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Superconducting transport through a vibrating molecule
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Nonequilibrium electronic transport through a molecular level weakly coupled to a single coherent phonon/
vibration mode has been studied for superconducting leads. The Keldysh Green function formalism is used to
compute the current for the entire bias voltage range. In the subgap regime, multiple Andreev reflection �MAR�
processes accompanied by phonon emission cause rich structure near the onset of MAR channels, including an
even-odd parity effect that can be interpreted in terms of an inelastic MAR ladder picture. Thereby we establish
a connection between the Keldysh formalism and the Landauer scattering approach for inelastic MAR.
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I. INTRODUCTION

One of the primary goals in the field of molecular elec-
tronics is to understand quantum transport through individual
nanoscale objects, such as molecules, short carbon nano-
tubes, or DNA; for reviews, see Refs. 1–3. An important
difference to conventional mesoscopic transport through
quantum dots or granular islands arises because molecules
can have intrinsic vibrational degrees of freedom �“pho-
nons”� that may give rise to Franck-Condon sidebands or
phonon blockade in electronic transport. Such features have
been studied theoretically in many recent papers.4–8 Molecu-
lar electronics is particularly exciting because it is in prin-
ciple possible to contact molecules by leads of different na-
ture. Here we discuss how nonequilibrium transport is
affected by a coherent phonon mode coupled to the molecu-
lar charge for the case of �s-wave BCS� superconducting
leads. Molecules connected to superconductors promise a
rich terrain of exploration that allows for spectroscopic tools
�probing molecular properties�, potentially useful applica-
tions, and interesting fundamental physics. First experimen-
tal results have appeared for carbon nanotubes9–13 and metal-
lofullerenes.14

So far transport through molecules has been theoretically
studied only for normal leads, either using rate equations or
�in the quantum-coherent regime� perturbation theory in the
electron-phonon coupling �.7 For superconducting leads and
large transmission through the molecule, subgap transport is
ruled by multiple Andrew reflection �MAR� processes.15,16

These have been extensively studied for point contacts17–19

and for junctions containing a resonant level.20,21 In this pa-
per, we provide a theoretical framework to include vibrations
into superconducting transport through a resonant molecular
level. We focus on the most interesting quantum-coherent
low temperature �T� limit with high �bare� transmission,
where Coulomb charging effects are largely wiped out.
Therefore, the Coulomb interaction on the molecule will be
neglected here. We compute the dc current basically for the
full bias �V� range within a Keldysh Green function scheme
valid for small � but arbitrary phonon frequency �0. This
approximation is current conserving for identical molecule-
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lead couplings �L=�R=� and superconductor gaps �L=�R
=�.

Our main results are as follows. �i� For eV��, the cou-
pling � tends to enhance the excess current Iexc, which is
defined as the difference in current for V→� when changing
normal into superconducting leads. �ii� In the subgap regime
eV�2�, the phonon gives rise to a quite complicated struc-
ture in the I-V characteristics around each MAR onset at
eV=2� /n �integer n�, with a pronounced even-odd parity
dependence. These results can be qualitatively understood
within a MAR ladder picture. Such a picture has previously
been used for junctions with a resonant level21 and is here
extended to include phonon-induced transitions �inelastic
MAR�. Rich features in the I-V curve appear already for
eV� ��0, in contrast to normal leads where phonon signa-
tures �e.g., sidebands� emerge only at eV	 ��0.5,7 �iii� For
V=0, we give analytical results for the Josephson current in
the adiabatic limit, ��0����. We find a reduction �but no
destruction� of the critical current and a changed current-
phase relation. These findings are in qualitative agreement
with Ref. 22, where the opposite limit ��� has been stud-
ied by lowest-order perturbation theory in the lead-molecule
hopping.

The outline of the paper is as follows. In Sec. II, we
discuss the model and the Keldysh Green function approach
taken in this work. In Sec. III, we present our results and
provide a physical interpretation in terms of a MAR ladder
picture. How such a scattering-type approach can be con-
nected to the Keldysh approach is explained in detail in the
Appendix. Finally, some conclusions are offered in Sec. IV.
We put e= � =1 in intermediate steps.

II. MODEL AND KELDYSH APPROACH

A. Model

We now wish to formulate and analyze a tractable model
describing the relevant physics of a molecule sandwiched
between superconducting leads. Writing the Hamiltonian as

H = �0b†b + �



��0 + �X�d

†d
 + HL + HR + HT, �1�

we consider one relevant molecular level associated with the

fermion operator d
 for spin 
= ↑ ,↓ and located at the en-
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ergy �0. In Eq. �1� we take a linear coupling between the
molecular charge and the phonon displacement X=b+b†,
where the boson operator b annihilates a phonon excitation.
For a justification of this form and possible other couplings,
see Ref. 5. The leads are described by a pair of standard
s-wave BCS Hamiltonians. Using the Nambu vector � j,k

T

= � j,k,↑ , j,−k,↓
† � for electrons in lead j=L /R, we have

Hj=L/R = �
k

� jk
† � �k �

�* − �k
�� jk �2�

with single-particle energy �k=k2 /2m−�F; the 2�2 matrix
acts in Nambu space. In the following, standard Pauli matri-
ces in Nambu space are used and denoted by 
x,y,z. Using the
Nambu vector d= �d↑ ,d↓

†�T and �=��0 � t0�2 for �normal� lead
density of states �0, the lead-molecule coupling is

HT = t0 �
k,j=L/R=±

� jk
† 
ze

±i
zVt/2d + h.c., �3�

where the voltage V enters via the time-dependent phase. As
we are mostly interested in the V�0 case, for simplicity, we
consider ��0 to be real valued. �In the study of the Joseph-
son current, the residual V=0 phase difference across the
molecule is of course taken into account.�

Note that Eqs. �2� and �3� assume symmetric coupling and
identical superconducting gaps. Our approximation scheme
below will yield a current-conserving result only then. In
fact, since the calculation of MAR-dominated transport is
already involved for �=0, a nontrivial current-conserving
self-consistent approach covering the large transmission limit
seems out of question. Note that self-consistency is �usually�
sufficient to ensure current conservation.23 Below we instead
proceed using a perturbation theory with the small expansion
parameter � /�. Under such an approach, current conserva-
tion is known to only hold for the electron-hole symmetric
case,24 i.e., �0=0, with symmetrically arranged leads ��L

=�R=� ,�L=�R=��. This case is taken in what follows. We
note in passing that this important issue �and also the tadpole
diagram in Fig. 1� was overlooked in Ref. 7, where the same
approximation as ours was implemented for normal leads but
also used for asymmetric cases.

B. Keldysh approach

To compute the current-voltage characteristics, we now
employ the Keldysh Green function technique. This method
has become a standard approach by now; for a review, see,
e.g., Ref. 25. The Keldysh Green function for the d fermion

FIG. 1. Self-energy due to the presence of the phonon mode: �a�
“Fock” and �b� “tadpole” diagram. The polarization bubble �c� leads

to the dressed phonon propagator Ď �wiggly lines�. Arrowed lines

denote Ǧ0.
is defined as
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G���
ss� �t,t�� = − i�T̂C�d��ts�d��

† �ts�
� �	
 , �4�

where � ,�� �s ,s�= ± � are Nambu �Keldysh� indices, and T̂C

is the time-ordering operator along the familiar Keldysh con-
tour C.25 Accordingly, ts denotes a time taken on branch s of
the Keldysh contour. Similarly, we define a phonon Keldysh
Green function Dss��t , t�� for the quantity X=b+b† coupling
to the fermion d in Eq. �1�. In what follows, we use the check

notation �Ǧ� in order to schematically indicate the Keldysh
structure. In the case of electron Green functions, this also
includes the Nambu structure. Denoting the respective func-

tions for �=0 by Ǧ0 and Ď0, and using the self-energy dia-
grams in Fig. 1, the dressed Green functions used in our
perturbative approximation follow from the Dyson equation.
As we consider only the case �0=0, it can be checked that
the tadpole diagram does not contribute.

For the superconducting problem of interest here, it is
convenient to use the double Fourier representation

Ǧ�t,t�� = �
n,m=−�

+� �
F

d�

2�
e−i�nt+i�mt�Ǧnm��� , �5�

and likewise for all other Green functions and self energies.
Here we use

�n = � + nV �6�

for � within the ‘fundamental’ domain F defined as

F � �− V/2,V/2	 . �7�

For fixed ��F, the Dyson equations then lead to the matrix
equations

Ǧ0,nm
−1 ��� = �nm�n�̌z − � �

j=L/R
�̌ j,nm��� , �8�

Ǧ−1 = Ǧ0
−1 − �̌, Ď−1 = Ď0

−1 − �̌ , �9�

where the Pauli matrix �̌z acts in Keldysh space, and

Ď0,nm
−1 ��� = �nm�̌z

�n
2 − �0

2

2�0
. �10�

The self-energy due to tracing out the respective lead is
given by the Nambu matrix

�̌ j=L/R=±,nm���

=  �nmX̌��n � V/2� �m,n�1Y̌��n � V/2�

�m,n±1Y̌��n ± V/2� �nmX̌��n ± V/2�
�

�11�

with Keldysh matrices Y̌���=−�X̌��� /� and

X̌��� =�−
�

��2 − �2
�̌z, ��� � �

i���
��2 − �2�2f� − 1 − 2f�

2f−� 2f� − 1
� , ��� � ��

�/kBT
where f�=1/ �1+e � is the Fermi function.
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Figure 1 yields for the polarization �̌ and the self energy

�̌ the following explicit expressions:

�̌nm
ss���� = − i�2tr �

n�m�
�

F

d��

2�
��̌KǦ0;n�m������̌K	ss�

� Ǧ0;m�−m,n�−n
s�s ��� − �� , �12�

�̌nm
ss���� = i�2 �

n�m�
�

F

d��

2�
Dn−n�,m−m�

ss� �� − ���

� ��̌KǦ0;n�m������̌K	ss�, �13�

where “tr” extends over Nambu space only and �̌K= �̌z
z.
Should the difference �−�� appearing in Eqs. �12� and �13�
fall outside the fundamental domain F, one has to fold it
back to F. This is implicitly understood in the above equa-
tions.

The steady-state dc current through the left/right junction
then follows in the form

IL/R = � 2� Re�
nm
�

F

d�

2�
tr�
z�̌L/R,nm���Ǧmn���	+−.

�14�

This relation constitutes a generalization of the Meir-
Wingreen formula26 to the case of superconducting leads. We
also define the phonon contribution

�Iph � I��� − I�� = 0� . �15�

Current conservation, IL= IR� I, can be explicitly verified as
follows. In the particle-hole symmetric case, current conser-
vation requires that

Ǧnm
ss���� = − 
zǦmn

s�s�− ��
z. �16�

This relation is indeed obeyed since the approximate �̌ in
Eq. �13� also fulfills Eq. �16�.

Using Eq. �14�, we evaluate the I-V characteristics for �
=0.15� �unless noted otherwise� and kBT /�=0.01. We trun-
cate the summations such that ��n � ��c=20�; further in-
crease of the bandwidth �c did not change results. In prac-
tice, the domain F in Eq. �7� must be discretized. Typically,
we found ��=0.008� to be sufficient for convergence. The
matrix inversions in Eqs. �8� and �9� are then done for each
��F separately, involving matrix dimensions of the order
�c /eV. For very small eV /�, this becomes quite costly, and
we limit ourselves to eV /��0.15 in the following.

Fortunately, there are several nontrivial tests that we can
use to check the scheme. For �=0, our approach quantita-
tively reproduces the results of Refs. 17, 19, and 21. For �
=0, we recover results of Ref. 7 when applicable �i.e., for
�0=0�. As additional check, Green function sum rules25 were
verified, such as

tr��̌KǦ�t,t�	 = 0 �17�

at coinciding times. While such relations must hold for the

exact Green function, it is reassuring to verify that our ap-
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proximation does not lead to violations of sum rules.
Besides the current, we have also monitored the average

phonon number Nph= �b†b
 and the frequency-dependent
phonon distribution function. We find Nph�1 for � /�
=0.15, in accordance with our assumption of weak electron-
phonon coupling. The phonon distribution function revealed
renormalizations of the peak position away from �0 by a few
percent.

To conclude this section, we note that it is possible to
establish a close connection between this Keldysh Green
function approach and a Landauer scattering approach incor-
porating inelastic transitions. Such an “inelastic MAR” pic-
ture will in fact be essential in interpreting our numerical
results in Sec. III A. This connection is detailed in the Ap-
pendix.

III. RESULTS

A. Subgap regime: Inelastic MAR

Let us then turn to results for the I-V curve. We start with
the subgap regime, where MAR provides the dominant trans-
port mechanism. In particular, for 2� / �n+1��eV�2� /n �n
integer�, there is a total number n of Andreev reflections for
electrons or holes within the superconducting gap. The I-V
curve for �=2� and �0=0.2� is given in Fig. 2, where �Iph
is always negative. Note that in this fully transmitting limit,
the I-V curve for �=0 is smooth and does not exhibit the
MAR “cusps” encountered at lower transmission.17 Phonons
now restore such features near MAR onsets, with pro-
nounced even-odd “parity” effects: For even �odd� n, �Iph
shows valleys �peaks� around eV=2� /n. This is clearly seen
in the left inset of Fig. 2 for n up to 12.27 Note that the dip at
n=8 is somewhat shifted, presumably due to phonon renor-
malization effects. However, the appearance of even-odd
parity oscillations is quite distinct and surprisingly regular
given the complexity of this system.

In order to achieve a physical understanding of this even-
odd effect, it is useful to invoke a MAR ladder picture in
energy space, including inelastic transitions caused by pho-

FIG. 2. Phonon difference current �15� for ��0=0.2� and �
=2�. In all figures, currents are given in units of e� / �2�� �, and
dotted lines are guides to the eye only. Left inset: Same as function
of 2� /eV. Right inset: Part of the total I-V curve �note the scales�.
-3
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non emission. A schematic description of the MAR ladder
picture in this limit is given in Fig. 3. Superconductor spectra
are placed next to each other, but because of the presence of
the bias, electrons emitted from left to right gain an energy
eV in this process. Holes that are reflected, traveling from
right to left, also gain this energy.

Usually the scattering approach is used to develop this
picture,21 but its straightforward implementation encounters
conceptual difficulties in the presence of inelastic phonon
transitions. Fortunately, a different route resolving these dif-
ficulties can be formulated via the above Keldysh approach,
whose formal justification is detailed in the Appendix . Here
electron and hole propagators in energy space are coupled to
each other through suitable Andreev reflection matching con-

ditions and the phonon self energy �̌. For a qualitative ex-
planation of the even-odd effect found in the full calculation,
cf. Fig. 2, it is sufficient to restrict the full MAR ladder
picture to single phonon emission processes, where electrons
�holes� lose �gain� the energy ��0. Since Nph�1, emission
dominates over absorption and multi-phonon processes are
rare.

In Fig. 3, the two superconductors are positioned at the
same chemical potential, but electrons �from left to right�
and holes �from right to left� “climb” the MAR ladder by
gaining eV for each Andreev reflection. The higher the total
number of Andreev reflections in one cycle, the larger the
total charge transmitted. Since we consider the high trans-
mission limit where high-order MAR processes are not pe-
nalized, the current is therefore expected to increase �de-
crease� if phonon emission is able to increase �decrease� the
number of Andreev reflections in a MAR cycle. For eV
slightly below 2� /n with even n, we then argue as follows;
for n=2, see Fig. 3. For small energy transfer ��0, if a pho-
non is emitted during an electron segment, MAR trajectories

FIG. 3. MAR ladder picture with phonon emission. Here eV is
slightly below �: for an electron incoming from the left side, we
have one hole �open circle� and two electron �filled circle� seg-
ments. Dashed lines indicate possible trajectories after single pho-
non emission involving either hole or electron segments. There is
also a MAR path �not shown� for a hole entering from the right
side, with one electron and two hole segments.
in energy space are not drastically modified in the sense that
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the number of Andreev reflections stays unaffected. How-
ever, if a phonon transition occurs during a hole segment, the
MAR ladder is shifted upwards by ��0 and the last hole on
the MAR ladder can be scattered into the continuum �left
electrode in Fig. 3� instead of being Andreev reflected. Con-
sequently, one Andreev reflection is lost and hence the cur-
rent is expected to decrease. This argument applies both to
incoming electrons and holes, and explains why current val-
leys are observed for eV�2� /n with even n in Fig. 2. On
the other hand, consider eV slightly above 2� /n with odd n.
Reiterating the above analysis, now phonon emission during
a hole segment tends not to affect the number of Andreev
reflections. If the phonon is emitted during an electron seg-
ment, however, an additional Andreev reflection has to take
place to complete the MAR cycle, leading to a current peak
for eV�2� /n with odd n.

Next consider ��0=1.8� but otherwise identical param-
eters, see Fig. 4, where �Iph can be positive and again shows
oscillations near the MAR onsets, which are less pronounced
for small n=2� /eV. Remarkably, even for small voltages,
eV� ��0, a rather complicated subgap structure is caused
by the phonon. At such low voltages, this is only possible via
MAR, for otherwise electrons or holes do not have enough
energy to emit a phonon. The broad minimum corresponding
to n=2 observed in Fig. 2 has now vanished. Let us invoke
the MAR ladder picture to rationalize this effect. For eV
��, by emitting a high-energy phonon ���0���, the last
electron on the MAR ladder can now be scattered back inside
the gap instead of heading to the continuum. This increases
the number of reflections and thus the current. As a phonon
emitted during the hole segment has the opposite effect �see
above�, the net outcome of the higher phonon frequency is to
suppress the valley at eV�� expected for small �0. Figure 4
also shows a dip in the current at eV�1.8�, representing a
phonon backscattering feature at eV= ��0. The scaling of
this dip with �0 was confirmed by additional calculations.
One can also see a two-phonon feature at eV= ��0 /2 in
Fig. 4.

Let us then briefly go back to ��0=0.2� �cf. Fig. 2�, but
now for �=0.5�, see Fig. 5. For small �, quasiresonances
appear21 and cause additional features, e.g., negative differ-

FIG. 4. Same as Fig. 2 but for ��0=1.8�. The upper inset gives
�Iph as a function of 2� /eV, the lower inset gives the low-voltage
part of the total current.
ential conductance portions in the I-V curve. The MAR lad-
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der picture then has to include both quasiresonances �cf. Ref.
21� and phonon transitions, which is possible but beyond the
scope of this paper. Figure 5 shows that the even-odd parity
effect requires large � to be observable.

B. Excess and Josephson current

Finally, we briefly discuss the limits of very large and/or
zero voltage. Starting with the first case �excess current�, we
have computed the difference �Iexc,ph between the excess
currents Iexc with and without the phonon. This calculation
has been done at eV=10�, which according to the discussion
in Ref. 21 is certainly large enough for our parameters. For
the case of high transmission encountered here, we find that
phonons generally enhance the excess current. To give a con-
crete example, for ��0=0.8�, �=2�, and �=0.5�, we find
�Iexc,ph / Iexc�0.07. A similar current enhancement at high
transmission was also found for environmental Coulomb
blockade in superconducting junctions, and has been ex-
plained as “antiblockade” effect.28 As such, this effect of the
phonon may not be too surprising.

Second, the equilibrium Josephson current has been cal-
culated by adopting our approach to the Matsubara represen-
tation. For arbitrary parameters, it is straightforward to nu-
merically compute the full current-phase relation. However,
the current-phase relation in the adiabatic phonon regime
defined by

��0 � � � � �18�

can even be calculated analytically, with the result

I��� = �e�2/2 � �T0sin���/E0��� , �19�

where

E0��� = ��1 − T0sin2��/2�	1/2 �20�

is an Andreev bound state energy17 in the junction with an
effective transparency

T0 =
1

1 + �2/4�2 . �21�

The �-dependent shift without any broadening of the An-

FIG. 5. Same as Fig. 2 but for �=0.5�. The left inset gives �Iph

vs 2� /eV, the right inset the total current.
dreev level caused by the coupling to a phonon mode is
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characteristic for the coherent limit and decreases the critical
current. Very similar results were reported in Ref. 22 in the
opposite limit ���.

IV. CONCLUSIONS

In this work, we have theoretically explored nonequilib-
rium molecular transport with superconducting leads in the
coherent phonon regime. Phonons reveal a rich subgap struc-
ture even for voltages well below the phonon frequency, in-
cluding a surprising even-odd parity effect near the MAR
onsets. This effect can be largely understood within a physi-
cally appealing inelastic MAR ladder picture, based on the
assumption that single phonon emission processes dominate.
For stronger electron-phonon couplings, also multiple pho-
non processes and/or absorption becomes important, and the
practical usefulness of such a scattering approach is less
clear, although it can be formally derived as outlined in the
Appendix.

Let us also offer a brief outlook. Besides the obvious in-
terest to experimentally probe the effects predicted here, the
problems raised above deserve further theoretical work. In
the case of strong electron-phonon coupling, different ap-
proximations will be necessary. Moreover, other quantities
such as shot noise or frequency-dependent noise29 deserve
attention. Noise can yield information about the effective
charge involved in the transfer process, and how this charge
is affected by phonon transitions remains to be explored. It
would also be interesting to formalize the notion of inelastic
MAR spectroscopy, potentially allowing one to infer the
electronic structure of molecules from the superconducting
current-voltage characteristics. Such approaches have al-
ready been very useful in nanoscale break junctions, and are
of obvious interest in the molecular electronics context as
well. It is safe to conclude that superconducting molecular
transport definitely warrants further surprises in the future.
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APPENDIX: INELASTIC MAR, SCATTERING APPROACH

In this Appendix, we outline the derivation of the Land-
auer scattering approach to inelastic MAR incorporating
phonon transitions. Such an approach is formulated here us-
ing the equation-of-motion method, where transfer matrices
are expressed in terms of Keldysh Green functions. This pro-
vides a formal justification for the intuitive MAR ladder pic-
ture used in Sec. III A.

Using the Hamiltonian �1�, we can write down the equa-
tions of motion for the quasiclassical envelope function � j,k

�r�

describing right/left-moving quasiparticles �r= ± � in the left
or right lead �j=L /R= ± � with momentum rk +k. Here
F
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�k � �kF is assumed, and with the Fermi velocity vF, we ob-
tain

�i�t − rkvF
z − �
x�� j=±,k
�r� �t� = t0
ze

±i
zVt/2d�t� . �A1�

Similarly, the equation of motion for the molecular fermion
�Nambu spinor d� is

�i�t − �X�t�
z	d�t� = t0
z �
j=±,r

e�i
zVt/2� j
�r��t� , �A2�

where � j
�r���k� jk

�r�. Here we consider the simplest possible
situation, where phonon renormalization effects like the po-
larization bubble in Fig. 1 are completely disregarded. In that
case it is sufficient to simply take an equilibrium average
over the phonon subsystem, while otherwise one should also
take into account the equation of motion for X�t�.

The solution of Eq. �A1�, adapted to � j
�r��t�, can be writ-

ten as the sum of a free �homogeneous� solution � j0
�r��t�, de-

scribing an incoming quasiparticle in lead j=L /R, plus a
scattered part due to the interaction with the molecular level,

� j
�r��t� = � j0

�r��t� + t0� dt�gj
�r��t − t��
ze

±i
zVt�/2d�t�� ,

�A3�

which is expressed in terms of the retarded Green function
gj

�r� for uncoupled electrodes whose Fourier transform is
given by

gL
�±���� = gR

������ =
��0

2i  � + �
x

��� + i0�2 − �2
� 
z� .

When summed over r, this essentially yields the retarded
components of �̌ j in Sec. II.

In what follows, we use s= �1,2 ,3 ,4� in order to label
scattering processes corresponding to electronlike or holelike
quasiparticles incoming from the left �s=1,2� or right �s
=3,4� electrode. In Fourier representation, where E is the
energy of the incoming quasiparticle ��E � ��� and En=E
+nV, we write

� j
�r��t� = �

n

e−iEnt�ujn
�r�

v jn
�r� � �A4�

and introduce electron-type and hole-type spinors

� jn
e � �ujn

�+�

ujn
�−� �, � jn

h � �v jn
�+�

v jn
�−� � .

These spinors are defined on a chiral space, with the two
entries corresponding to the right-moving and left-moving
parts. From Eq. �A3�, we proceed to derive a first set of
Andreev reflection matching equations for � jn

e,h,

�Ln
e = �an 0

0 a−1 ��Ln
h + �n0�uE

2 − vE
2�� �s1/uE

− �s2/vE
� ,
n

214501
�Rn
e = �an

−1 0

0 an
��Rn

h + �n0�uE
2 − vE

2��− �s4/vE

�s3/uE
� ,

where an= �En−��En+ i0�2−�2	 /�. Furthermore, the uE ,vE

denote the n=0 entries in Eq. �A4�. Note that these matching
equations are not modified by the presence of phonons, see
Ref. 30.

Iterating Eq. �A2� and averaging over the phonons, we
find

�i�t − �� � d = t0
z �
j=±,r

e�i
zVt/2� j
�r��t� , �A5�

where � is a shorthand for convolution. The phonon self en-
ergy entering Eq. �A5� is given by

��t,t�� = i�2D0
��t,t��
zG0

R�t,t��
z. �A6�

Note that this ignores the polarization-bubble renormaliza-
tion, see above. For the four different scattering processes

indexed by s, it is convenient to introduce matrices �̃nm ac-
cording to

�̃�t,t�� = ei
z
stV/2
z��t,t��
ze
−i
z
st�V/2

� �
nm
�

F

d�

2�
e−i�nt+i�mt��̃nm��� �A7�

with 
s=1 �
s=−1� for s� �1,2� �s� �3,4��. To keep the

notation simple, the s dependence of �̃nm is not exhibited
explicitly.

Using Eq. �A5�, we then obtain a second set of matching
equations. For s= �1,2�

�R,n+1
e = �Tn

e�−1�Ln
e + �

m

�Snm
ee �Lm

e + Snm
eh �Lm

h � ,

�R,n−1
h = �Tn

h�−1�Ln
h + �

m

�Snm
hh �Lm

h + Snm
he �Lm

e � ,

while for s= �3,4�

�L,n−1
e = Tn−1

e �Rn
e + �

m

�Snm
ee �Rm

e + Snm
eh �Rm

h � ,

�L,n+1
h = Tn+1

h �Rn
h + �

m

�Snm
hh �Rm

h + Snm
he �Rm

e � .

Here, electron/hole transfer matrices are given by

Tn
e/h =  1/tn

e/h �rn
e/h/tn

e/h�*

rn
e/h/tn

e/h 1/tn
e/h* � �A8�

with

tn
e/h = − 1/�1 � iEn

e/h/2��, rn
e/h/tn

e/h = ± iEn
e/h/2� ,

where En
e/h=E+ �n±1/2�V. Furthermore, transfer matrices

linked to phonon-induced transitions are given in terms of
the phonon self-energy matrix elements introduced in Eq.
�A7�
-6
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�See Seh

She Shh �
nm

=
i
s

2�
��z − i�y�− �̃11�E� �̃12�E�

− �̃21�E� �̃22�E�
�

nm

,

�A9�

where the Pauli matrices �y,z operate in the space of the �e,h

spinors and the � indices in �̃��� refer to Nambu space. Note
again that these quantities all carry an implicit s-dependence.

Finally, after straightforward but somewhat tedious alge-
bra, the dc current is expressed in terms of the above scat-
tering states
214501
I = evF�
�E���

dE
�E�

�E2 − �2
fE�

s=1

4

�
n

�
a=e/h

���s1 + �s2�

��Rn
a†�E��z�Rn

a �E� + ��s3 + �s4��Ln
a†�E��z�Ln

a �E�	 .

�A10�

Similarly, the full Keldysh Green function Ǧ can also be
constructed from the complete set of scattering states
�e,h�E�.
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