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We investigate the spectral and localization properties of unmagnetized Heisenberg-Mattis spin glasses, in
space dimensionalities d=2 and 3, at T=0. We use numerical transfer-matrix methods combined with finite-
size scaling to calculate Lyapunov exponents, and eigenvalue-counting theorems, coupled with Gaussian elimi-
nation algorithms, to evaluate densities of states. In d=2 we find that all states are localized, with the local-
ization length diverging as �−1, as energy �→0. Logarithmic corrections to density of states behave in
accordance with theoretical predictions. In d=3 the density-of-states dependence on energy is the same as for
spin waves in pure antiferromagnets, again in agreement with theoretical predictions, though the corresponding
amplitudes differ.
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I. INTRODUCTION

The study of low-lying magnetic excitations in quenched
disordered systems presents a number of challenges. While
the absence of translational invariance is a complicator aris-
ing in all aspects both of static and dynamic behavior of
inhomogeneous magnets, investigation of spin waves is
made even harder because, in many cases of interest, the
exact ground state configuration is not known.

One way around the latter obstacle has been to resort to
simplified model systems for which the exact ground state is
known, but which nevertheless still display nontrivial dy-
namical features. Such features, it is expected, may shed
light on the behavior of their experimentally realized, rather
more complex, counterparts.

Here we deal with vector spin glasses, i.e., Heisenberg
spins with competing ferro- and antiferromagnetic interac-
tions. It is known that the simplest realization of the
Edwards-Anderson picture, where one has equal concentra-
tions of positive and negative nearest-neighbor bonds of
equal strength, leads �in lattices of space dimensionality d
�1� to frustration and, consequently, to a macroscopically
degenerate �classical� ground state.

The drawback just described does not arise in Mattis spin
glasses, where the Mattis transformation1 “gauges away” dis-
order effects, as far as most static aspects are concerned. It is
known that the Mattis transformation does not remove the
disorder effects in the dynamics of these so-called
Heisenberg-Mattis spin glasses, which is nontrivial. Indeed,
investigations of spin-wave propagation in such systems2–7

have unveiled many features which stand in stark contrast,
e.g., to the Halperin-Saslow �hydrodynamic� picture8 of a
linear dispersion relation for low-energy excitations.

Here, we shall assume that the spin magnitude is �S � �1,
so that quantum fluctuations can be safely neglected6,7 �clas-
sical limit�.

An alternative to using the Mattis picture can be pursued
by studying usual spin glasses �i.e., with random ±J bonds�

in the high-field limit, as this additional feature stabilizes a
ferromagnetic-like ground state while still incorporating
quenched �bond� disorder.9–11 However, results thus obtained
differ rather drastically from those pertaining to the zero-
field case. In fact, it has been found that, even in zero field
and space dimensionality d=1 where frustration effects are
absent, “unmagnetized” spin glasses �i.e., in which the con-
centrations of ferro- �p� and antiferromagnetic �1− p� bonds
are equal� differ substantially from their “magnetized” �p
�1/2� counterparts.12

In this paper, we investigate the spectral and localization
properties of Heisenberg-Mattis spin glasses. Our emphasis
is on unmagnetized systems in space dimensionalities d=2
and 3, at T=0. We use numerical transfer-matrix methods to
calculate Lyapunov exponents,12,13,15 and eigenvalue-
counting theorems, coupled with Gaussian elimination
algorithms,16,17 to evaluate densities of states. Though early
numerical studies4,5 already highlighted a number of distinc-
tive features exhibited by such systems, motivation for fur-
ther research is to be found in recent theoretical insights,7,18

especially in connection with the low-energy, long-
wavelength regime.

In Sec. II we recall pertinent aspects of Heisenberg-Mattis
spin glasses. Section III reports on an extension, to d=2 and
3, of the analytical scaling techniques introduced in Ref. 6
for d=1; in Sec. IV we report numerical calculations of
Lyapunov exponents and of densities of states, for d=2 and
3. Finally, in Sec. V, concluding remarks are made.

II. HEISENBERG-MATTIS SPIN GLASSES

We consider Heisenberg spins on sites of a square, or
simple-cubic, lattice, with nearest-neighbor couplings:

H = − �
�i,j�

JijSi · S j . �1�

The bonds are randomly taken from a quenched, binary
probability distribution,
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P�Jij� = p��Jij − J0� + �1 − p���Jij + J0� , �2�

so for p=1/2 one has the unmagnetized spin glass.
The Mattis model ascribes disorder to sites rather than

bonds �Jij→J0�i� j�, so that the Hamiltonian reads:

HM = − J0�
�i,j�

�i� jSi · S j , �3�

where �i= +1 �−1� with probability p �1− p�. This way, the
overall energy is minimized by making Si

z=�iS, which con-
stitutes a �classical� ground state of the Hamiltonian Eq. �3�,
to be referred to as �0�. Thus, disorder is effectively removed
from static properties, but not from the dynamics, because of
the handedness of Heisenberg spin commutation relations.
Indeed, considering low-energy excitations, the equations of
motion for the spins are, with �=1:

idSi
−/dt = �

j

J0�i� j�Si
−Sj

z − Sj
−Si

z� , �4�

where Si
±=Si

x± iSi
y, etc., and j are nearest neighbors of site i.

So, putting vi	�iSi
−, one gets,6 upon application of Eq. �4� to

�0�:

i�idui/dt = �
j

J0�ui − uj� , �5�

where the ui are Mattis-transformed local �on-site� spin-wave
amplitudes. For the eigenmodes with frequency � �in units
of the exchange constant J0�, Eq. �5� leads to

��iui = �
j

�ui − uj� . �6�

Goldstone modes are expected to occur, since disorder does
not destroy the symmetry of the system in spin space.18 The
relationship of frequency to wave number, k, at low energies
is characterized by the dynamic exponent z:

� � kz. �7�

In d=1, where the scattering length coincides with the local-
ization length,7 the definition of k is unique. Indeed, numeri-
cal calculations10,12,13 of the d=1 density of states and of the
Lyapunov exponent point to the same value z=3/2, predicted
analytically.6 For d�1 this degeneracy is expected to be
lifted. As we shall see in the following, different exponents
come up, depending on whether localization or density-of-
states properties are being considered.

III. SCALING

We briefly review the treatment of one-dimensional sys-
tems, given in Ref. 6. In this case, Eq. �6� becomes

�2 − �i��ui = ui−1 + ui+1. �8�

A transfer-matrix �TM� approach,14,15 can be formulated,
giving6,12,13


ui+1

ui
� = 
2 − �i� − 1

1 0
�
 ui

ui−1
� = Ti���
 ui

ui−1
� . �9�

The allowed frequencies for a chain with N spins and peri-
odic boundary conditions, uN+1	u1, are determined by
det��N−1�=0, where

�N��� = �
i=1

N

Ti��� . �10�

Equivalently, the condition Tr �N=2 determines the eigen-
frequencies. Scaling the system by a linear dilation factor b,
the dynamics is preserved if the frequencies are transformed
��→���, in such a way that

Tr �N��� = Tr �N/b���� . �11�

Using properties of the matrices Ti���, one finds6 that the
first-order term �in �� of Tr �N��� has a coefficient equal to
N�i=1

N �i. Therefore, correspondence of the 
�i� with an unbi-
ased random-walk makes the determining variable �N3/2, so
that the �length� scaling of the frequencies is ��=�b3/2, and
the low-energy dispersion relation Eq. �7� has an anomalous
power �dynamic exponent� z=3/2. In fact, careful consider-
ation of higher-order terms6 shows that the combination
N3/2� is present to all orders, thus scaling is expected to hold
even away from the �→0 region �though not the single
power-law form, Eq. �7��.

A suitable framework for extensions of this treatment to
space dimensionalities d�1 is found in quasi- one-
dimensional geometries, i.e., Ld−1	N systems with N�1. In
what follows, we shall always make use of periodic bound-
ary conditions across the d−1 transverse directions.

Considering d=2 for simplicity, a TM can be set up on a
strip of width L sites, so an L- component vector
ui= �u1i , . . . ,uLi� corresponds to each column i along the
strip, with the recursion relation


ui+1

ui
� = Ti

2d���
 ui

ui−1
� , �12�

where

Ti
2d��� = 
Mi − I

I 0
�, Mi = a − �bi, �13�

I being the L	L identity matrix, while a and bi are given by

a =�
4 − 1 0 ¯ − 1

− 1 4 − 1 ¯ 0

¯ ¯ − 1

− 1 0 ¯ − 1 4
�,

bi =�
�1i 0 ¯ 0

0 �2i 0 ¯

¯ ¯ 0

0 ¯ 0 �Li

� . �14�

Hence,
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Ti
2d��� = 
a − I

I 0
� − �
bi 0

0 0
� 	 A − �Bi. �15�

Generalizations to higher d are immediate, with the vector ui
now having Ld−1 components, and the matrices I, a, and bi
being Ld−1	Ld−1. The �2Ld−1	2Ld−1� matrix Ti is symplec-
tic, that is, its eigenvalues occur in pairs 

i ,
i

−1�, i
=1, . . . ,Ld−1. Note that matrix A is symplectic as well.

For d�1, a feature which does not occur in the one-
dimensional case is that there are transverse momentum
modes. Returning to d=2 for illustration, these are indeed
the eigenmodes of matrix a in Eq. �14�, with corresponding
energies �p=4−2 cos 2�p /L, p=0,1 , . . . ,L−1.

We briefly make contact with the analogous case of a
homogeneous system of length N, for which b= I, �a ,b�=0,
and the eigenstates of a are also eigenstates of the full
Hamiltonian, with �pq=�p−2 cos 2�q /N, q=0,1 , . . . ,N−1.
This reminds us that, in d�1, the energy of a mode is not
related only to its longitudinal wave vector, as is the case in
d=1. Upon introduction of randomness, the commutation re-
lation is destroyed �contrary to the one-dimensional case
where both a and b are numbers� and, consequently, the in-
terplay between frequency and wave-vector aspects can only
be measured via the accumulated statistics of many local
realizations of disorder. Therefore, in d�1 one may expect
the picture of a single length controlling both �spatial� at-
tenuation and �time� oscillation damping,6 which holds for
d=1 spin glasses, to be replaced by one where each of these
properties is governed by a distinct quantity.

We now return to spin glasses. From the eigenvectors of
a, “spinor” generalizations can be built, which are eigenvec-
tors of A, with eigenvalues �
p ,
p

−1� indexed by p; one can
show that 
p+
p

−1=�p. While such spinors are obviously not
eigenvectors of B, the contribution given by each diagonal
element of Ti

2d���, corresponding to fixed p, to the trace of
�N

2d���	�i=1
N Ti

2d���, can be worked out to first order in �.
Use is made of the fact that, analogous to the d=1 case,6

�
�=1

N

T�
2d��� = AN − ��

�=1

N

A�−1B�AN−� + O��2� . �16�

The result is

Tr�p��
�=1

N

T�
2d��� = 
p

N + 
p
−N

− �
�
p

N − 
p
−N�


p − 
p
−1 �

�=1

N

�
m=1

L
1

L
�m� + O��2� , �17�

where Tr�p� denotes the joint contribution of both eigens-
pinors of A indexed by p �associated, respectively, to eigen-
values 
p and 
p

−1�.
The “critical” �large scale� behavior is associated with

small p, in which case 
p ,
p
−1→1, and Eq. �17� turns into

Tr�p��
�=1

N

T�
2d��� → 2 − �N�

�=1

N
1

L �
m=1

L

�m� + O��2� . �18�

One can readily see that, for generic d�1, this translates
into

Tr�p��
�=1

N

T���� → 2

− �N�
�=1

N 
�
i=1

d−1
1

Li
�

mi=1

Li

�m1¯md−1�� + O��2� . �19�

In the second term of Eq. �19�, one has a sum of N	L1
	 ¯ 	Ld−1 binary random variables, so this is Gaussian dis-
tributed with rms value:

�N

�i=1

d−1
Li

�N�i=1

d−1
Li�1/2

=
�N3/2

��i=1

d−1
Li�1/2 . �20�

Upon scaling of linear dimensions by a factor b, under which
frequency scales as �→bz�, and requiring invariance of the
term given in Eq. �20� �see Eq. �11��, one gets

z = 2 −
d

2
=�

3

2
d = 1

1 d = 2

1

2
d = 3.

�21�

Consideration of the terms in Eq. �18� of higher than first
order in � shows that, unlike the d=1 case, the trace of the
full TM is not just a function of the variable given in Eq.
�20�, because complicated sums occur, involving both longi-
tudinal and transverse wave vectors.

This is in line with above-presented reasoning, to the ef-
fect that the simultaneous presence of both longitudinal and
transverse degrees of freedom invalidates the single-length
picture, predicted analytically6 and numerically con-
firmed10,12,13 for d=1.

While it is plausible to expect that, for some low-energy
regime in d�1 the scaling result, Eq. �21� might hold true,
direct verification is called for.

IV. NUMERICAL ANALYSIS

A. Lyapunov exponents

The procedure for calculating Lyapunov exponents on
strips or bars is the same as that used for Anderson localiza-
tion problems.15 Indeed, in both cases the TM is symplectic,
and one can use Oseledec’s theorem and dynamic filtration
to extract the smallest Lyapunov exponent, whose inverse is
the largest localization length. For Heisenberg spin-glass
chains, this has been done,12,13 numerically confirming the
result z=3/2 obtained analytically in Ref. 6.

We have investigated strips of widths L=4,6 , . . . ,14 in
d=2, in which for each energy � we took N=106 iterations
of the TM, and bars with L	L cross section, L=4,6 ,8 ,10 in
d=3. In d=3 we used N=106 for L=4,6, 5	105 for L=8,
and 1	105 for L=10.

In contrast to d=1, here one must take into account finite-
size effects, introduced via the transverse dimension L, thus
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calculated localization lengths are denoted by 
L. Using stan-
dard finite-size scaling theory,19 it is expected that the behav-
ior of scaled localization lengths 
L /L, when plotted against
�Lz, will allow one to infer the bulk �L→ � � properties of
the system.

In Fig. 1 we see that in d=2 good data collapse, extending
as far as x	�Lz�0.3, is achieved when z=1, as predicted in
Eq. �21�. At the low-energy end, x�0.03, the quasi-one-
dimensional character of the strips begins to dominate, and
the scaling curve crosses over to the effective d=1 regime
characterized by ��k3/2.

In Fig. 2 the scaling plot for d=3, with z=1/2 as pre-
dicted in Eq. �21�, is exhibited. The quality of data collapse
is remarkably inferior to that of d=2 data. An examination of
the behavior of 
L /L against � shows that curves corre-
sponding to pairs L ,L−2 have well-defined crossings at low
energies ��0.05. The usual interpretation of these, in the
finite-size scaling context, would point to a localization-
delocalization transition.15,19 However, we have found that
the locations of crossings appear to approach �=0 with in-
creasing L. This would be consistent with the idea that all
magnons are delocalized in d=3, which is supported, e.g., by
the field-theoretical results of Ref. 7. We postpone a discus-
sion of this point �and similar ones associated to the behavior
found above for d=2�, to Sec. V.

B. Densities of states

The calculation of densities of states per unit energy in-
terval �DOS�, D���, and their integrated counterparts
�IDOS�, N���=�−�

� D����d��, makes use of eigenvalue-
counting theorems.20–22 Our implementation resorts to
Gaussian elimination algorithms on quasi-one-dimensional
geometries �Ld−1	N, with N�L�, and closely follows the
steps described in Refs. 16 and 17 where the systems under
investigation were, respectively, phonons in disordered sol-
ids, and tight-binding electrons �Anderson localization�.
The key feature shared between these problems and the one
studied here is the fact that, for an Ld−1	N system with
periodic boundary conditions across, the Hamiltonian has a
�2	Ld−1+1�- diagonal form, i.e., it can only have nonzero
elements in the Ld−1 lines above, and Ld−1 lines below, the
diagonal.

We consider the characteristic matrix, which in the
present case is C=��I−H, where ��I is a diagonal matrix
with ���I� j j =� j� �j=site index�, for an Ld−1	N system.
Evaluation of its diagonal elements via Gaussian elimination
enables one to obtain the IDOS for any energy,16,17 thus the
DOS may be calculated by numerical differentiation.

For d=1 the eigenvalue counting �used., e.g., in Ref. 12�,
may, alternatively, proceed via enumeration of nodes of the
amplitude ratios which enter the evaluation of the �single�
Lyapunov exponent.10,13 In order to test our recursion and
elimination algorithms, we applied them to this case and
compared the outcome with that from node-enumeration.

Results are identical to within numerical accuracy, and the
set produced by Gaussian elimination is depicted in Fig. 3.
By sampling energies separated by logarithmically uniform
intervals, we achieved a detailed view of the �→0 region,
which is difficult to isolate in the corresponding DOS results
of Refs. 10, 12, and 13 �where linear binning was used�. One
sees that the relationship D�����−1/3 is valid for more than
two orders of magnitude in energy, up to ��0.3. For guid-
ance, we have also included the exact Derrida-Gardner
result.23 Since we have considered only positive energy
states in our calculation, the appropriate proportionality co-
efficient is twice that given in Ref. 23.

For higher-dimensional cases, it is worth mentioning that
the algorithms used here are much less computationally in-

FIG. 1. Scaling plot for localization lengths on strips of a d=2
system, against �Lz, with z=1 as predicted in Eq. �21�. Strip widths
L as given by symbols. The line corresponds to y�x−2/3 and is a
guide to the eye, showing how the effective d=1 regime sets in for
very low energies. Insert: unscaled data for L=4 and 14.

FIG. 2. Scaling plot for localization lengths on bars of a d=3
system, against �Lz, with z=1/2 as predicted in Eq. �21�. Bar cross
sections are L	L, with L as given by symbols. The line corre-
sponds to y�x−2/3 and is a guide to the eye, showing how the
effective d=1 regime sets in for very low energies. Insert: unscaled
data for L=4 and 10.

FIG. 3. Double-logarithmic plot of density of states D��� for
spin-glass chain, calculated by Gaussian elimination. Chain length
N=107 sites. The thick line is the exact Derrida-Gardner result �Ref.
23� �with coefficient doubled, on account of different normalization,
see the text�.
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tensive than their Lyapunov-exponent counterparts. For an
Ld−1	N system, the computational time rises as L3�d−1�	N
for the former,17 and approximately as L5�d−1�	N for the
latter. This is mainly because of the frequent mutual orthogo-
nalization of 2	Ld−1 iterated vectors, which is necessary in
order to avoid cross-contamination between eigenvectors as-
sociated with different Lyapunov exponents. Therefore, for
DOS and IDOS it is usually possible �except for very low
energies in d=3, see the following� to work with systems
whose transverse dimensions L are large enough that finite-
size effects are of little importance. It remains only to make
sure that the sample length N is long enough, in order to
achieve adequate sampling of quenched disorder configura-
tions.

We examined the effect of finite transverse dimensions,
by evaluating pure-system quantities and comparing our re-
sults to the exact ones. Though, having zero net magnetiza-
tion, the spin glasses studied here are closer to antiferromag-
nets �AF� than to homogeneous ferromagnets �FM�, the DOS
and IDOS of magnons in the latter exhibit some distinctive
features, whose numerical reproduction is a nontrivial test of
the adequacy and accuracy of our methods. For FM in d=2,
already with L=25, N=2500 the IDOS is at most 3% off the
exact value. This largest discrepancy happens close to �=4
where the analytical IDOS exhibits an inflection point, on
account of the DOS’s logarithmic Van Hove singularity at
the band center. Increasing L or N does not significantly
reduce the deviation close to �=4; however, it does improve
agreement elsewhere on the energy axis. The calculated DOS
is rather sensitive to discrete-lattice effects; nevertheless, the
consequent oscillations are again much diminished by in-
creasing L, N. For d=3 FM, the relatively featureless IDOS
is easier to reproduce. With L=16, N=25 600, deviations
are down to, at most, 1.5% �though the DOS still displays
somewhat large oscillations, especially around the “knees” at
�=4 and 8�. Figure 4 shows representative results, which are
useful as guidelines for the investigation of disordered sys-
tems in d=2 and 3 via Gaussian elimination.

Turning to pure AF systems, for which the respective
bandwidths are �0

AF=4 �d=2�, and 6 �d=3�, again relatively
small transverse dimensions L provide results which closely

follow the analytic values, except at very low �. In this limit,
the fact that the finite L quantizes the transverse momentum
leads to effective one-dimensional behavior �D�����0,
N�����1� for � less than a crossover frequency �m

	AAF�d� /Lz, z=1. With the units used in this work, we
found AAF�2��12, AAF�3��20. The effect is more pro-
nounced here than for FM, where z=2 and, consequently, the
onset of this sort of behavior occurs at much lower energies.
Figure 5 highlights the worst case of d=3. For completeness,
the inset of Fig. 5 shows that, even for L=16 where these
low-energy discrepancies are rather severe, agreement with
analytical forms is quite satisfactory elsewhere.

We now return to disordered systems. In Fig. 6, results for
the Mattis spin glass in d=2 are presented. We used L
=250, N=2.5	106. The number of sites entering the calcu-
lation was more than one order of magnitude larger than in
that for a pure FM, whose result is exhibited in Fig. 4�a�.
From examination of shorter runs for the disordered case, it
appears that the features displayed in Fig. 6 are rather stable
and well-converged. For this value of L, the crossover to
one-dimensional behavior, referred to earlier, is confined to
��0.05, leaving a broad window at low energies for which
genuine two-dimensional behavior can be observed. The
main distinctions of the IDOS from its pure-system �FM and
AF� counterparts are: �i� close to �=4, the upper limit of the
AF band, the FM IDOS’s inflection point is replaced by a
seeming “knee,” with a short flat section; and �ii� saturation

FIG. 4. DOS �D���� and IDOS �N���� for pure FM systems
against normalized energy � /�0: analytical �lines� and calculated
by Gaussian elimination �points�. Dashed lines and triangles: D���;
full lines and squares: N���. �a� d=2, L=100, N=50 000. �b� d=3,
L=16, N=25600. The pure-system �FM� bandwidth is �0

F=8 �d
=2�, and 12 �d=3�.

FIG. 5. Low-energy IDOS, N���, for pure AF in d=3 against
energy �: analytical �full line� and calculated by Gaussian elimina-
tion on L2	N systems, N=500 L2 �points, connected by dashed
lines�. Triangles: L=16; squares: L=20; circles: L=24. Inset: full-
band IDOS �same axes as the main figure�. Analytical �full line�,
and Gaussian elimination with L=16 �triangles�.

FIG. 6. DOS �D���� and IDOS �N���� for Mattis spin glass in
d=2, against energy �, calculated by Gaussian elimination. Tri-
angles: D���; squares: N���. L=250, N=2.5	106.
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is reached below the FM band edge �0
F=8, but above the AF

edge �0
AF=4; by �=6.7 the IDOS is already within less than

1% of unity. Similar effects can be seen in early numerical
work,5 though in that reference saturation appears to be
reached only above the FM band edge, at ��9.0.

It has been predicted3,7 that, since d=2 is the critical di-
mensionality in this case,18 the two-dimensional spin glass
will behave as a pure �AF� system �namely, D�����1,
N�����2�, with logarithmic corrections. At low frequen-
cies, the real part of the dispersion relation is expected to
follow3,7

Re � �
p

�log
�

p
� , �22�

where � is a momentum cutoff, reciprocal to the minimum
wavelength of magnons. From Eq. �22�, one can work out
the predicted behavior of the IDOS at low energies. This
turns out to be

N��� � �2ln
�

�
� , �23�

where � is a cutoff frequency, corresponding to the momen-
tum cutoff �.

We have tested the prediction, Eq. �23�, against our data,
with the results shown in Fig. 7. A fit of the raw data �crosses
in Fig. 7� to pure power-law behavior gives N�����x, with
the effective exponent x�1.62. On the other hand, plotting
N��� / ln�� /�� against �2 �squares in Fig. 7� removes just
about all the curvature, provided that a suitable value of � is
used. A linear least-squares fit of data for 0.05���0.5
�shown as a full line in Fig. 7� gives �=5.8�1�, broadly
consistent with the effective bandwidth �6.7 found above.
Keeping �=5.8, and fitting N��� / ln�� /�� to a power law
dependence over the full interval 0.05���1.0, would give
an effective power x�1.04.

We undertook similar calculations for the Mattis spin
glass in d=3. Since one is above the critical dimensionality
in this case,3,18 the three-dimensional spin glass is expected
to behave as a pure �AF� system, at least at low energies and
long wavelengths �namely, D�����2, N�����3�.

Similar to the pure d=3 AF, for the ranges of L within
relatively easy reach of our calculations, the low-frequency
spectrum exhibits a crossover toward one-dimensional be-
havior. With the terminology introduced earlier, this happens
for ���m, �m=ASG�d� /L; by examining the sequence
L=16,24,30,36, we estimate ASG�3��11, just over half the
corresponding value for pure AF. Thus, such effects are once
more confined to low energies. We have found that, for
��1.2, the L=16 curve is within less than 3% of those
corresponding to larger L, which are grouped together even
more tightly. Figure 8 presents an overall picture of results,
for L=16, N=2.56	106. Again, early saturation occurs. The
IDOS is within 0.1% of unity by �=9.4, just over three-
quarters of the FM bandwidth �0=12. A kink, similar to the
one occurring in d=2 but less intense, arises close to the
center of the FM band �and top of the AF one�, �=6. Both
features show up in Ref. 4, though with saturation occurring
at a slightly higher energy �but still within the FM band�.

The low-energy behavior is shown in Fig. 9. For L=36 we
have found that least-squares fits of our calculated data �ex-
cluding the very low-energy intervals where one-dimensional
behavior takes over� give z=2.97�5�, if we keep to ��1.0;
including higher energies �e.g., ��2.5–3.0� results in a
slight decrease of effective exponents, down to z�2.75. On
the other hand, fits of the numerically evaluated analytic
IDOS for a cube with 1003 sites �shown in Fig. 9�, when
restricted to ��1.5, give an effective z=2.82�1�; it is only

FIG. 7. IDOS �N���� for Mattis spin glass in d=2, for low
energies, against �2, calculated by Gaussian elimination. L=250,
N=2.5	106. Crosses: N���; squares: N��� / ln�� /��, with �=5.8
�see Eq. �23�, and the text�. Full line is a linear least-squares fit to
data for 0.05���0.5.

FIG. 8. DOS �D���� and IDOS �N���� for Mattis spin glass in
d=3, against energy �, calculated by Gaussian elimination. Tri-
angles: D���; squares: N���. L=16, N=2.56	106.

FIG. 9. Double-logarithmic plot of IDOS �N���� for Mattis spin
glass in d=3, for low energies, against energy �, calculated by
Gaussian elimination. Squares: calculated points, L=36, N=6.48
	105. The straight line is a power-law fit with slope 2.97 �from
least-squares fit of data for 0.45���1.0�. Also shown is IDOS for
pure AF, calculated for a cube with 1003 sites.
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when the upper limit is raised to �=3.0 that one reaches
z=2.99�1�. This is because, in the low-energy limit, discrete-
lattice effects still persist, which induce slight deviations of
effective behavior away from the exact value z=3. In sum-
mary, it is only in the very low-energy limit ��1.0 that the
d=3 SG N��� indeed exhibits the �3 dependence character-
istic of the pure AF.

Therefore, we conclude that our low-energy data are con-
sistent with the indications of Refs. 7 and 18, that magnons
in the d=3 Mattis SG display the same low-energy behavior
as in a pure AF. However, the respective amplitudes differ, as
is apparent by the roughly constant distance between SG and
AF data in Fig. 9. Writing NX���=aX�z �X=SG,AF�, we get
from our fits: aSG/aAF=4.1�1�.

A calculation of the amplitudes, along the lines of Ref. 3,
yields aSG/aAF= �2I�3/2=5.281. . ., where I=1.516 386. . . is
Watson’s integral.24 We believe the order-of-magnitude
agreement found between our numerical estimate and this
result is satisfactory, given that disorder is treated only ap-
proximately in the latter approach.

V. DISCUSSION AND CONCLUSIONS

The preceding results are consistent with our statement,
made in Sec. II, that the single-length picture which prevails
in d=1 cannot be ported to higher space dimensionalities. In
order to make contact with the one-dimensional case, we will
refer to the indices emerging from the analytical scaling of
Sec. III, and from the Lyapunov exponent calculations of
Sec. IV A as zL, while those originating from the results of
Sec. IV B �plus the relationship N�����d/z� will be denoted
by z�.

The analytical scaling predictions zL=1 �d=2�, zL=1/2
�d=3� are confirmed by our Lyapunov exponent calculations,
though the width of the energy intervals for which scaling
holds is larger for the former �5	10−3��L�0.3� than for
the latter �5	10−3��L1/2�5	10−2�.

In d=2, the curves of 
L /L against � are essentially par-
allel for ��0.1, down to the lowest energies investigated;
for fixed �, 
L /L decreases with increasing L. This indicates
the absence of a delocalization transition, i.e., all modes are
localized in d=2, in agreement with Refs. 7 and 18. On the
other hand, our result zL=1 implies that the localization
length diverges at low energies as �loc��−1. This is in con-
trast with the field-theoretical prediction of Ref. 7, according
to which �loc��−1/16�.

For d=3, as mentioned earlier, the curves of 
L /L against
� cross each other at low energies. For the �L ,L−2�= �6,4�
pair, the crossing occurs at ��0.04, while for �10,8� it
moves to lower energy ��0.015. We interpret this as a re-
sidual finite-size effect, which will properly vanish with in-
creasing L, and see no reason why the established idea7,18

that all excitations are delocalized in d=3 should be chal-
lenged on the basis of such result.

A connection of our predictions for zL with the literature
can be made as follows. The analysis of Refs. 3 and 7 was
carried out by assuming a well-defined �real� wave vector,
thus implying the complex dispersion relation:

��k� = �R�k� + i��k� . �24�

On the other hand, our TM formulation gives a specified
�spatial� amplitude decay ratio 
−1 for a fixed �real� fre-
quency, which then envisages a complex wave vector,

k = kR + ikI, 
 � kI
−1. �25�

One can then plug Eq. �25� back into Eq. �24�, taking into
account the specific dependencies of �R and � on k, and
force � to be real in the latter.

For d=3, one expects3,7 �R�k��k, ��k��k2, consistent
with small line broadening at low k �i.e., propagating
modes�. From this, one then gets


−1 � �2 �d = 3� , �26�

so that the scaling variable is indeed �L1/2.
For d=2, a similar argument can be made �now on some-

what flimsier grounds, because all modes are expected to be
localized, so the real and imaginary parts of the dispersion
relation may be of the same order of magnitude�. Ignoring
logarithmic corrections, the results of Refs. 3 and 7 are:
�R�k��k, ��k��k, from which we get


−1 � � �d = 2� , �27�

again consistent with the d=2 scaling variable being �L.
The outcome of our density-of-states calculations for

d=2 can be very closely fitted, for low energies 0.05��
�0.5, to the logarithmically corrected form predicted in Ref.
7 �see Eqs. �22� and �23�, and Fig. 7�. Furthermore, one gets
z�=1 plus enhancing logarithmic corrections �recall the ef-
fective exponent �1.62 from Fig. 7�, which is in line with
the vanishing of group velocity �mode softening�6 as �→0.

Finally, our d=3 density-of-states results are again con-
sistent with the pure AF behavior predicted3,7,18 to hold
above dc=2. Thus we have z�=1 in this case. However, the
amplitudes of the low-energy power-law behavior differ, and
we have found aSG/aAF=4.1�1�.
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