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The phase diagram of a frustrated S=1/2 antiferromagnetic spin ladder with additional next-nearest neigh-
bor exchanges, both diagonal and in-chain, is studied by a weak-coupling effective field theory approach
combined with exact diagonalization for finite systems. In addition to two known phases with rung-singlet and
Haldane-type ground states, we observe two new phases with dimerization along the chains. Furthermore, the
transitions between the different phases are studied and shown to be either first order or to belong to the
universality class of the two-dimensional Ising model. The nature of elementary excitations is discussed briefly.
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I. INTRODUCTION

During the past few decades, strongly correlated electron
systems have received a lot of attention, e.g., due to uncon-
ventional superconductors. In particular, during the early
days of high-T, superconductivity, Anderson had already
proposed a mechanism based on a so-called resonating
valence-bond (RVB) picture.! Nevertheless, the search for a
spin liquid in two dimensions remains a long-standing prob-
lem. In this context, much attention was devoted to the study
of geometrically frustrated magnetic systems (for recent re-
views see, e.g., Refs. 2 and 3).

Among the different proposed models to capture Ander-
son’s RVB scenario is the one of Nersesyan and Tsvelik,*
based on a spatially anisotropic J;-J, square lattice with
stronger exchanges along one particular “chain” direction to
allow for generalizing results obtained previously in one
dimension.® However, it turned out that even the one-
dimensional picture was not completely under control:® in
weak coupling it is impossible to fine-tune rung and diagonal
exchanges of two-leg spin ladders to eliminate all relevant
interchain couplings at all orders. In particular it was argued
in Ref. 6 that at weak coupling there is no direct first-order
phase transition from two phases with unique ground states,
namely, a Haldane phase and a rung-singlet phase, rather an
intermediate, spontaneously dimerized phase was predicted.
However, previous numerical calculations have not detected
this intermediate phase.” The numerically determined phase
diagram suggested a direct phase transition from the Haldane
to the rung-singlet phase which at weak interchain coupling
seemed to be of second order and became first order at stron-
ger couplings. While the latter topology of the phase diagram
agrees with the earlier bosonization prediction,’ the order of
the phase transitions disagrees at weak coupling. We will
argue that the intermediate phase in the spin ladder can be
revealed by adding further exchanges.

In this work we study an §=1/2 antiferromagnetic two-
leg spin ladder with additional next-nearest-neighbor ex-
changes and discuss the interplay between two distinct
scales, one set by in-chain frustration and the other one by
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interchain interactions. In the spirit of Ref. 8, this model can
also be regarded as a strip of the extensively studied J;-J,
-J5 square lattice.”!? The last model illustrates that frustrated
interactions in quantum spin systems give rise to “unpredict-
able” phases which are very difficult to analyze theoretically
because of the presence of competing interactions. The study
of the effect of additional next-nearest-neighbor exchanges
in spin ladder systems therefore also is an interesting theo-
retical problem in its own right. The bosonization approach'!
is an unbiased and powerful method for studying frustrated
systems in particular in one dimension. Using this method,
we will show that a rich phase diagram and intriguing nature
of elementary excitations result from the competing interac-
tions in the frustrated spin ladder. Furthermore, numerical
analysis of finite systems confirms the presence of the phases
obtained within the weak-coupling effective field theory, also
at larger couplings.

II. MODEL

We consider the S=1/2 antiferromagnetic Heisenberg
spin ladder with additional next-nearest-neighbor exchanges
which are represented by ladder diagonal and in-chain next-
nearest-neighbor interactions. The geometry of our model is
depicted in Fig. 1. The lattice Hamiltonian reads

'y 1 2
H=H), +H;,, +H,i, (1)

where the Hamiltonian for leg [=1,2 is

5=1/2

FIG. 1. Structure of the spin ladder with next-nearest-neighbor
interactions.
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N
ngg = (IS, - Sy jr1 + 28-Sy jia) (2

J=1

and the interleg coupling contains both the rung and the di-
agonal exchanges:

N

H,= E []le,j : SZ,j+]><(Sl,j “So i1 +S1 i Sz,j)]~
j=1

3)

Above, S, ; represent spin S=1/2 operators on the jth rung
and /th leg, and periodic boundary conditions are assumed,
S;n+1=S;1. In order to avoid additional frustration by the
boundary conditions, we will consider only even chain
lengths N.

The above Hamiltonian (1) with J,=0 has already been
investigated in detail.>”!>!3 In particular the case Jy=J, J,
=0 serves as a good illustration of two possible phases'?
since in this case the total spins on all rungs are good quan-
tum numbers. Then the ground state consists of local singlets
Srung=0 for sufficiently large J, with a clear gap to all exci-
tations. On the other hand, for small J,, the total spin Sy,
=1 is formed on each rung and the low-energy physics is
governed by an effective spin-1 chain. In the latter case, the
ground state is the famous Haldane state which is also
gapped (see, e.g., Ref. 14 for a recent review of spin-chain
models). These two phases extend to Jy #J, J,#0 and we
refer to them as the rung-singlet and Haldane phases, respec-
tively.

III. WEAK-COUPLING APPROACH, BOSONIZATION

In this section we perform the weak-coupling analysis of
our system (1). We will follow the usual method and start
from a continuous field theory description of the individual
spin chain and treat the interchain interactions
perturbatively.!" We note that one can construct two equiva-
lent weak-coupling formulations. One can start from decou-
pled chain limits where chains run either along the ladder
legs, or along the ladder diagonals. These two cases are con-
nected to each other by a duality transformation exchanging
the spins on every second rung.'® For definiteness we start
from two decoupled frustrated chains running along the lad-
der legs: J«,J | <<J. Spin operators on each chain are decom-
posed into their smooth and staggered parts:

S, . _
j’l =S/(x=jag) = J,(x) + J,(x) + (- )'ny(x)  (4)
0

with lattice constant a,. J; and J, are left and right SU(2)
currents of the /th chain and have conformal weights (1,0)
and (0,1), respectively. Staggered spin densities are repre-
sented by more relevant operators, indicating an inherent in-

stability toward doubling of the unit cell in antiferromagnetic
chains:

nj(x) ~ Trlo’g,(x)]. (5)

Here g;(x) stands for the basic 2 X 2 matrix field of the Wess-
Zumino model and has conformal weights (1/4,1/4). ¢’ are
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the Pauli matrices. The scalar quantity which is represented
in the continuum limit by an operator of the same dimension
as the staggered part of the magnetization is the dimerization
operator:

Si(x)S(x + ag) = (- 1)*¢g/(x) + (less relevant smooth part).
(6)

In terms of the basic Wess-Zumino matrix field the following
representation holds for the dimerization operator:

&(x) ~ Trg,(x). (7

The effective quantum field theory in the continuum limit of
a single chain is that of a critical SU(2), Wess-Zumino

model perturbed by a marginal current-current
interaction:'>16
27U —— -
Hl:T(iJlJzi+3JzJ13)+VJle (8)

with the following notations:

Jagm

u= and y=J,-Jp,,

where J, .=0.24."718 If <0 the perturbation is marginally
irrelevant, but when y>0 the interaction flows toward strong
coupling and the system dimerizes spontaneously with a dy-
namically generated gap in the excitation spectrum.'® In
Abelian bosonization representation we can rewrite Eq. (8)
as

Hy= S0P + [0 P} - 55 cos B

Y
+ :Tﬁxqsl,Rax(ﬁl,L (9)

with compactified dual bosonic fields € and ¢. The following
representations hold for the staggered spin density and
dimerization operators:!!

n,(x) ~ (cos \e";r&,(x),sin y’%@,(x),sin \e“'ZTd),(x)),

€/(x) ~ cos \2 7y (x). (10)

For further analyses, treating interchain coupling perturba-
tively, it will be convenient to pass to symmetric and anti-
symmetric combinations of the bosonic fields

&1(x) = hy(x)

d’:(x) = 2

(11)

and define the continuum limit expressions of order param-
eters for columnar and staggered dimerizations of the two
chains:

— [
€, =€ + € ~ cos VT, cos \meh_,

.=, .
€.=¢€ — € ~ sin Ve, sin Vr_. (12)

The Hamiltonian in the symmetric and antisymmetric sectors
will contain a marginally relevant intersector coupling which
promotes dimerization within the chains:
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Y Y
_ax ¢+,R‘9x¢+,L +— ax(ﬁ—,Rax ¢—,L
v w

/_ —
- % cos V4, cos N4me_. (13)
The intersector interactions (13) show that the vacuum
configurations of the symmetric and antisymmetric sectors
are degenerate:

(cos Vame,) = (cos VAmdy=1 (a),

(cos V"ZT¢+> ={cos N’/ET¢_> =—1 (b). (14)

This includes the two-leg ladder dimerized in different pat-
terns, namely, (a) with long-range ordered columnar and (b)
with staggered dimerizations, respectively.

The expressions of spin operators in terms of the bosonic
fields are valid as long as the dimerization is very weak. We
can then add interchain interactions to the frustrated decou-
pled chains. We classify interchain couplings according to
their scaling dimension:

Hiy~ (7 + 27003100 + 310 [T2(x) + J,(0)]
+(J L = 270)m (x)my(x). (15)

The product of the smooth parts of the spin operators is
translated into marginal operators, whereas the product of the
staggered parts is represented by relevant operators in the
effective field theory.

A. Mean-field separation

As a first approximation and for y=0, J, —2J, #0, one
can retain only relevant terms that stem from the product of
the Néel components of the spin operators. In this case the
effective field-theoretic Hamiltonian separates into two com-

muting parts in the symmetric and antisymmetric bases:?*2!
H=H"+H,
+ u, 2 2 .7J_C2 e
H' = E[((yx6+) +(d,¢,)7] - 22 cos V4, (x),

H = "1(0.0)% +[0.0. ()]} + 2 i Va7 (x)
2 xV— xP- 277_2 / _
7 2
+ Juc cos \/Zrﬂ_(x), (16)

77,2

where J, =J, —2J, ¢ stands for a nonuniversal numerical

constant, and
7
U, = u(l + —L>
- 2m]
in weak coupling.

Now we add y>0 and look at the limit J ,Jy << y</J,
which allows us to assume stability of the massive dimerized
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phases of the individual chains against infinetisimal inter-
chain perturbation. For J | =J =0 the chains dimerize in co-
lumnar and staggered patterns, which corresponds to pinning
of the symmetric and antisymmetric fields in degenerate
vacua with nonzero averages of cos\47¢,. One may assume
that these averages will be nonzero in a finite region of the
parameter space after inclusion of interchain cgpling such
that we may substitute finite averages for cosv4me, in Eq.
(13). In the antisymmetric sector the Hamiltonian density
contains a relevant cosine of the bosonic field ¢_ as well as
its dual 6_ [see (16)]. By contrast, the dual field cannot ap-
pear in the symmetric sector for symmetry reasons. The clas-
sical vacuum configuration of the symmetric field is pinned
unambiguously according to the sign of interchain coupling
and thus any small interchain coupling (which is relevant)
removes immediately the degeneracy of the ground state of
decoupled dimerized chains (14). The picture is as follows.
Addition of infinitesimally small relevant interchain coupling
confines the massive spinons of the individual chains into
magnons. At the same time, the ground-state degeneracy is
lifted and one of the long-range-ordered dimerization pat-
terns (columnar or staggered) is selected. Once the symmet-
ric field ¢, is pinned, we can perform a mean-field decou-
pling of the interaction term stemming from . Note that this
procedure does not depend on the sign of J, —2Jy #0; the
crucial assumption is that a relevant interchain coupling is
present, which provides a confining potential to spinons of
the individual dimerized chains and selects one of the two
long-range-ordered dimerization patterns.

At the mean-field level we are left with the following
Hamiltonian:

JLCZ /_
HMF= HO + ? COS \!4770_()6')
- (E + l(cos Erqﬁ (x)))cos “Zrcﬁ (x)
2 T T VTP

7 2
+ (’2 L5 - Zteos m@(x»)cos V47 (),
(17)

where H( stands for the sum of the Gaussian parts of the
symmetric and antisymmetric sectors. This particular form of
the mean-field Hamiltonian is convenient for passing to Ma-
jorana fermions, but let us first discuss artifacts of the mean-
field separation: the mean-field separation in Eq. (17) breaks
the underlying SU(2) symmetry of the ladder model to
U(1)® 72, This is verified directly by noting that the very
form of the mean-field Hamiltonian (17) coincides with the
Hamiltonian of a ladder where the next-nearest in-chain frus-
trating coupling is substituted by the product of dimeriza-
tion operators of the two chains and interchain coupling is of
easy-plane type:

(A + B)e(x)e6(x) + (A= B)ning (18)

with
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A=— %(cos V"ET¢+(X)>7

e
)

While the product of dimerization operators respects SU(2)
symmetry, the appearance of an effective anisotropy in inter-
chain coupling is clearly an artifact of the mean-field sepa-
ration and should not be taken physically (e.g., splitting of
the triplet of Majorana fermions into doublet and singlet).
With increasing interchain exchange in Eq. (17) we observe
a phase transition represented by a self-dual point in the an-
tisymmetric sector:

B=— —L(cos V4md_(x)).

72 72
12 “5 — Ticos V4m,(9) = - “76 (19)
Since our approach is a weak-coupling one (starting from
decoupled chains) we are dealing with a fixed-point Hamil-
tonian which is described in terms of two copies of the
SU(2), Wess-Zumino-Witten (WZW) model that is equiva-
lent to an SO(4) WZW model. The SO(4) WZW model ad-
mits a representation of its generators in terms of four real
Majorana fermions.?> To clarify the symmetries of the stabi-
lized dimerization pattern and to unveil the nature of the
self-dual point in the antisymmetric sector we pass to these
Majorana fermions and subsequently to Ising variables.
The mean-field Hamiltonian (17) takes the following form

in Majorana fermions:?!

i .
H=- f dx(?(PRﬁxPR = pLdwpr) + lmsPRPL)

3 .
-3 [ o 2o vty imanr)

(20)
where

m,=(J, —2J)+sgn(J, —2J,)7,

mg~=3(J, = 2Jx) +sgn(J, —2J,)7 (21

and y~exp(-27/vy)>0 in weak coupling. The appearance
of the sign function in the expressions for the masses of the
Majorana fermions is the most important result of the mean-
field treatment. Equation (21) shows that only the singlet
among the Majorana fermions can soften by varying inter-
chain interactions. Note that the triplet and singlet Majorana
fermions can be interpreted as follows in the limit of strong
rung coupling: the triplet ¢ corresponds to a rung magnon (a
triplet excitation on a rung), while the singlet p corresponds
to the singlet bound state of two magnons. Indeed, we will
argue soon that in the context of the effective field theory the
singlet Majorana fermion softens at Ising phase transitions.
On the other hand, we will show in Sec. IV C that the same
Ising phase transitions can be traced to the softening of a
singlet bound state of two magnons in our exact diagonaliza-
tion data.
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FIG. 2. Typical configuration in the RVB state of the antiferro-
magnetic ladder.

It is well known that a Majorana fermion describes the
long-distance properties of the two-dimensional Ising
model,?® with the mass of the fermion proportional to the
deviation from criticality m~ (T-T,)/T,, meaning in par-
ticular that positive mass corresponds to the disordered phase
of the Ising model. The following local representations hold
in Ising variables for the order parameters of the columnar

and staggered dimerized phases €,:'!?!

€~ M MoM3 My, €7 0102030y, (22)
where u; and o; are disorder and order variables of the ith
replica of the two-dimensional Ising model, respectively.?*

From the above formulas we read off the following pic-
ture. If we add to decoupled dimerized chains a relevant
coupling with positive relevant exchange, J, —2Jx >0, then
four copies of the Ising model will be in the disordered state,
meaning that the ground state will have columnar dimer or-
der. In the case of J,-2J,<0, a staggered dimerized
ground state will be selected. This analysis is supported by
the following topological arguments: the ground state of the
ordinary antiferromagnetic ladder is parity symmetric, {e,)
=0. A typical configuration in the resonating-valence-bond
state of the antiferromagnetic ladder is depicted in Fig. 2,
with rectangular boxes indicating singlets formed between
the nearest-neighbor spins and the zigzag line representing
an effective S=1 spin formed across the ladder diagonal.

One can introduce even and odd topological (“string”)
order parameters, as described in Refs. 25 and 26. These
string order parameters have a simple geometric interpreta-
tion: they count the number of valence bonds crossed by an
arbitrary vertical line such that the even string order param-
eter is nonzero if the number of crossed bonds is even and
the odd one is nonzero if this number is odd. A nice feature
of the two-leg ladder systems is that short-range valence-
bond configurations have definite parity string order
parameter.°

In the rung-singlet phase the even string order parameter
is nonzero. Since y does not introduce coupling between the
chains both patterns of dimerization (columnar and stag-
gered) are energetically equally favorable at this level, and
from Fig. 2 it is clear that the columnar dimer configuration
will be long-range ordered after adding relevant interchain
coupling with J, —2J,>0. Similar arguments apply to the
case J, —2J4 <0. From the topology of typical configura-
tions of the RVB state one can see in this case that singlets
formed along the ladder diagonals coexist with staggered
dimer configurations.”>?” The string order parameter is odd
and upon increasing inchain frustration the staggered dimer
phase will be selected for the ground state. Crossing the sur-
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FIG. 3. Topology of the phase diagram as captured within the
weak-coupling approach. Phases are as follows. A, rung singlet, B,
Haldane, C, columnar dimer, and D, staggered dimer. The dashed
line represents a first-order phase transition line, whereas continu-
ous lines stand for Ising transition lines. Deviations of the dashed
line at weak coupling from the straight line J; =2/ and enlarge-
ment of the columnar dimer phase are due to second-order pro-
cesses as found in Ref. 6.

face which at weak couplings reads J, —2J« ~0, the string
order parameter jumps from even to odd by a first-order
phase transition. These findings are summarized by the quali-
tative weak-coupling phase diagram Fig. 3.

Equation (21) also shows that gaps open linearly as one
deviates from the Ising transition lines either in the rung-
singlet or in the Haldane phase direction.

Let us summarize the mean-field scenario presented
above and the supporting topological arguments: when two
dimerized chains are coupled in such a way that relevant
interchain coupling is present (in the model which we con-
sider it is always present at weak couplings®) it provides a
confining potential between the gapped spinons of the indi-
vidual chains and the fourfold degeneracy of the ground state
is reduced to twofold. But what can we say when interchain
coupling is itself frustrated, i.e., when no relevant terms stem
from interchain exchange and no confining potential is sup-
plied for deconfined gapped spinons (for example, if we add
additional four-spin interactions)? We answer these issues in
the next section where we derive the quantum phase transi-
tion when both competing interactions (in chain as well as
interchain) are marginal.

B. Mapping to the Gross-Neveu model

In this section we fine-tune interchain exchange to cancel
relevant contributions. As recently discussed by Starykh et
al.,® in the simple model (1) interchain exchange cannot be
fine tuned to yield only marginal interactions unless we add
four-spin counterterms.?® In real systems small four-spin in-
teractions are always present, e.g., represented by the cyclic
ring exchange. So we can assume that we start from the line
J | —2Jx=0 and relevant terms generated in second order are
compensated with small four-spin counterterms. In that case
the low-energy degrees of freedom of our fine-tuned model
will be described by the triplet and singlet massless Majo-
rana fermions coupled by marginal four-Fermi interactions
alone:
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Hmarg = Ja() f dx[(}\ + ‘)’)

X (Yt Wil + VU iy + R i)
= (N = V(Wi + Y] + ) prer], (23)

where N=J, +2J,=2J,. As long as y<<\, including nega-
tive 7, we can repeat the analysis by Allen et al’ where
neglecting the anisotropy a mapping to the O(4) Gross-
Neveu model®® was used. Based on the one-loop renormal-
ization group equations one can check that negative y flows
to zero at low energies and neglecting the anisotropy will not
affect the ground-state properties of the model, neither will
the excitation spectrum be modified qualitatively. On in-
creasing 7y to zero the mapping to the O(4) Gross-Neveu
model becomes only a better approximation and exactly
when y=0 the O(4) Gross-Neveu model is the exact low-
energy effective field theory describing chains coupled by
frustrated interchain interaction. On further increasing in-
chain frustration, telescoping (23) shows that at the point
where

y=N=2J, (24)

a further quantum phase transition takes place where the ze-
roth Majorana fermion decouples from the rest of the triplet.
Low-energy excitations at this quantum critical point are
governed by a free massless Majorana fermion plus an O(3)
Gross-Neveu model with dynamically generated mass for the
remaining triplet of Majorana fermions. In the extreme limit
>N\ we can neglect the small anisotropy between triplet
and singlet Majorana fermions and recover the O(4)-
invariant Gross-Neveu model, with dynamically generated
mass. The sign of the mass defines the dimerization pattern
of the model. Elementary excitations are deconfined massive
spinons which interpolate between the fourfold degenerate
vacua of the lattice model. This theory describes a first-order
phase transition line between the columnar dimer and stag-
gered dimer phases.

IV. NUMERICAL RESULTS

In order to test numerically the predictions for the phase
diagram and the nature of phase transitions we start from the
Majumdar-Ghosh point J,=J/2 in the decoupled chains.*
Each of the decoupled chains then has two degenerate dimer-
ized ground states with a gap to the excitations. This behav-
ior is generic in the vicinity of the Majumdar-Ghosh point,
but the correlation length is minimal exactly at J,=J/2.3!
Such a short correlation length is advantageous for numerical
calculations since it minimizes finite-size effects.

For two weakly coupled dimerized chains, there will be
four states that are well separated from higher excitations.
We then need to clarify which ground state is formed de-
pending on the coupling between the chains. In this context,
it is interesting to note that for the particular choice J
=2Jy of interchain coupling at J,=J/2, the two staggered
dimer arrangements remain exact eigenstates. Indeed, it is
straightforward to check that interchain coupling terms can-
cel on the staggered dimer states. On the other hand, colum-
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0.81- o extrapolated, k=, k =0
A extrapolated, k=m, ky:n
— N=16, k=m, ky=0

0.6
— = N=16, k=m, ky=TI:

0.2

FIG. 4. (Color online) Numerical results for the lowest excited
states with S=0 and k= at J,=J/2, J, =0.2J as a function of J.
Lines are for N=16 rungs; symbols show extrapolations to the ther-
modynamic limit. The big filled triangles denote estimates for the
locations of the different phase transitions. For details see the text.

nar dimer states cease to be exact eigenstates of the full
ladder Hamiltonian; thus they can lower their energy by fluc-
tuations. Therefore, we expect that two chains with J,=J/2
weakly coupled by J, =2J will have a columnar dimer pat-
tern in the ground state.

To determine the ground-state phase diagram, we have
performed exact diagonalization of ladders with up to N
=16 rungs (32 spins) using a standard Lanczos method, ex-
ploiting the conservation of total S° and spatial symmetries.
We impose periodic boundary conditions along the chains in
order to have translational symmetry. Furthermore, there is
an exchange symmetry of the chains. Important information
about the ground state is provided by the associated quantum
numbers, in particular momentum k for translation along the
chains, and k, for the “momentum” corresponding to an ex-
change of the chains. On a finite system, the two staggered
and columnar dimer states both combine to a ground state
with k=0, ky=0. However, the value of ky in the first excited
state distinguishes between the two cases: a combination of
staggered dimer states gives rise to k=, k,=m, while one
obtains k=1, k,=0 from the columnar dimer states.

Extrapolations to the thermodynamic limit N— o will be
performed using the Vanden-Broeck-Schwartz (VBS)
algorithm?>33 (with the parameter a=~1 of the algorithm).

A. Low-lying levels

To illustrate the generic behavior, we will first discuss a
cut through the phase diagram at J, =0.2J. The lines in Fig.
4 show the excitation energy relative to the ground state for
the lowest levels with k=, k,=0 and 7 on a finite system
with N=16 rungs. On the left side of Fig. 4, all excitations
are gapped, consistent with a rung-singlet phase. For 0
=Jx=0.18/, the k=, k,=0 level approaches the ground
state, as is expected in a columnar dimer phase. Note that the
point J, =0.2J, J»=0.1J lies inside the columnar dimer
phase, as is expected since it belongs to the line J, =2Jy«
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discussed above. On the other hand, for J,=0.2J, it is the
level with k=, k,= which is approaching the ground state.
This behavior is consistent with a staggered dimer phase
around J«=0.2J. Finally, on the right side of Fig. 4, all
excitations are again gapped, consistent with a Haldane
phase.

The locations of the phase transitions shown by the three
big filled triangles in Fig. 4 are determined as follows. For
intermediate J, the levels shown in Fig. 4 are the only low-
lying excitations, implying a direct first-order transition from
the columnar dimer to the staggered dimer phase. We take
the crossing of these two excited levels on a ladder with N
rungs as an estimate for the transition point. We then ex-
trapolate the crossing points with 6 <N =< 16 rungs using the
VBS algorithm. This extrapolation leads to the middle tri-
angle in Fig. 4. Since the dependence on N is only weak, this
extrapolated point is very close to the finite-size estimate for
N=16.

The transitions to the rung-singlet phase and the Haldane
phase at the left and right boundaries are expected to be
second-order phase transitions. Such transitions can be accu-
rately estimated using the phenomenological renormalization
group method:** The critical couplings {J} are determined by
the condition that the levels for two different system sizes
Ny,N, satisfy

NI AEk=7T,ky(Nl ’{j}) = NZAEk=7T,ky(N2’{J}) . (25)

Here, one should choose k,=0 and 7 for the transitions into
the columnar and staggered dimer phases, respectively. Ap-
plication of (25) to N, =14 and N,=16 yields the two remain-
ing filled triangles in Fig. 4 (we neglect the dependence on
N, and N, since in this case it is only weak).

Finally, the open circles and triangles in Fig. 4 show an
extrapolation to the thermodynamic limits of the k,=0 and
the k,= levels, respectively. This extrapolation has been
performed with system sizes starting at N=4 rungs using the
VBS algorithm. Errors of the extrapolation are difficult to
estimate, but should not exceed the size of the symbols. In
some cases, no convergence can be seen in the finite-size
data for the higher-lying level such that no extrapolation can
be performed for that level. However, in these regions of J,
the energy of the higher level shows a tendency to increase
with N for the accessible system sizes. Thus, the higher-lying
level can safely be assumed to stay at high energies in those
regions where we cannot extrapolate it.

The behavior of the extrapolated gaps is essentially linear
approaching the two second-order phase transitions from the
outside. This is consistent with a critical exponent v=1, char-
acteristic of the two-dimensional Ising universality class3>-3
predicted above.

B. Phase diagram

Now we apply the results of the preceding subsection to
determine the full phase diagram for 0<Jyx <J,0=<J in the
plane J,=J/2. Numerical scans were performed for N< 14
rungs since they require diagonalizations for a large set of
data points (we have performed computations for approxi-
mately 4000 different pairs of Jy and J, at N=14). In se-
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FIG. 5. (Color online) Numerical results for the phase diagram
in the J,=J/2 plane. Rung-singlet, Haldane, columnar dimer, and
staggered dimer phases can be distinguished. Crosses have been
determined by the phenomenological renormalization group condi-
tion (25) with N;=14, N,=16; the corresponding lines with N,
=12, N,=14. For further details and the nature of the phase transi-
tions see the text.

lected regions we performed additional computations for N
=16. Figure 5 summarizes our results. One can distinguish
four different gapped phases. A rung-singlet and a Haldane
phase appear at large J, and J, respectively. Previous
results® for the point J« =0, J,=J, J,=J/2 are consistent
with our conclusion that this lies well inside the rung-singlet.
The rung-singlet and the Haldane phase phases have a non-
degenerate ground state for a system with periodic boundary
conditions. Between these two phases there exist two dimer-
ized phases for small values of Jy and J,, namely, a stag-
gered and a columnar dimer phase. The latter phases have a
twofold degenerate ground state with a spontaneously broken
translational symmetry in the thermodynamic limit N — .

The transition between the staggered and columnar dimer
phases is of first order and was determined as described in
Sec. IV A: level crossings were first determined for fixed 6
<N=<14 (16 close to P1) and then extrapolated to N— o
using the VBS algorithm. The error of this extrapolation is at
most on the order of the width of the line. This transition line
passes through the origin, as is expected by consideration of
two decoupled dimerized chains.

The transitions from the dimerized phases to the rung-
singlet or Haldane phases were determined by the phenom-
enological renormalization group method (25) with N,;=12,
N,=14 (lines) and N,=14, N,=16 (crosses). This is certainly
justified for the transition between the columnar dimer and
rung-singlet phases as well as the transition between the
staggered dimer and Haldane phases, since these should be
second-order transitions belonging to the two-dimensional
Ising universality class. The transition between the columnar
dimer and Haldane phases was also estimated by the phe-
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FIG. 6. (Color online) Scaled energies of the k=, k,=0 excited
level for J, =0.9J, J,=J/2 as a function of Jy. Lines connect actual
numerical results, which are shown by symbols. According to the
phenomenological renormalization group condition (25), crossings
of levels for different N are estimates for the boundaries of the
columnar dimer phase.

nomenological renormalization group method, although this
may actually be a first-order transition. Nevertheless, finite-
size effects are small (see, e.g., right side of Fig. 6). There-
fore, our estimates for the transition between the columnar
dimer and Haldane phases are probably quite accurate, even
if we may not have used the most appropriate method.

The intermediate dimerized phases disappear (at least ac-
cording to the N;=12, N,=14 estimates) for large interchain
couplings at points P1 and P2, respectively. Beyond the point
P2, one expects a direct first-order transition from the
Haldane to the rung-singlet phase, as in the case J,=0.7!2 As
in Ref. 7, we determine the location of this first-order tran-
sition from a cusp in the ground-state energy, using the data
for N=14 rungs. The transitions between the rung-singlet
and Haldane phases at J,=0 and J,=J/2 probably belong to
the same universal surface of first-order transitions.

Finite-size effects of the transition lines are small in most
regions of Fig. 5, as can be seen by comparison of the results
for Ny=12, N,=14 and N,=14, N,=16. This applies in par-
ticular to the neighborhood of P1 whose location can there-
fore be considered accurate. However, close to P2, we ob-
serve finite-size effects of the boundaries of the columnar
dimer phase. In order to discuss this in more detail, Fig. 6
shows scaled energies of the k=, ky=0 excited level for
J,=0.9J, J,=J/2, and 6=<N=<16. The crossings between
the scaled levels for different N estimate the phase bound-
aries according to the phenomenological renormalization
group condition (25). Unfortunately there is no systematic
dependence of the crossings points on N;,N, such that an
extrapolation is not possible. Most crossings for the transi-
tion to the rung-singlet phase (left side of Fig. 6) lie between
the N =14, N,=16 crossing at Jx =~0.642J and the N,=12,
N,=14 crossing at Jy =0.704J. Furthermore, linear extrapo-
lation of the levels for fixed N suggests a closing of the gap
and thus a phase transition around J,=0.66J. Overall, it
seems likely that the N;=12, N,=14 data underestimate the
stability region of the columnar dimer phase, while N;=14,
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N,=16 may overestimate it. Thus, the location of the termi-
nation point P2 is probably at larger J,J, in the thermody-
namic limit than the estimate in Fig. 5. Still one can argue
that the columnar dimer phase has to terminate. First, it can-
not extend beyond Jy=J, since the duality transformation
mentioned at the beginning of Sec. III maps the columnar
dimer phase which we observe for Jy <<J to a different phase
with dimers on the diagonals for J,=J>J'=J,, J | =J,.
Second, the region where J, is much bigger than all other
exchange constants obviously belongs to the rung-singlet
phase.’” Therefore, the columnar dimer phase has to termi-
nate either at a point P2 located in the region J« <<J, or on
the line Jx=J. If the latter situation is realized we cannot
exclude the possibility that the rung-singlet and Haldane
phases are separated by a Gaussian quantum critical point
located at J, =J.

Finally, we discuss the relation of the numerical phase
diagram to the picture obtained by the mapping to the Gross-
Neveu model presented in Sec. III B. Numerically we see
that the columnar dimer phase extends to stronger interchain
couplings than the staggered dimer phase. This gives further
support to the observation that additional interactions such as
ring exchange are necessary to fine-tune all relevant inter-
chain couplings to zero. Indeed, it was found that ring ex-
change stabilizes staggered dimer order.’®3 Therefore, ring
exchange will cause the points P1 and P2 in Fig. 5 to move
toward each other. P1 and P2 will merge when all relevant
interchain couplings are fine tuned to zero. For the latter
situation the effective theory of the multicritical point will be
described by one gapless Majorana fermion decoupled from
the rest of the gapped O(3) Gross-Neveu model as presented
in Sec. III B. Since the effective field theory describing long-
wavelength fluctuations of our model has a form similar to
the one considered in Ref. 6, the same conclusion concerning
the need to include additional four-spin interactions in order
to suppress all relevant interchain couplings applies to the
case J,=0 considered in Ref. 6.

C. Softening of a bound state

In this last section we will comment on the nature of the
elementary excitations. For this purpose we start from strong
J | where one naturally obtains a rung-singlet phase®’ and
approach the transition to the columnar dimer phase along
the line J,=0. Since we just wish to make a qualitative
point, we restrict ourselves to N=12 rungs in this section.
Figure 7 shows numerical results at J =0, J,=J/2 for the
lowest excited levels in the sectors with total spin $=0, 1,
and 2. At strong J, the lowest excitation is a propagating
triplet around AE=J, above a nondegenerate ground state.
On the other hand, the singlet excitation which softens at the
transition to a columnar dimer state at J, =0.29J can be
traced to the lower boundary the S=2 continuum which starts
at AE=2J, for J, —oe. This implies that the singlet which at
small J, is a low-energy excitation originates from a bound
state of two triplets at strong J . For the parameters of Fig.
7, this bound state has lower energy than the fundamental
triplet for J, =0.8J and finally softens at the Ising transition
while states with nonzero total spin remain at a finite energy.

PHYSICAL REVIEW B 73, 214427 (2006)

3 ..\. ——T T r — T
\ ‘\ _S=0
25K\ == S=1 -
\ N P=- S=2
\ N
\ ~.
2F S ]
\ S e =
=i \\ ......
o 1.5 -
\
< \
N
1+ \s__\ P
0.5+ _

FIG. 7. (Color online) The lowest excited levels with total spin
S§=0, 1, and 2 on a ladder with N=12 rungs for J«x =0, J,=J/2 as a
function of J, on a semilogarithmic scale.

Similarly, the transition from the Haldane phase to the stag-
gered dimer phase should occur via softening of an S=0
two-magnon bound state while a single magnon remains
gapped at the transition.

It is straightforward to analyze the one triplet and the
bound-state problem of two triplets by perturbation theory at
strong J . In fact, formation of bound states has been ob-
served for ladders with J,=J«=0 (see, e.g., Ref. 40). How-
ever, in this case none of the bound states has lower energy
than the lowest edge of the two-triplet continuum. Two
things happen when one turns on J, or Jy. First, the mini-
mum of the single-triplet dispersion generally shifts to in-
commensurate wave vectors. Second, now a bound state can
appear at strong coupling which has an energy below the
lowest edge of the two-particle continuum (see also Ref. 41
for J,=0). However, it is necessary to go to high orders*? to
obtain quantitative agreement with numerical data. Therefore
we do not pursue this further here.

Finally, we would like to mention that the bound-state
nature of the lowest excitation leads to unusual finite-size
effects close to the phase transitions and thus explains the
difficulties with the extrapolations encountered in the previ-
ous subsections.

V. CONCLUSIONS

We have studied the ground-state phase diagram and the
nature of elementary excitations of a frustrated spin ladder.
The effect of relevant and marginal interchain exchanges has
been analyzed by an effective field theory approach. Particu-
lar attention was paid to the interplay between two clearly
separate scales set by in-chain frustration and interchain cou-
plings. First, a rung-singlet and a Haldane phase are known
to appear for J,=0.>7121341 We predicted that for suffi-
ciently large J,, two dimerized phases appear between the
rung-singlet and Haldane phases. The transitions from the
dimerized phases to the rung-singlet and Haldane phases are
found to be in the two-dimensional Ising universality class,
whereas the transition between the columnar and staggered
dimer phases is of first order.
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Furthermore, we have verified these predictions by exact
diagonalization. The full phase diagram has been determined
in the plane J,=J/2 (see Fig. 5). The staggered dimer phase
was found to terminate first at a point P1 while the columnar
dimer phase extends to stronger interchain coupling, termi-
nating at P2. Beyond P2 there is a direct first-order transition
from the rung-singlet to the Haldane phase if P2 is located at
Jy<J, as for J,=0."12 Should P2 be located at J=J,* the
rung-singlet and Haldane phases might be separated by a
second-order phase transition point.

The part of the phase diagram with J,>J is obtained
from the one with J, <J by a duality-type argument.'*> In
particular, the columnar and staggered dimer phases map to
two different dimerized phases with dimers on the diagonals.

Finally, we have observed an interesting phenomenon
when approaching the columnar or staggered dimer phase
from the rung-singlet or Haldane phase, respectively;
namely, a singlet bound state forms below the two-triplet
scattering continuum. This singlet bound state crosses the
fundamental triplet excitation and finally softens at the Ising
phase transition.

Since all phases are gapped, they will be stable under
weak higher-dimensional coupling between the ladders. If
one approaches the J;-J,-J; frustrated square lattice®!? by
such interladder coupling, the rung-singlet phase will be ad-
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jacent to a Néel phase, and the Haldane phase will share a
boundary with a phase where spins are ordered antiferromag-
netically along one ladder direction and ferromagnetically
along the other direction. Our results show that in such a
generalized phase diagram there will be further dimerized
phases, in particular some with two-dimensional columnar
and staggered dimer patterns. We therefore hope that our
results will also be useful to elucidate the phase diagram of
the Ji-J,-J5 frustrated spin-1/2 Heisenberg antiferromagnet
on the square lattice.>!°
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