �
=2.33 dashed line, �=3 dashed-dotted line, �=4 dotted line. Note
that the probability distribution begins to delocalize for ���1=2.
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m�h� 
 lim
L�→�

��x�L�
− x0�L���, h 
 1, �18�

by obtaining values for up to L�=50 and then extrapo-
lating L� to infinity. The convergence becomes very slow as
h→1−. The limiting offset m�h� serves as an indicator of the
depinning transition for h→hc

−. Similarly, for h�1, as can
be seen from Fig. 6, a corresponding indicator is the offset of
�x�L�

from the origin, i.e., the original location of the defect.
We now measure a shift

m̃�h� 
 lim
L�→�

��x�L�
− x0�0��, h � 1, �19�

which contributes to the total magnetization, in the vortex
line case. By a fitting of m�h� and m̃�h� to 1 / �h−1� �see

Fig. 7� we find the critical exponent of the delocalization
transition to be =1.0.18 An identical exponent describes the
delocalization transition studied in Ref. 5.

IV. SOLUTION FOR A RANDOM TRAJECTORY IN THE
ADIABATIC LIMIT

In this section we use the time dependent perturbation
theory developed in Mostafazadeh14 to analytically study the
case of a slowly bending defect, i.e., � dh

d� � �1. We will com-
pute the probability distribution defined by Eq. �11�, assum-
ing that the initial and final states are the ground state, which
should be a good approximation for physical systems with
h=const for � everywhere outside the interval �0,L��. As in
Sec. II, we will preform a defect coordinate transformation

x → x + x0��� �20�

and reduce the problem to a straight defect in a time depen-
dent external tilt field.

We will assume that �h��� � 
1. For any fixed h��� we can
then be sure of the existence of a bound state. We suppose
for the moment that Lx
�, which allows us to consider a
discrete spectrum of free states. We can then write the matrix
element of the time evolution operator as a product over time
slices:

�x�S��,0���g� = lim
N→�

�
�1,. . .,�N

e−�j=0
N

E� j
�tj���

k=1

N

�x��N����R

�L��k�tk���k−1�tk−1��R,

where �
� /N, tk=k� and ��k�tk��R and L��k�tk�� are, respec-
tively, the instantaneous right and left eigenstates of H��� for
h=h��= tN�, namely,

H�����k�tk��R = E�k
�tk���k�tk��R. �21�

Each of the summations embodied in ��1,�2,. . .,�N
runs over

the entire spectrum, while ��0�0��R
��g�0��R.

FIG. 5. Average position of the vortex �x��: pinned regime. Here
�1=2 and h=0.8. The dashed line is the scratch trajectory and the
solid lines represent the thermal average �x�� for different sample
lengths. The arrows mark the average distance of the step from the
exit point of the scratch. As L� increases, this distance approaches a
constant shift in the trajectory.

FIG. 6. Average position of the vortex �x��: depinned regime.
Here �1=2 and h=1.4. The arrows represent the deflection of the
vortex trajectory due to the tilted scratch and the dashed line is
again the defect trajectory. �x�L�

converges to �2.2 as L� increases.

FIG. 7. Shift in the line trajectory near the depinning transition;
curve to the left of hc=1 represents m�h� while that to the right
represents m̃�h�.
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In the limit �→0, we can expand ��k−1�tk−���R as
��k−1�tk−���R���k−1�tk��R−� d

dt ��k−1�tk��R, so

L��k�tk���k−1�tk−1��R = ��k,�k−1
− �A�k,�k−1

�tk� + O��2� ,

�22�

where

A�k,�k−1
�tk� 
 ��k�tk��

d

dt
��k−1�tk−1��R. �23�

To linear order in �, we can rewrite Eq. �22� as a sum of two
mutually excluding terms

L��k�tk���k−1�tk−1��R = e−�A�k,�k
�tk����k,�k−1

+ �e�A�k,�k
�tk����k,�k−1

− 1�A�k,�k−1
�tk�� + O��2� . �24�

Upon inserting Eq. �24� back to the matrix element �21�
and keeping terms only up to the first order in �A�i,�j

� �which
is small if h��� is slowly varying�, we have

�x�S��,0���g�R = e−�0
�dt�E�g

�t�+A�g,�g
�t����x��g����R

− �
���g

�x������R�
0

�

dte−�t
�dt��E�t��A�,�g

�t�� .

�25�

Similarly, the other matrix element in Eq. �11�,
L��g�L�� �S�L� ,�� �x�, reads

L��g�L���S�L�,���x� = e−��
L�dt�E�g

�t�+A�g,�g
�t���L��g����x�

− �
���g

L������x��
�

L�

dte−��
t dt��E�t��A�g,��t�� , �26�

where �E�t�
E��t�−E�g
�t�+A�,��t�−A�g,�g

�t�. Upon send-
ing Lx to infinity, the sum becomes an integral over wave
vectors k and �x ��k����R becomes the eigenstates tabulated in
Eq. �A2� of the Appendix , with h=h���.

Provided h���
1, to zeroth order the probability density
is independent of h, P�x ,���e−2�x�. The lowest order adia-
batic correction to the probability density �P�x ,��= P�x ,��
− P0��� reads

�P�x,��

= e−�x�−h���x� dk

2��1 + c�
�Lk�x;h����

��
�

L�

dte−��
t dt��E�t��A�k,�g

�t�

− e−�x�+h���x� dk

2��1 + c�
�Rk�x;h����

��
0

�

dte−�t
�dt��E�t��A�k,�g

�t� , �27�

with c=− 1
ik−h+1 �see Appendix �. ��P�x ,��dx=0 and P�x ,��

is normalized to unity.
Upon substituting x→x−x0��� we can trivially transform

back to a “moving defect” frame of reference. In this frame,
the zeroth order term reads P0���=e−2�x−x0����.

To check the accuracy of this result, we have used the
moving defect frame and numerically integrated the imagi-
nary time Schrödinger equation for a slow sinusoidal
defect trajectory x0���=18�1−cos�0.1��� with L�=3 to obtain
�P�x ,��= P�x ,��−e−2�x−x0����. The results are shown in Fig.
8.19 On the right hand side of Fig. 8 we plotted two snapshots
of the theoretical �lowest order correction� and numerical
�P�x ,�� for two different times. The agreement between the
two results is fairly good, even for x and � close to the
boundaries. Note that the probability density piles up on the
side of the radius of curvature, and is depleted on the oppo-
site side.

However, the agreement deteriorates for rapidly changing
defect trajectories. In Fig. 9 we have plotted the numerically
evaluated �P�x ,�� for x0���=3.6�1−cos�0.5��� with L�

�6.3 and compared with the analytical result. The three
snapshots on the right indicate significant deviation from the
theory in the center of the range of � values, where

dx0

d� is
changing rapidly. Note from the more exact numerical solu-
tion that probability again piles up on the side of the radius
of curvature.

V. CONCLUSIONS

In this paper we studied the interaction of a single vortex
with a quenched meandering linear defect in a planar super-

FIG. 8. Numerical solution �P�x ,�� for a slowly moving defect.
The thick solid line in the center represents the trajectory of the
defect x0���=18�1−cos�����, where �=0.1. The time domain
shown corresponds to slightly less than 5% of a complete period.
The dashed and solid lines are, respectively, negative and positive
contours of the adiabatic correction �P�x ,��. On the right: snap-
shots for times: �=0.03 and �=1.50 of �P�x ,�� for both the ana-
lytic and the numerical solution.
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conductor. We analytically calculated the partition function
for the case of a straight defect and then used it to derive the
probability density profile of a flux line interacting with a
defect with a sudden change of direction, or “kink.” We
found that, in the vicinity of the kink, the vortex is more
likely to be located on the concave side of the defect, and
that a delocalization transition occurs when the relative angle
between the externally applied magnetic field and the defect
exceeds some critical value. As we numerically and, in the
adiabatic limit, analytically verified, these conclusions are
not restricted to piecewise straight defect trajectories.

We expect that some of our results can be tested in the
laboratory. The simple kinked geometry �as described in Sec.
III of this paper� could be experimentally realized by, for
example, using an AFM tip to etch multiple defects on the
surface of a thin superconducting slab, as shown in Fig. 10,
introducing vortices by means of an in-plane magnetic field,
and then measuring the transverse component of the in-plane

magnetic field b��. In spite of the absence of an external

transverse magnetic field, b�� can be nonzero due to the pin-

ning of the vortex to the meandering defect. Since b�

��x�L�
− �x�0, as seen in Figs. 5 and 6, the magnitude of b��

will depend on the specifics of the defect trajectory. By keep-
ing the length of the sample L� and position of the kink �1
constant, and varying only the effective tilt h by using many
samples with varying kink angles, one should observe b�

reaching a maximum close to the predicted critical tilt. Bulk
effects that facilitate measurements would arise from a dilute
array of identical kinked defect trajectories, as in Fig. 10. To
avoid the complicating effect of vortex-vortex interactions,
the vortex array should be similarly dilute. The perpendicular

field b�� can then be measured by means of the torque

T�B� �H� that will be exerted on the slab and will tend to

align B� with H� .
A setup of the type shown in Fig. 10 can also be used to

measure the critical current. When the tilt h exceeds the criti-
cal value hc=1, we expect a sharp decrease in Jc, as the
vortices will in this case be only partially pinned, and more
easily torn away from the defects by the Lorentz force.

A more direct method to test some of this paper’s conclu-
sions would be to use a Hall probe microscope to map the
entering and exiting position of the flux line for different
sample lengths and defect trajectories. An MFM tip could
similarly be used to measure the force needed to move the
vortex from its existing position—this force should show a
marked increase when h becomes smaller than 1.
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APPENDIX: ANALYTICAL COMPUTATION OF THE
PROBABILITY DENSITY

In this Appendix we derive a number of results given in
the main part of this paper. In most of what follows we
assume that the lateral dimension of the planar supercon-
ductor Lx becomes infinite, although we shall be interested in
the dependence of physical quantities on the size of the time-
like dimension L�. All the quantities are given in the dimen-
sionless units discussed in Sec. II.

1. Eigenstates of the Hamiltonian

The well known ground state of the Hamiltonian �7� with
h=0 �in rescaled units� is simply �g�x�=e−�x� with eigenen-
ergy Eg=−1.20 The odd and even parity extended eigenstates
are, respectively, �k

odd�x�� 1
�1+k2 �k cos kx−sin k �x � � and

�k
even�x��sin kx with Ek=k2 and k chosen to satisfy periodic

boundary conditions in the x direction.
This complete set of eigenstates can be used in the expan-

sion �8�, the sum being turned into an integral as Lx→�,
which allows direct computation of the propagator. Provided

FIG. 9. Numerical solution �P�x ,�� for a rapidly moving de-
fect. The thick solid line in the center represents a half-period of the
defect trajectory x0���=3.6�1−cos�����, where �=0.5. The dashed
and solid lines are, respectively, negative and positive contours of
the adiabatic correction �P�x ,��. On the right: snapshots for times:
1.02, 4.02, and 5.88 of our approximate solution of �P�x ,�� com-
pared with the numerical result.

FIG. 10. Flux lines �represented by thick solid lines� penetrating
through a thin superconducting slab where a series of similar linear
defects have been etched. The critical value of the current Jz driven
through the slab as shown, depends on the defect trajectories.
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�h � 
1, the case h�0 can be reduced to h=0 via the “imagi-
nary gauge transformation” ehxH�h�e−hx=H�0�. In this case,
Eq. �10� can be obtained by straightforward evaluation of the
integral

Zt�x,�;y,0;0�

= e−�x�−�y�+� +
1

�
�

0

�

dke−k2�

�� �k cos kx − sin k�x���k cos ky − sin k�y��
1 + k2

+ sin kx sin ky� . �A1�

Above the delocalization transition, the nature of the eigen-
states changes and there is no longer a bound state. The
non-Hermitian nature of the Hamiltonian �7� now becomes
important. The right eigenstates for h�0 �Ref. 21� are �see
Ref. 5�:

�Rk�x� � �e−ikx + ceikx−2hx for x � 0,

�1 + c�e−ikx for x 
 0,
�A2�

and the left ones

�Lk�x� � ��1 + c�eikx for x � 0,

eikx + ce−ikx+2hx for x 
 0
�A3�

with a common eigenenergy

Ek = k2 + 2ihk �A4�

and

c = −
1

ik − h + 1
. �A5�

The normalization condition is �dk ��k�RL��k � =1. Now the
propagator is evaluated by computation of the integral

�−�
� dke−k2��Lk�x��Rk�x�. Remarkably, the final result for the

propagator is again Eq. �10�.

2. Exact probability distribution of the fluctuating string

In this subsection we sketch details for obtaining results
used in Sec. III. The y-integration in Eq. �16� can be com-
puted analytically and is found to be

� dyZt�y,L�;y�,�1;h� = 1 −
et−�y��+hy�−h2t

h2 − 1
erfc� �y��

2�t
− �t�

−
ehy�

2
� eh�y��

1 + h
erfc� �y��

2�t
+ h�t�

+
e−h�y��

1 − h
erfc� �y��

2�t
− h�t�	 , �A6�

where t
L�−�1.
The y integration in Eq. �17� is formally the same as the

integral �A6�, �1 and y� having to be substituted with � and
x−x0���, respectively. The y� integration is similarly found to
be equal to

� dy�Zt�X,�;y�,�1;h�e−�y��

= Q�h,X,� − �1� + Q�− h,− X,� − �1� , �A7�

where X
x−x0��� and

Q�h,x,t� =
1

2
e�1−2h�t−xerfc� − x

2�t
+ �1 − h��t�

+
e−h2t−hx

2�2 − h��et−�x�erfc� �y��

2�t
− h�t�

+ e�1 − h�2t+�1−h��x�erfc� �x�

2�t
+ �1 − h��t�	 .

�A8�
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