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We derive an effective vector theory of the spin S=1/2 Heisenberg ferromagnet in an external magnetic field
using the Majorana representation for the spin operators and decoupling the interaction term via a Hubbard-
Stratonovich transformation. This theory contains both cubic and quartic bosoniclike field terms. We analyze
the problem in the Hartree approximation, similarly to the analysis by Boyanovsky et al. �Phys. Rev. E 48, 767
�1993�; Phys. Rev. D 48, 800 �1993�� for the scalar case. The time dependence of the radius of the stable phase
domain �bubble� in this bosonic theory is studied in the cases of different dimensionalities and weak magnetic
field H. The role of the cubic terms in the process of domain growth is analyzed. It is shown that the field
components perpendicular to H acquire a larger amplitude than the component parallel to H, at early times. The
domain radius grows as �t for times smaller than the spinodal time or in the case of a very weakly coupled
theory. A simple scaling analysis shows that the time dependence changes to R� t at long times.
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I. INTRODUCTION

The theoretical description of the time evolution of a non-
homogeneously distributed magnetization is an interesting
and important problem of modern theoretical condensed mat-
ter physics. In particular, the problem of magnetic bubble
formation and growth at low temperatures is of a special
interest1,2 �also see a theoretical paper3�. Magnetic bubbles
are, for instance, domains of reversed magnetization in fer-
romagnets. Such domains have been observed in thin ferro-
magnetic films with an uniaxial anisotropy. They arise due to
demagnetization effects when an external magnetic field is
not large enough. Besides purely academic interest, the solu-
tion of this problem is very important from a technological
point of view. The domains of reversed magnetization are
used for information storage in magnetic recording media. It
is important to understand the conditions of the stability of
these magnetic domains, and also the temperature and the
magnetic field dependencies.

Magnetization domain growth after changing temperature
from very high values to values below the critical tempera-
ture is another interesting problem, related to the previous
one. This phenomenon is the well-known process of spinodal
decomposition, when the phase separation in the initially ho-
mogeneous system takes place. In this paper we study this
problem for the case of the quantum Heisenberg model with
ferromagnetic interaction in the presence of an external ho-
mogeneous magnetic field. We derive an effective action for
the vector field order parameter using the Majorana fermion
representation for the spin S= 1

2 operators4,5 considering the
general situation of a system far from equilibrium. We would
like to note that the Majorana fermion representation for the
spin S= 1

2 operators allows one to use a standard Wick theo-
rem for the fermions to calculate quantum statistical aver-
ages. Such a theorem does not exist for the spin operators,
which makes the results obtained for the case with spin op-
erators less controllable. We approximate the effective action
by the field components power expansion up to the fourth
order. The presence of the magnetic field results in linear and
cubic in field terms in the expression for the free energy. The

effective bosonic theory of the ferromagnetic Heisenberg
spin S=1/2 model was studied in other contexts in Refs. 3
and 6–12, for example �also see reviews in Refs. 13 and 14�.
In this work we study the unstable domain radius time de-
pendence in this model. We construct the equation of motion
for the boson field, which is different from the corresponding
classic equation for the scalar �4 model with a nonconserved
order parameter �the Allen-Cahn-type model,15 or model A,
according to the classification given in Ref. 13�, which cor-
responds to the Ising model case.

The case of the model with a nonconserved order param-
eter and with a zero cubic term has been widely studied in
the condensed matter literature in the case of the classical �4

theory �see, for example, Refs. 15–22� and in the relativistic
theory.23–26 The relativistic �1+1� dimensional model with
an additional �6 term was studied in Ref. 27. The classical
vector case was analyzed in Refs. 28 and 29, for example. It
is known that the characteristic length grows as R��t in the
classical scalar and vector theories �for a review, see Refs. 30
and 31�. A similar result was found in the case of a weakly
coupled scalar relativistic �4 theory at short times.23,24 The
principal difference between the relativistic and the classical
cases is in the order of the time derivative in the equation for
the field. The time derivative is of the first order in the clas-
sical Allan-Cahn equation, and it is of the second order in the
relativistic case. Nevertheless, this difference does not lead
to different time dependencies of the domain size in both
theories at short times.

In this paper we show that the transverse part of the ef-
fective vector theory of the quantum Heisenberg ferromagnet
is equivalent to the relativistic scalar theory in the limit of a
very low magnetic field. The magnetic field generates linear
and cubic terms in the free energy. These terms were not
taken into account in the scalar case. The presence of the
cubic term leads to a nontrivial coupling between the trans-
verse and longitudinal field components, which is important
for the domain dynamics. We show that the magnetic bubble
radius time dependence is �t at times shorter than the spin-
odal time, similarly to the classical vector and relativistic
scalar cases. The scaling analysis in the Hartree approxima-
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tion shows that this time dependence changes to linear at
long times.

II. EFFECTIVE THEORY

In this section we derive the effective bosoniclike action
for the Heisenberg spin Hamiltonian equations �42� and �49�.
The Hamiltonian for the Heisenberg ferromagnet in an exter-
nal magnetic field can be written as

Ĥ = −
1

2�
ij

JijSiS j − �
i

HiSi, �1�

where Jij �0 is the nearest neighbor ferromagnetic coupling,
i , j are site coordinates, H is an external and, in general,
time-dependent magnetic field. To find the free energy of the
system, we derive the expression for the generating function,

Z =
Tr�T̂e−�0

�Ĥ d�e−i�tf

ti Ĥ dte−i�ti

tfĤ dt�

Tr�T̂e−�0
�Ĥ d��

, �2�

where �=1/T is the inverse temperature of the system. We
use the Keldysh formalism32,33 to study the nonequilibrium
properties of the system. In this formalism all time integrals
should be performed along the complex three-branch contour
C presented in Fig. 1.

It is convenient to represent the spin S=1/2 operators in
�2� as a vector product of Majorana fermion operators �i �see,
for example, Refs. 4, 5, 7–9, and 12�:

Si = −
i

2
�i � �i. �3�

Then, the numerator of the generating function �2� can be
written as

	 D� exp
− i	
C

dt�−
i

2�
i

�i
d

dt
�i

−
1

2�
ij

JijSiS j − �
i

SiHi�
 . �4�

To decouple the interaction between the spins in �4� we per-
form a Hubbard-Stratonovich transformation:

Z =	 D� D�

�det�2�J�
exp
− i	

C

dt�−
i

2�
i

�i
d

dt
�i

+
1

2�
ij

�iJij
−1� j − �

i

�iSi − �
i

HiSi�
 . �5�

The vector field �i�t� in �5� is actually an order parameter
that characterizes the magnetic properties of the system �see
later�. With the shift �i→�i−Hi in �5�, the partition func-
tion can be rewritten in a more convenient form,

Z =	 D� D�

�det�2�J�
exp
− i	

C

dt�−
i

2�
i

�i
d

dt
�i

+
1

2�
ij

��i − Hi�Jij
−1�� j − H j� − �

i

�iSi�
 . �6�

As it follows from this expression, the effective Majorana
fermion Hamiltonian for the Heisenberg ferromagnet is

Ĥef f = − �
i

�iSi =
i

2 �
ilmn

�i
l�lmn	i

m	i
n, �7�

where l , m , n are vector components. The action in the ex-
ponent of �6� is quadratic on the 	 variables. Therefore, it can
be formally integrated,

Z =	 D�

�det�2�J�
e−�i/2��C dt�ij��i−Hi�Jij

−1��j−Hj��
i

K��i� ,

�8�

where

K��i� =	 D� exp
− 	
C

dt�1

2
�i

d

dt
�i + iĤef f�
 �9�

is a function of the order parameter �. The functional K��i�
is the Helmholtz free energy for a single spin in an external
effective field �i�t�.

The integration over the 	 fields in �9� gives

Z =
1

23N/2 	 D�

�det�2�J�
exp
−

i

2
	

C

dt�
ij

��i − Hi�

�Jij
−1�� j − H j� +

1

2�
i

Tr ln iG−1��i�
 , �10�

where

Gij
ab�t,t�� = − i�T̂	i

a�t�	 j
b�t��� �11�

is the propagator for the 	 field. The effective bosonic action,
which corresponds to the partition function �10�, has the fol-
lowing form:

�F =
i

2
	

C

dt�
i,j

��i − Hi�Jij
−1�� j − H j� −

1

2�
i

Tr ln iGii
−1��i� ,

�12�

where the trace operation assumes the time integration along
the contour C, and the summation over the space and spin

FIG. 1. Integration contour for the time variable. The direction
is ti→ tf → ti→ ti− i�.

TURKOWSKI, SACRAMENTO, AND VIEIRA PHYSICAL REVIEW B 73, 214437 �2006�

214437-2



indexes. The � fields are not strictly bosonic fields but com-
mutative classical variables.

In general, there is no simple analytical solution for the
propagator Gij

ab�t , t��, since the field �i�t� may be both time
and space dependent. Therefore, it is very difficult to find the
behavior of the system with the free energy �12�, especially
when some initial nonhomogeneous distribution of the mag-
netization �or ��, like a bubble, for example, takes place. It
is convenient to obtain a simpler bosonic theory that can
describe the behavior of the system. We shall study the be-
havior of a small magnetic domain at short to intermediate
times. In this case it is possible to approximate the free en-
ergy of the system by the power expansion in the deviations
of the field �=�−��0� up to some finite order in the effec-
tive action �12�, ��0� is the saddle point equilibrium solution
�homogeneous high temperature solution�. Usually, it is
enough to consider the fourth order contribution to get the
main physical effects in the system.

Minimization of the thermodynamic potential with respect
to � gives the saddle-point equation for the order parameter:

�i
�0��t� = Hi�t� + JijM j

�0��t� , �13�

where the mean-field magnetization Mj
l�0��t� is

Mj
l�0��t� =




i
� j
l�t�

1

2
Tr ln iG−1�� j

�0�� =
1

2
�lsrGjj

sr�t,t� .

�14�

Taking the time limit properly, one gets

Mj
l�0��t� =

1

4
�lsr�Gjj

�0�sr�t+,t� + Gjj
�0�sr�t−,t�� . �15�

The function Gij
mn�t1 , t2� is local in space and it satisfies the

following equation in the Cartesian basis:


i
d

dt1

pm − i�pml�i

�0�l�t1�
Gij
mn�t1,t2� = 
pn
�t1 − t2� .

�16�

This Green’s function can be found analytically on the mean-
field level in the case of an homogeneous time-dependent
field ��0��t�= �0,0 ,��0��t�� in the cylindrical basis
Gii

�0����t1 , t2�=−i�T̂��i
��t1��i

�̄�t2��� with the coordinates �i
±�t�

=1/�2��i
x�t��± i�i

y�t� , �i
0�t�=�i

z�t�, but we do not present the
general expression here. In the case the system is homoge-
neously magnetized and ��0� is time independent, the
Green’s function is diagonal in the spin and space indexes
and it satisfies the following equation:


i
d

dt
− ���0�
G��t − t�� = 
�t − t�� . �17�

The components of the Green’s function are

Gjj
�0���t1,t2� = Gjj

���t1,t2�
C�t1 − t2� + Gjj
���t1,t2�
C�t2 − t1� ,

�18�

Gjj
���t1,t2� = −

i

exp�− ��� j
�0�� + 1

e−i��j
�0��t1−t2�, �19�

Gjj
���t1,t2� =

i

1 + exp���� j
�0��

e−i��j
�0��t1−t2�. �20�

The zeroth-order Green’s function in the Cartesian basis has
the following structure:

Ĝjj
�0�sr�t1,t2� = � Gjj

�0�xx�t1,t2� Gjj
�0�xy�t1,t2� 0

− Gjj
�0�xy�t1,t2� Gjj

�0�xx�t1,t2� 0

0 0 Gjj
�0�zz�t1,t2�

� .

�21�

The Green’s function components in the Cartesian basis
are connected with the Green’s function components in a
cylindrical basis as:

Gjj
�0�xx�t1,t2� =

1

2
�Gjj

�0�+�t1,t2� + Gjj
�0�−�t1,t2�� , �22�

Gjj
�0�xy�t1,t2� = −

1

2i
�Gjj

�0�+�t1,t2� − Gjj
�0�−�t1,t2�� , �23�

Gjj
�0�zz�t1,t2� = Gjj

�0�0�t1,t2� . �24�

Therefore, Eq. �15� in this case has the following form:

Mi
�0� =

1

2
tanh
�i

�0�

2T

 . �25�

The system of equations �13� and �25� allows us to find the
equilibrium magnetization M�0� and the order parameter ��0�

of the system in an external magnetic field H and at tempera-
ture T. The mean-field critical temperature of the system is
Tc=dJ /2 �H=0�, where d is the dimensionality of the sys-
tem. We shall consider below the situation when the tem-
perature of the system is switched from a high value Ti�Tc
to some low value T�Tc at time t=0. It is important that the
mean-field solution ��0� is time independent when the exter-
nal field is constant in time. It follows from �13� and �25�
that the mean field solution is ��0�=H, when the initial tem-
perature is very high. The time dependence of the initial
bubble will be described by a fluctuation field �=�−H,
which is the deviation of the field from the mean-field high T
solution ��0�=H.

To study the time dependence of the field �, we shall
evaluate an approximate expression for the free energy �12�
in powers of this field �up to the fourth order�. For this pur-
pose, it is convenient to rewrite the last term in �12� in the
following form:

1

2
Tr ln iG−1��� =

1

2
Tr ln iG�0�−1�H� +

1

2
Tr ln�1 + G�0��H�

��G−1��� − G�0�−1�H���

=
1

2
Tr ln iG�0�−1�H� −

1

2
Tr�

n=1

�
�− 1�n

n

��G�0��H��G−1��� − G�0�−1�H���n. �26�

The following expression for the Green’s function can be
used:
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Gij
−1mn�t1,t2� = 
i

d

dt1

mn
ij − i�mnl
ij�i

l�t1�

�t1 − t2� .

�27�

Therefore,

�G−1��� − G�0�−1�H��ij
lm�t1,t2� = − i�lmn 
ij�i

n�t1�
�t1 − t2� .

�28�

The system of equations �12�, �26�, and �79� defines the
power expansion of the effective bosonic theory for the
Heisenberg model. The free energy has the following form in
the �4 approximation:

F =
i

2
	

C

dt�
i,j

��i − Hi�Jij
−1�� j − H j� −

1

2�
i

Tr ln iGii
−1��i�

� −
1

2�
i

Tr ln iGii
−1�Hi� − i	

C

dt1 ji
l�t1��i

l�t1� +
i

2
	

C

dt1	
C

dt2 �i
l�t1��Jij

−1
lm
�t1 − t2� − i 
i,j�̄ii
lm�t1,t2��� j

m�t2�

+
1

3!
	

C

dt1	
C

dt2	
C

dt3Ci
lmn�t1,t2,t3��i

l�t1��i
m�t2��i

n�t3�

+
1

4!
	

C

dt1	
C

dt2	
C

dt3	
C

dt4 �i
lmnr�t1,t2,t3,t4��i

l�t1��i
m�t2��i

n�t3��i
r�t4� , �29�

where

ji
l�t1� = Mi

l�0��t1� , �30�

�̄ii
lm�t1,t2� = −

1

2
�ll1l2�mm1m2Gii

�0�l2m1�t1,t2�Gii
�0�m2l1�t2,t1� , �31�

Ci
lmn�t1,t2,t3� = − i�ll1l2�mm1m2�nn1n2Gii

�0�l2m1�t1,t2�Gii
�0�m2n1�t2,t3�Gii

�0�n2l1�t3,t1� , �32�

�i
lmnr�t1,t2,t3,t4� = 3�ll1l2�mm1m2�nn1n2�rr1r2Gii

�0�l2m1�t1,t2�Gii
�0�m2n1�t2,t3�Gii

�0�n2r1�t3,t4�Gii
�0�r2l1�t4,t1� . �33�

The function �̄ij
lm�t1 , t2� is in fact the zeroth-order local mag-

netic susceptibility of the system, calculated as �̄ij
lm�t1 , t2�

=
Mi
�0�l�t1� / i 
Hj

�0�m�t2�. Note that there are linear and cubic
terms. The linear term is present since this is not a saddle-
point expansion at each temperature but an expansion around
the high-temperature mean-field solution. Obviously, this �4

approximation in �29� is valid only when the field is small.
This is always correct at short times. It is also correct at
intermediate and long times when the external field is weak
or/and the temperature is high enough. Since the last case is
the case under consideration, we can safely consider the free
energy in the fourth order in the perturbation theory.

We shall derive the effective theory, local in time and
continuous in space, in the following way. First, we pass to
the continuous version of the hopping operator in the qua-
dratic term in �29�:

Jij
−1 →

1

2 dJ

1 −

�2

2d
a2
; �34�

where a is the lattice constant. In order to get the term local
in time we make a Fourier transform of the susceptibility

with respect to the relative time coordinate t= t1− t2. We keep
the lowest terms in the frequency � and then substitute �
→ id /dt. The susceptibility does not depend on the center of
mass time coordinate �t1+ t2� /2 and, therefore, it can be in-
tegrated out along the contour. This gives just a factor −i�.
The expression for the quadratic part of the free energy is in
this case

F2 = iT	
c

dt	 dx�1

2
���x,t�
�1

d2

dt2 + �m̃xx�2
���x,t�

+
1

2
�m̃zz�2�z2�x,t� +

1

2

�x�x,t��2

d

dt
�y�x,t�

− �y�x,t��2
d

dt
�x�x,t�
 +

a2

16 dTc
�

l=x,y,z
���l�x,t��2� ,

�35�

where ��= ��x ,�y ,0� is the planar field component,

�1 = �1/2H3�tanh��H/2� , �36�
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�2 = �1/2H2�tanh��H/2� , �37�

and the effective mass squares are

�m̃xx�2 =
1

2 dJ
−

1

2H
tanh
�H

2

 , �38�

�m̃zz�2 =
1

2 dJ
−

�

4 cosh2��H/2�
. �39�

The effective mass squares are negative in the ordered phase.
The detailed derivation of �35� is presented in Appendix A.
Let us note that only the planar components have time de-
rivatives. These correspond to the presence of the planar
component ferromagnetic wave modes in the system. The z
component has no time derivatives since �ii

zz�t1 , t2� is time
independent, and the mixed xz and yz components are equal
to 0 �see Appendix A�.34 It is interesting to note also that the
terms linear in frequency in the effective action, which cor-
responds to Eq. �35�, have a form different from the one
obtained in the case of the Hubbard model.35 In the last case
the lowest frequency contribution is proportional to � di-
vided by the product of the Fermi velocity and the momen-
tum modulus vF �q�, which means that “¼the decay mecha-
nism for the paramagnon excitations is Landau damping
lifetime of the free particle-hole pair with the total momen-
tum �q� is �vF �q � �−1. . ..”35 In our case the standard magnon
dispersion relation ��k2 can be obtained from the expres-
sion for the RPA susceptibility. This expression can be evalu-
ated starting from the free energy �29� �for details, see Ref.

9�. In this paper we consider also the terms second order in
frequency in the effective action. As it will be shown below,
the terms ��2 are important in the case when one of the
planar components of the field ��x or �y� is space and time
independent. In this case, the bubble radius has an unusual
time dependence at long times �see Sec. III B�.

Second, we make the time average of the other nonlocal
in time terms in the following way:

	
C

dt1	
C

dt2	
C

dt3Ci
lmn�t1,t2,t3��i

l�t1��i
m�t2��i

n�t3�

� 	
C

dt C̃i
lmn�t��i

l�t��i
m�t��i

n�t� , �40�

where

C̃i
lmn�t� � 	

C

dt1	
C

dt2 Ci
lmn�t1,t2,t� . �41�

The same procedure is applied to the j and � terms. This
local in time approximation is valid in the nonequilibrium
case when the fields rapidly change with time, so the equal
time products make the main contribution to the integral. It is
also a good approximation at very long times when the sys-
tem approaches equilibrium and the fields almost do not de-
pend on time. The short and the long time cases are the most
interesting to us; therefore we use this approximation. How-
ever, the study of the intermediate time regime requires a
more accurate approach.

The expression for the free energy is then reduced to

F = iT	
c

dt	 dx�− j̃z�z�x,t� +
1

2
���x,t�
�1

d2

dt2 + �m̃xx�2
���x,t� +
1

2
�m̃zz�2�z2�x,t�


+
1

2

�x�x,t��2

d

dt
�y�x,t� − �y�x,t��2

d

dt
�x�x,t�
 +

a2

16 dTc
�

l=x,y,z
���l�x,t��2 +

1

3!
C̃xxz��

2 �x,t��z�x,t� +
1

3!
C̃zzz�z3�x,t��

+
1

4!
�̃xxxx��

4 �x,t� +
1

4!
�̃xxzz��

2 �x,t��z2�x,t� +
1

4!
�̃zzzz�z4�x,t�� . �42�

The expressions for the independent parameters are

j̃z =
1

2
tanh
�H

2

 , �43�

C̃xxz = −
3�

4H cosh2��H/2�
+

3

2H2 tanh
�H

2

 , �44�

C̃zzz =
�2 tanh��H/2�
4 cosh2��H/2�

, �45�

�̃xxxx =
3

4H3 cosh2��H/2�
�sinh��H� − �H� , �46�

�̃xxzz =
6

H3��2H2 tanh��H/2�
4 cosh2��H/2�

+
�H

2 cosh2��H/2�

− tanh
�H

2

� , �47�

�̃zzzz =
�3

4 cosh2��H/2�
 3

2 cosh2��H/2�
− 1
 . �48�
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All the coefficients are space independent, since the mag-
netic field is homogeneous in space. It follows from expres-
sions �46�–�48� for the free energy coefficients that the �4

approximation we use is valid only at some values of the
ratio H /T. Namely, in order to have a well-defined theory,

the coefficients �̃xxxx and �̃zzzz must be positive. Otherwise,
the global minimum of the free energy will take place at
�� � =�. The coefficient �xxxx is always positive and the co-
efficient �zzzz becomes negative, when cosh�H /2T���3/2,
or at H�2a cosh��3/2�T�1.316T. Therefore, only the
fields H�1.316T have a physical sense. The fact that the
ratio H / �2T� is smaller than 1 allows one to make an expan-
sion of the coefficients in powers of �H /2 �see later�.

The expression for the free energy �42� can be rewritten in
the cylindric representation �= ��� cos��� ,�� sin��� ,�z�
as

F = iT	
c

dt	 dx�− j̃z�z�x,t�

+
1

2
���x,t�
�1

d2

dt2 + �m̃xx�2
���x,t� +
1

2
�m̃zz�2�z2�x,t�

+
1

2
�2��

2 �x,t�
d��x,t�

dt
+

a2

16 dTc
������x,t��2 + ��

2 �x,t�

�����x,t��2 + ���z�x,t��2� +
1

3!
C̃xxz��

2 �x,t��z�x,t�

+
1

3!
C̃zzz�z3�x,t�+

1

4!
�̃xxxx��

4 �x,t�

+
1

4!
�̃xxzz��

2 �x,t��z2�x,t� +
1

4!
�̃zzzz�z4�x,t�� . �49�

The first term in the second line of �49� is the energy of the
precession of the field around the z axis. Contrary to the
classical case,16,31 the free energy contains the second time
derivative term for the field amplitude. This form of the free
energy is more adequate in the case of the ferromagnet �see,
for example, Ref. 36�.

III. QUANTUM SPINODAL DECOMPOSITION

To study the spinodal decomposition in the system, it is
convenient to analyze the structure factor Sll�r , t�
= ��l�r , t��l�0, t��, or its Fourier transform Sll�k , t�
=�ddr exp�−ikr�Sll�r , t�= ��k

l �t��−k
l �t��.23 To find the struc-

ture factor Sll�k , t�, one needs to find the solution of the
equation for ��x , t�, which can be found by minimizing the
free energy �42� and �49� with respect to the field � compo-
nents. The equations have the simplest form in the cylindric
representation of the field:


�2
d2

dt2 + �m̃xx�2 −
a2

8dTc
�2 + �1

d�

dt
+

a2

8dTc
����x,t��2

+
C̃xxz

3
�z�x,t� +

�̃xxxx

3!
��

2 �x,t� +
�̃xxzz

12
�z2�x,t�
���x,t�

= 0, �50�

�2
d

dt
���

2 �x,t�� −
a2

8 dTc
�2���

2 �x,t�� = 0, �51�


�m̃zz�2 −
a2

8dTc
�2 +

C̃zzz

2
�z�x,t� +

�̃xxzz

12
��

2 �x,t�

+
�̃zzzz

3!
�z2�t��x,t�
�z�x,t� = j̃z −

C̃xxz

3!
��

2 �x,t� . �52�

This system can be solved in the following way. First, one
solves Eq. �51� for ��

2 ; then substitution of this solution into
�52� gives an equation for �z that can be solved. Finally, the
substitution of the solutions for ��

2 and �z into �50� gives an
equation for the angle component of the order parameter. Its
solution gives the dependence ��t ,x�.

It is important that there is no dynamics in the system if
we put ��=0. In this case we have only Eq. �52� for �z that
has no time derivatives. Therefore, the vector field should be
considered in order to study spinodal decomposition.

First of all, we note that as it follows from Eq. �51�, the
solution for f�t ,x�=��

2 �t ,x� depends on one variable
x=R2 / t, where R is the radial component of the vector in the
spherical basis. This can be shown in the most simple way in
the spherical coordinates. Renormalizing the time and radius
variables: t= t /�1, R=�8dTc /a2R, we get the following equa-
tion for f:

df

dt
− 
 d2

dR2 +
d − 1

R

d

dR

 f = 0. �53�

In terms of the new variable x=R2 / t, we have

xf� + �x + d�f� = 0. �54�

This equation has a formal solution,

f�x� = C1	
C2

x

dz z−de−z, �55�

or

��
2 �t,x� = C1	

C2

R2/t

dz z−de−z. �56�

Nevertheless, it is difficult to analyze the solutions of Eq.
�52� for �z and especially of Eq. �50� for the order parameter
phase �. We shall use the following approximation in order
to simplify the system of equations �50�–�52�. We assume
that the vector � is precessing around the z axis with a
constant frequency:

��x,t� = �0 + �1t . �57�

This is a natural assumption that follows from the equilib-
rium theory. It is possible to find the equilibrium value of the
frequency �1. Really, if we insert ��=const, �z=const and
� given by �57� into �50�–�52�, we find the equilibrium value
for �z for a given �� from �52�, and the expression for the
frequency �1:
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�1 = −
1

�1

 C̃xxz

3
�z +

�̃xxxx

3!
��

2 +
�̃xxzz

12
�z2
 . �58�

We assume that initially the angle �0�x� is the same over the
lattice.

Now the system �50�–�52� can be simplified in the follow-
ing way. Assuming that � is given by �57�, we neglect Eq.
�51�, since it was obtained by minimizing �49� with respect
to �. We substitute solution �57� into �50�, which leads to
renormalization of the mass,

�m̃xx�2 → �m̃xx�2 + �1�1. �59�

Assuming that the frequency �1 is not too large, which is
true in the case of small magnetic fields, the mass �m̃xx�2

remains negative, even after the renormalization. Below we
shall assume that the plane mass is given by �59�, where �1
is defined by the equilibrium solution �57�. In this case the
simplified system of equations is


�1
d2

dt2 + �m̃xx�2 −
a2

8 dTc
�2 +

C̃xxz

3
�z�x,t� +

�̃xxxx

3!
��

2 �x,t�

+
�̃xxzz

12
�z2�x,t�
���x,t� = 0, �60�


�m̃zz�2 −
a2

8dTc
�2 +

C̃zzz

2
�z�x,t� +

�̃xxzz

12
��

2 �x,t�

+
�̃zzzz

3!
�z2�x,t�
�z�x,t� = j̃z −

C̃xxz

3!
��

2 �x,t� . �61�

Later, we shall study this system in different physical cases.

A. Free case

The system of equations �60� and �61� has a simple form
in the free case:


�1
d2

dt2 + �m̃xx�2 −
a2

8 dTc
�2
���x,t� = 0, �62�


�m̃zz�2 −
a2

8 dTc
�2
�z�x,t� = j̃z. �63�

The equations are therefore decoupled. Only the plane com-
ponent of the field �� has time dependence. It is necessary
to note that the masses for the transverse and longitudinal
components of the field are different, in general. Moreover,
the square of the masses can have different signs for these
components. However, in the limit of small H /T they coin-
cide �see �38� and �39��. This rotational symmetry breaking
is caused by the magnetic field.

To find the correlation function for the plane components
of the order parameter, one needs to solve the quadratic
equation in the momentum representation in analogy with
Refs. 23 and 24:


 d2

dt2 + �m̃xx�2 + k2
U�k
± �t� = 0, �64�

where U�k
± �t� correspond to positive and negative frequency

modes of the field ���x , t� in the momentum representation.
t= t /��2 and k= �a /�8dTc�k are dimensionless time and mo-
mentum variables. The boundary conditions for the fields are

U�k
± �t� = e�i���k�t, t � 0, �65�

where ���k� is defined in �69�. The correlation function in
this case is given by

���k�t���−k�t�� =
1

���k�
coth
�i���k�

2

U�k

+ �t�U�k
− �t� .

�66�

The solution of Eqs. �64� with boundary conditions �65�
gives24

���k�t���−k�t�� =
1

���k�
coth
�i���k�

2

, t � 0,

�67�

���k�t���−k�t�� =
1

���k��
1 +
1

2

1 +

��
2 �k�

W2�k�



��cosh�2W�k�t� − 1�

�mf
2 − k2�

+ 
1 +
1

2

1 −

��
2 �k�

��
2 �k�


�cos�2���k�t� − 1�

�
�k2 − mf

2��coth��i��/2�, t � 0,

�68�

where

���k� = �k2 − mf
2, ���k� = �k2 + mi

2, �69�

W�k� = �mf
2 − k2; �70�

�i=1/Ti is an initial inverse temperature, which is assumed
to be very large. mi

2�T�= �m̃xx�2�Ti��0 and −mf
2= �m̃xx�2�Tf�

�0 are the effective masses in the disordered �initial� and in
the ordered �final� phases with temperatures Ti�Tc and
Tf �Tc, correspondingly.

To study how a domain grows in the case of different
dimensions, one needs to calculate the scaled correlation
function for the transverse field component in the real space
representation:

S̄�r,t� =	 dk

�2��deikr�S�k,t� − S�k,0�� . �71�

Approximate analytical expressions for the correlation
function �71� can be obtained in the case of different dimen-
sions by using �68�. Momentum integration in �71� can be
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performed for �k � �mf, since the unstable modes give the
main contribution in the integral �71�. It is convenient also to
introduce dimensionless variables:

� = k/mf, � = mft, x = r/mf, L2 = mi
2/mf

2. �72�

In this case, the scaled correlation function �71� can be writ-
ten as

S̄�x,�� = mf
d−2Ti�L2 + 1�	

0

1

d� �d−1�d��x�
1

��2 + L2���2 + 1�

��cosh�2�1 − �2�� − 1� , �73�

where �d��x� is the d-dimensional measure of integration,

�1��x� =
1

�
cos��x�, d = 1,

�2��x� =
1

�2	
0

�/2

d� cos��x cos����, d = 2,

�3��x� =
1

2�2

sin��x�
�x

, d = 3. �74�

It is easy to show that the function W�� ,��=�d−1�S�� ,��
−S�� ,0�� as a function of � has a sharp maximum at some
value of �=�s, which depends on the dimensionality. A
simple analysis shows that the value of �s is

�s = 0, d = 1,

�s =
1

�2�
, d = 2,

�s =
1
��

, d = 3, �75�

and

W��s,�� = �s
d−1�S��s,�� − S��s,0�� � exp�2��/��d−1�/2.

�76�

Numerical calculations confirm these. �See Figs. 2–4.�
In this case the scaled correlation function �73� can be

calculated analytically by making a saddle-point approxima-
tion for the expression under the integral

S̄�x,�� = g
 x2

�

S̄�0,�� , �77�

where the local correlation function is

S̄�0,�� =
mf

d−2Ti�L2 + 1�
2d�d/3L2

e2�

�d/2 , �78�

and the scaled space dependent part of the correlation func-
tion is

g
 x2

�

 � e−x2/4�, d = 1,

FIG. 2. Momentum dependence of the function
exp�−2����d−1�/2W�� ,��, where W�� ,��=�d−1�S�� ,��−S�� ,0�� in
the one-dimensional �1D� case at �=10,15,20,25. Here and in
Figs. 3 and 4, the curve moves to the right as time increases.

FIG. 3. The same as in Fig. 2 in the 2D case. Vertical lines
correspond to the extremum values of the momenta �s=1/�2� at
given values of time. Here and in Fig. 4 the curve moves to the left
as time increases.

FIG. 4. The same as in Figs. 2 and 3 in the 3D case. Vertical
lines correspond to the extremum values of the momenta �s

=1/�� at given values of time in this case.
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g
 x2

�

 � e−x2/2�, d = 2,

g
 x2

�

 �

sin�x/���
x/��

e−x2/4�, d = 3. �79�

It follows from �78� that the fluctuations inside the domain at

long times, S̄�0,��= ��2�0,���, are the strongest in the 1D
case, and they decrease when the dimensionality of the sys-
tem is increased, as it should be.

The scaling of the correlation function arguments x2 /�,
shows that the domain size grows as R��t in all the cases
with different dimensionalities, similar to the 3D case.23,24

B. The interacting case

In the interacting case the system �60� and �61� is much
more complicated, since this is a system of coupled nonlin-
ear equations. To solve them, we shall use the Hartree ap-
proximation. This approximation was already used to solve
the equation in the scalar case.23,24 Here we use this approxi-
mation to solve the system of coupled equations. First of all,
we simplify Eqs. �60� and �61� by considering the case
H /T�1, which corresponds to a rather high temperature
below Tc, or to a weak magnetic field. In this case the coef-

ficients j̃ and C̃ are proportional to H /T and are small. The

coefficients �̃ are H independent in the lowest order in H /T.
It is worth mentioning that the role of the linear and the
cubic terms in the free energy, in general, can be important,
though it does not change the rate of the domain growth in
the classic theory, where only the domain boundary curva-
ture defines the bubble radius velocity �for a review, see, for
example, Ref. 30�.

Now we apply the Hartree approximation for the system
�60� and �61�. The coupled system of equations for the local
in space correlation functions ���

2 �t�������0 , t����0 , t��
and ��z2�t�����z�0 , t��z�0 , t�� has the following form in this
case:


 d2

dt2 + k2 + m2 +
�

2
����

2 �t�� − ���
2 �0�� + ��z2�t��

− ��z2�0���
U�k
± �t� = 0, �80�


m2 + k2 +
�

2
����

2 �t�� − ���
2 �0�� + ��z2�t�� − ��z2�0���


�Uzk
± �t� = j − C����

2 �t�� − ���
2 �0�� + ��z2�t�� − ��z2�0��� ,

�81�

���
2 �t�� − ���

2 �0�� =	 ddk

�2��d

1

2���k�
�U�k

+ �t�U�k
− �t� − 1�

�coth��i���k�/2� , �82�

��z2�t�� − ��z2�0�� =	 ddk

�2��d

1

2���k�
�Uzk

+ �t�Uzk
− �t� − 1�

�coth��i���k�/2� , �83�

where we have introduced the renormalized current:

j = j̃z + C����
2 �0�� + ��z2�0��� , �84�

the mass

m2 = 1 −
Tc

T
+

�

2
����

2 �0�� + ��z2�0��� , �85�

and the couplings C=H / �8T3�, �=1/ �8T3�. We have ne-
glected the term proportional to C in �80�; since we assume
that ��z�t����t��� ��z2�t�� , ���

2 �t�� �see �60��. It is impor-
tant to note that the dimensionality of the system does not
enter in the system of equations �82� and �83� after the mo-
mentum renormalization. Equation �81� can be formally
solved. Substitution of the solution into �83� gives a tran-
scendental equation that connects ��z2�t��− ��z2�0�� and
���

2 �t��− ���
2 �0��:

��z2�t�� − ��z2�0�� = �j − C����
2 �t�� − ���

2 �0�� + ��z2�t�� − ��z2�0����2

�	 ddk

�2��d

1

2���k�
coth��i���k�/2�

m2 + k2 + ��/2�����
2 �t�� − ���

2 �0�� + ��z2�t�� − ��z2�0���

−	 ddk

�2��d

1

2���k�
coth��i���k�/2� . �86�

Now the problem is reduced to the field plane component
correlation function ���

2 �t��− ���
2 �0�� problem �80� and �82�,

where ��z2�t��− ��z2�0�� is defined by �86�. This problem can
be solved exactly numerically. Since we consider here the
limit of a weak magnetic field, we can find the behavior of
the system by an analytic approach.

Really, since the expression in front of the integral in �86�
is already proportional to H2, it means that ���z2�t��
− ��z2�0��� at initial times is smaller than ����

2 �t��− ���
2 �0���

by a factor �H /T�2�1. Therefore, ��z2�t��− ��z2�0�� on the
right hand side of �86� can be neglected. We also neglect
���

2 �t��− ���
2 �0�� in the denominator of the integral, assum-
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ing that ����
2 �t��− ���

2 �0�� � /T2� �m2�, which is true when
the final temperature is low. In this case we have a simple
relation between ��z

2�t��− ��z
2�0�� and ���

2 �t��− ���
2 �0��:

��z2�t�� − ��z2�0�� = 
 H

4T

2
1 −

���
2 �t�� − ���

2 �0��
2T2 
2

�A�mi
2,m2,Ti� − B�mi

2,Ti� , �87�

where

A�mi
2,m2,Ti� =	 ddk

�2��d

1

2���k�
1

m2 + k2 coth��i���k�/2� ,

�88�

B�mi
2,Ti� =	 ddk

�2��d

1

2���k�
coth��i���k�/2� . �89�

Relation �87� already suggests the answer to how the vector
field behaves in the unstable phase. ���

2 �t�� must be an os-
cillating function of time with a large amplitude of the oscil-
lations �see later�, the amplitude of the oscillations decreases
with time and ���

2 �t�� approaches a positive value. As it
follows from �87�, ��z2�t�� is also an oscillating function of
time with the same period as ���

2 �t��. Then ��z2�t��
− ��z2�0�� approaches the equilibrium value ��H / �4T��2

���1/2�tanh�H /2T��2.
To prove this, one needs to solve �80� and �82� to find

���
2 �t��− ���

2 �0��. It is enough to put ��z2�t��− ��z2�0��=0 in
�80�, since it is much smaller than ���

2 �t��− ���
2 �0�� at early

times. The system of equations for ���
2 �t��− ���

2 �0�� has a
simple form in this case


 d2

dt2 + m2 + k2 +
�

2
����

2 �t�� − ���
2 �0���
U�k

± �t� = 0,

�90�

���
2 �t�� − ���

2 �0�� =	 ddk

�2��d

1

2���k�
�U�k

+ �t�U�k
− �t� − 1�

�coth��i���k�/2� , �91�

with the boundary condition

���
2 �t � 0�� − ���

2 �0�� = 0, �92�

and �65�. This system coincides with the system of equations
for the structure factor in the relativistic scalar theory. It was
analyzed in Refs. 23 and 24 in the three dimensional case. It
was shown that the solution for ���

2 �t��− ���
2 �0�� in the 3D

case is an oscillating function with the oscillation amplitude
decaying exponentially with time. The domain size increases
with time as �D�t�= �8�2�1/2�t��0�, where in our notation
��0���J /T. We present results of calculations for the corre-
lation function for both components of the order parameter
�� and �z in the cases of different dimensions in Figs. 5–7.
The correlation function for the perpendicular component ��

was calculated by solving �91� and �92�, and the correlation
function for the parallel component was calculated by using
the approximate expression �87�. In Figs. 5–7 we present the
renormalized zz-correlation function,

��z2�t�� − ��z2�0�� = 
1 −
���

2 �t�� − ���
2 �0��

2T2 
2

�93�

�compare to �87��.

FIG. 5. Time dependencies of the correlation functions for per-
pendicular field component �solid line� and renormalized parallel
component �93� �dashed line� in the 1D case. The model parameters
are mi

2=1, mf
2=−1, Ti=1, �=0.5.

FIG. 6. The same as in Fig. 5 in the 2D case.

FIG. 7. The same as in Fig. 5 in the 3D case.
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As it follows from Figs. 5–7, the fluctuations initially
grow until m2+� /2���2�t��− ��2�0��� becomes positive. The
condition

m2 +
�

2
����

2 �t�� − ���
2 �0��� = 0 �94�

is used to define the spinodal time or time when the insta-
bilities start to disappear. As it follows From Figs. 5–7, the
spinodal time is decreasing when dimensionality of the sys-
tem becomes lower. Also, the correlations grow faster in low
dimensions system, since ��2�t��� t−d/2 �see �78��.

Shortly after that time, the correlation function starts to
oscillate and approaches the equilibrium value,

���
2 �t�� − ���

2 �0�� =
2�m2�

�
, �95�

which is equal to 4 in our case.
As it follows from �93� and Figs. 5–7, the correlation

function for the z component has the same time dependence
as the perpendicular component, except at a very short time.
It means that the correlation functions, and therefore, the
bubble radius for both components, must have the same time
dependence. Finally, the system relaxes to the equilibrium
state at a finite temperature, and the z component of the order
parameter approaches its equilibrium value defined by the
final temperature and the magnetic field. It is important that
the �z has time dependence only when j and the C param-
eters are different from zero. Otherwise, Eq. �81� has only
the trivial solution Uz±�k , t�=0. The parameters j and C are
finite only in the case of a finite external field. Therefore, the
magnetization evolves in time to its equilibrium value di-
rected along the z axis only when an external field H is
applied. It is enough to have an extremely small magnetic
field to get this symmetry broken equilibrium state.

To find the explicit time dependence of the bubble radius
in the interacting case, one could solve system �80� and �86�,
and then substitute the solution for U�k�t� into �71�. Then it
is necessary to find if the correlation function arguments sat-
isfy some scaling condition, like x2 / t in the free case. This
scaled variable will define the domain size time dependence
�x��t in the free case�. As it follows from our previous
analysis, the effective mass remains negative until the spin-
odal time. Therefore the correlation function in the interact-
ing case has the same time and space dependence as in the
free case, if the coupling � is weak. Our case corresponds to
a weakly coupled theory, since we make an expansion of the
free energy in powers of the field, and the coupling should be
small in this case. Thus, at early times, i.e., at times smaller
than the spinodal time, the domains are growing as �t in our
effective model. The presence of the cubic terms does not
change this result, since the cubic coupling parameter C is
also assumed to be small. It would be extremely interesting
to generalize these results to intermediate and long times,
where the role of the cubic terms can be nontrivial. Also, the
ground state value of the field strongly depends on value of
the cubic couplings when these couplings are large.

1. Scaling analysis at long times

It is actually possible to show, using a scaling analysis,
that the long-time bubble radius time dependence in the Har-
tree approximation is R� t. This analysis in the classical sca-
lar case is presented in Ref. 30, for example.

Really, let us consider the system of equations �60� and
�61� in the weak magnetic field H limit. In this case the term

proportional to C̃xxz in �60� can be neglected, since it is pro-
portional to H, and it is small compared to the terms propor-

tional to the field-independent terms with �̃’s. Therefore, the
system of equations �60� and �61� can be written as


 d2

dt2 + m2 − �2 +
�

2
���

2 �r,t� + �z2�r,t��
���r,t� = 0,

�96�


m2 − �2 +
�

2
���

2 �r,t� + �z2�r,t��
�z�r,t�

= j − C���
2 �r,t� + �z2�r,t�� , �97�

where m2 is defined by Eq. �85� and C and � are defined after
this equation. The space and time variables are normalized to
have the coefficients equal one in front of d2 /dt2 and �2.

System �96� and �97� can be solved in the Hartree ap-
proximation as follows. First, we define the function

a�t� = − m2 −
�

2
����

2 �r,t�� + ��z2�r,t��� , �98�

which is assumed to be space-independent. Therefore,

a�t� = − m2 −
�

2
	 ddk

�2��d ����k�t���−k�t�� + ��k
z �t��−k

z �t��� .

�99�

This function approaches to zero when t→�, since the
equilibrium solution of �96� satisfies

m2 +
�

2
���

2 �r,t� + �z2�r,t�� = 0. �100�

In this case Eq. �96� in the momentum space can be ap-
proximated by


 d2

dt2 + k2 − a�t�
��k�t� = 0. �101�

It is enough to solve Eq. �101� for the perpendicular com-
ponent of the field in order to find the domain size time-
dependencies, since the longitudinal component of the field
will satisfy the same scaling at long time. Really, �z�r , t� can
be found at long times by solving �97�. Neglecting space
derivatives in this equation, since �2 is small �the fields de-
pend on two variables r / t and t, as it will be shown below,
therefore, �2� t−2→0 at long times� and using �100�, one
can find:

�z2�r,t� = j/C − ��
2 �r,t� . �102�

Since the system was initially in the disordered state with
T�Tc, the following initial condition can be used:
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����r,0����r�,0�� = ��z�r,0��z�r�,0�� = �
�r − r��
�103�

or

���k�0���−k�0�� = ��k
z �0��−k

z �0�� = � . �104�

Another boundary condition for the correlation functions that
can be used to solve the second order differential equation is

����r,t = � ����r�,t = � �� = ��
eq2,

��z�r,t = � ��z�r�,t = � �� = �zeq2, �105�

where ��
eq and �zeq are the equilibrium solutions of system

�96� and �97�. This condition will be automatically satisfied
since the solution is valid when a�t�→0 at t→�.

In order to find the exact expressions for the correlation
functions,

S�k,t� = ���k�t���−k�t�� �106�

and

S�r,t� = ����r1 + r,t����r1,t��

=	 ddk

�2��de−ikr���k�t���−k�t�� , �107�

one needs to solve Eq. �101� with initial condition �104�. The
solution of this equation is

��k�t� = ��k�0�
sin�kt�

kt
exp g�t� , �108�

where g�t� is such a function that �2g�t� /�t2=a�t�=−t−2 �see
Appendix B�. In this case the momentum correlation func-
tion is

S�k,t� = �
sin2�kt�

�kt�2 exp�2g�t�� . �109�

Thus, the correlation function S�k , t� depends on two vari-
ables t and kt at long times. In this case the real space cor-
relation function depends on two variables t and r / t: S�r , t�
=S�r / t , t�, and the domain size must grow as R� t in the case
of long times.

One can find a simple analytical expression for S�r , t� in
the scalar case when �z�r , t�=0. Really, in order to get rid of
the function a�t� in �109� the following procedure can be
used. Since a�t� must be small at long times, it can be put
equal to zero on the left hand side of �98�. Substitution of
�108� into the right hand side of �98� gives in this case,

� exp�2g�t�� = 
	 ddk

�2��d

sin2�kt�
�kt�2 
−1

. �110�

Therefore, the combination of �109� and �110� yields

S�k,t� =
sin2�kt�

�kt�2 �	 ddk

�2��d

sin2�kt�
�kt�2 � 
 t

t0

dsin2�kt�

�kt�2 ,

�111�

where

t0 = 
�d�0�	
0

�

dx xd−3 sin2 x
1/d

, �112�

and the measures of integration �d�0� are defined in �74�. It
must be noted that the integral �112� is divergent in the three
dimensional case. However, this divergence can be removed
if one introduces some physical momentum cut off in this
case, for example, the inverse lattice spacing.

The substitution of �111� into �107� gives

S�r,t� = t0
−d�d�0�	

0

�

dx xd−3�d
 r

t
x
sin2 x . �113�

Therefore, the solution in the Hartree approximation
shows that the magnetic domains in the Heisenberg model
should grow with time as R� t at long times.

IV. CONCLUSIONS

To conclude, we have studied the process of the quantum
spinodal decomposition in an effective vector boson theory
of the Heisenberg ferromagnet in a weak external magnetic
field. This theory is similar to the relativistic theory with
additional linear and cubic terms. It was shown that the mag-
netic domains grow only in the case when the field contains
both parallel and perpendicular field components. The per-
pendicular component correlations grow faster at early times
and at late times it is expected that the equilibrium state is
established with the magnetization parallel to the external
magnetic field. Both parallel and perpendicular component
correlations grow with time as �t at short times in different
space dimensionalities. This result is similar to the well-
known results for the classical �4-theory, which corresponds
to the Ising model case, to the classical vector model and to
the relativistic scalar model at short times. Contrary to the
classical cases, the domain grows as t at long times, as we
have shown by using the Hartree approximation to solve the
equation for the order parameter. There are still some open
questions. In particular, it would be very important to solve
the problem beyond the Hartree approximation, and for the
case of strong magnetic fields.
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APPENDIX A: MAGNETIC SUSCEPTIBILITY AND THE
FREE ENERGY IN THE QUADRATIC

APPROXIMATION

In this section we derive the frequency dependence of the
spin magnetic susceptibility �31� in order to get the local free
energy in the quadratic approximation �35�. Using results for
the Green’s function �21�, and the expressions for the
Green’s function components �18�, �19�, and �22�–�24�, it is
easy to show that the matrix for the spin magnetic suscepti-
bility has the following structure:

TURKOWSKI, SACRAMENTO, AND VIEIRA PHYSICAL REVIEW B 73, 214437 �2006�

214437-12



�̄sr�t1,t2� = � �̄xx�t1,t2� �̄xy�t1,t2� 0

− �̄xy�t1,t2� �̄xx�t1,t2� 0

0 0 �̄zz�t1,t2�
� , �A1�

where

�̄xx�t1,t2� =
1

4�exp��H� + 1�
��e�He−iH�t1−t2� + eiH�t1−t2��

�
c�t1 − t2� + �e�HeiH�t1−t2� + e−iH�t1−t2��
c�t2 − t1�� ,

�A2�

�̄xy�t1,t2� =
i

4�exp��H� + 1�
��e�He−iH�t1−t2� − eiH�t1−t2��

�
c�t1 − t2� − �e�HeiH�t1−t2� − e−iH�t1−t2��

�
c�t2 − t1�� , �A3�

�̄zz�t1,t2� =
1

4 cosh2��H/2�
. �A4�

The zz component of the susceptibility is time indepen-
dent. We do the following approximation to get the local in
time quadratic term of the z component of the field:

− i	
c

dt1	
c

dt2 �z�t1��̄zz�t1 − t2��z�t2�

= −
i

4 cosh2��H/2�	c

dt1	
c

dt2 �z�t1��z�t2�

�−
i

4 cosh2��H/2�	c

dt1	
c

dt2 �z2�t1�

= −
�

4 cosh2��H/2�	c

dt1 �z2�t1� . �A5�

We used the fact that the largest contribution to the two-
dimensional integral is obtained at equal times t1= t2.

To get the local free energy for the plane components of
the field we use the following approximation:

− i	 dt1	 dt2 �l�t1��̄lm�t1 − t2��m�t2�

� − i	 dt �l�t�
�̄0
lm + in�̄n

lm dn

dtn
�m�t� , �A6�

where the coefficients �̄0
lm and �̄n

lm are the coefficients for the
low-frequency expansion of the susceptibility in the fre-
quency representation:

�̄lm��� = 	
−�

�

dt ei�t�̄ii
lm�t� � �̄0

lm + �̄n
lm�n. �A7�

To prove �A6� we transform the left hand side of this
expression by introducing the average and relative time co-
ordinates: T= �t1+ t2� /2, t= t1− t2. In this case:

− i	 dt1	 dt2 �l�t1��̄lm�t1 − t2��m�t2�

= − i	 dT	 dt �l
T +
t

2

�̄lm�t��m
T −

t

2



= − i	 dT	 dt	 d�

2�
e−i��T+t/2��l��� 	 d�1

2�
e−i�1t�̄lm��1� 	 d�2

2�
e−i�2�T−t/2��m��2�

= − i	 d�

2�
	 d�1	 �2
�� + �2�

�2

2
− �1 −

�

2

�l����̄lm��1��m��2�

= − i	 d�

2�
�l�− ���̄lm����m���

� − i	 d�

2�
�l�− ����̄0

lm + �̄n
lm�n��m���

= − i	 d�

2�
	 dt ei�−��t�l�t��̄0

lm	 dt1 ei���t1�m�t1� − i	 d�

2�
	 dt ei�−��t�l�t��̄n

lm	 dt1 ei�t1	 d�2

2�
e−i�2t1�2

n�m��2�

= − i	 dt �l�t��̄0
lm�m�t� − i	 d�

2�
	 dt ei�−��t�l�t��̄n

lm	 dt1 ei�t1
dn

�− i�n dt1
n�m�t1�

= − i	 dt �l�t��̄0
lm�m�t� − i	 dt �l�t��̄n

lm dn

�− i�n dtn�m�t� . �A8�
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This proves the statement �A6�. To find the coefficients �̄n
lm

and �̄n
lm in �A6�, we need to make the Fourier transform �A7�

for �̄xx�t1− t2� and �̄xy�t1− t2�.
The Fourier transform of the xx component of the suscep-

tibility is

�̄xx��� =
1

4�exp��H� + 1�	0

�

dt ei��+i
�t�e�He−iHt + eiHt�

+
1

4�exp��H� + 1�	−�

0

dt ei��−i
�t�e�HeiHt + e−iHt�

=
i

4�exp��H� + 1�
 exp��H�
� − H + i


+
1

� + H + i


−
exp��H�

� + H − i

−

1

� − H − i




=
i

2
H tanh��H/2�

1

�2 − H2 . �A9�

In the same way we show that the mixed component of the
susceptibility is

�̄xy��� = −
1

2
� tanh��H/2�

1

�2 − H2 . �A10�

In the low frequency limit,

�̄xx��� � −
i

2H
tanh��H/2� −

i

2H3 tanh��H/2��2,

�A11�

�̄xy��� �
1

2H2 tanh��H/2�� . �A12�

Equations �A6�, �A7�, �A11�, and �A12� give the follow-
ing approximate expression for the perpendicular part of the
free energy in the quadratic approximation:

− i	 dt1	 dt2 �l�t1��̄lm�t1 − t2��m�t2�

� −
tanh��H/2�

2H
	 dt ���t�
1 −

1

H2

d2

dt2
���t�

+
tanh��H/2�

2H2 	 dt
�x�t�
d

dt
�y�t� − �y�t�

d

dt
�x�t�
 ,

�A13�

where ���t�= ��x�t� ,�y�t� ,0�.
Expressions �A5� and �A13� result in expression �35� for

the free energy in the quadratic approximation.

APPENDIX B: LONG-TIME SOLUTION FOR THE
ORDER PARAMETER

In order to obtain solution �108� of Eq. �101�, we make
the following ansatz:

��k�t� = ��k�0�f�kmt�exp�g�t�� , �B1�

where f�0�=1, g�0�=0. The substitution of �B1� into �101�
gives

�2g�t�
�t2 f�x� + 2km�g�t�

�t

� f�x�
�x

+ k2m�2f�x�
�x2 + k2f�x� − a�t�f�x�

= 0, �B2�

where we have introduced a scale variable x=kmt. In order to
obtain an equation for f�x� which depends on the scaled vari-
able x only, one has to choose a function g�t� such that:

�2g�t�
�t2 − a�t� = 0. �B3�

The lower limit for the integration is chosen to satisfy g�0�
=0. Actually, the expression for g�t� is not of a special inter-
est, contrary to the expression for f�x� that defines the scal-
ing of the correlation function.

In this case, Eq. �B2� is simplified to

2km�g�t�
�t

� f�x�
�x

+ k2m�2f�x�
�x2 + k2f�x� = 0. �B4�

As it follows from �B4�, the proper choice for the exponent
m is m=1 in order to get an equation in terms of the dimen-
sionless variable x: In this case �B4� transforms to

�2f�x�
�x2 +

2

k

�g�t�
�t

� f�x�
�x

+ f�x� = 0. �B5�

To express this equation in terms of x, it is necessary to put

�g�t�
�t

= −
a0

t
. �B6�

It can be shown that a0=−1 �in fact, this choice gives correct
time-dependence in the asymptotic solution of Eq. �101� at
t→� :�k�t��sin�kt�, since g�t�� ln�t� in Eq. �108� in this
case (a�t� can be neglected in Eq. �101� at long times)�.
Equation �B5� in this case,

�2f�x�
�x2 +

2

x

� f�x�
�x

+ f�x� = 0, �B7�

can be simplified by using the ansatz f�x�=h�x� /x to

�2h�x�
�x2 + h�x� = 0. �B8�

It has a simple solution:
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h�x� = � cos�x� + � sin�x� , �B9�

or

f�x� =
1

x
�� cos�x� + � sin�x�� . �B10�

Since f�0�=1, one must have �=0, �=1, and

f�x� =
sin x

x
. �B11�

The substitution of �B11� and �B3� into �B1� gives the solu-
tion �108� for the order parameter.
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