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The mixed-spin axial next-nearest-neighbor Ising model, in which spin S=1 and spin �=1/2 ferromagnetic
layers are stacked along the c axis alternately, is studied by using the molecular field approximation �MFA� and
Monte Carlo �MC� simulation. The finite-temperature magnetic phase diagram obtained by the MFA shows a
partially disordered phase �PDP� and the crossover behavior between two PDPs of periodicity 4, one including
paramagnetic S spins and the other including paramagnetic � spins. The appearance of the PDP and the
crossover behavior predicted by the MFA are confirmed by MC simulation. The crossover behavior of the PDP
is a coupled effect between the mixed spin and the frustration of the exchange interactions.
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I. INTRODUCTION

In recent years, both experimental and theoretical efforts
toward understanding of the thermodynamic behavior of
mixed-spin systems and frustrated magnets have been made.
A molecular-based ferrimagnet is one prime example of such
mixed-spin systems. Kaneyoshi and co-workers studied fer-
rimagnetic binary alloys, in which magnetic ions with differ-
ent spin values SA and SB are randomly distributed. The re-
sults of the molecular field approximation �MFA� for various
values of SA and SB revealed the existence of the multicom-
pensation points, at which the total magnetization of the sys-
tem vanishes below the Néel temperature.1 Ohkoshi et al.
first experimentally observed the appearance of two compen-
sation points in the quaternary alloy Prussian Blue analog2

and theoretically explained those features in terms of the
molecular field approximation.2

Recently, Bobak et al. have claimed that even the case of
the ternary mixed-spin Ising model has the possibility of
giving two compensation points by detailed MFA calculation
based on the structure of the Prussian Blue analog.3 These
unexpected features, in the sense that Néel’s pioneering
works in ferrimagnetism expected only one compensation
point, of multicomponent alloys give the motivation for ana-
lyzing the mixed-spin systems in detail.

On the other hand, the antiferromagnetic triangular lattice
Ising model is a typical example of frustrated systems. As is
well known, this model with only the nearest-neighbor �NN�
antiferromagnetic exchange interaction has no long-range-
ordered state,4 but with the introduction of the next-nearest-
neighbor �NNN� ferromagnetic exchange interaction it ex-
hibits interesting ordering such as a partially disordered
antiferromagnetic phase, in which two-thirds of the spins are
antiferromagnetically ordered while the other remains
incoherent.5,6 Using these results, Mekata and Adachi ex-
plained the successive phase transitions observed in
CsCoCl3.7 On the other hand, without the introduction of the
NNN ferromagnetic interactions mentioned above, it has
been reported that the change of the spin value S leads to
long-range ordering in the antiferromagnetic triangular

lattice.8 This fact suggests the importance of the role of the
spin magnitude in frustrated systems.

The axial next-nearest-neighbor Ising �ANNNI� model is
also a good example of a frustrated anisotropic spin system
with competing interactions. Owing to the competition be-
tween the NN and NNN interlayer interactions along the c
axis, its phase diagram calculated by the MFA qualitatively
reproduced the successive phase transitions of the spatially
modulated spin configurations9 found in CeSb.10 However,
the usual simple ANNNI model could not reproduce the par-
tially disordered phase �PDP�, in which spin-ordered and
spin-disordered sublattices coexist. In previous reports, we
proposed an extended ANNNI model, in which spin layers
with weak intralayer interaction and those with a strong one
are alternately stacked along the c axis in addition to the
competition of the NN and NNN interlayer interactions.11 A
MFA study of this intralayer-interaction-alternating ANNNI
model showed that the PDP can appear in the intermediate
temperature region.11 Furthermore, we confirmed the stabil-
ity of the PDP by later Monte Carlo �MC� simulation.11,12

From these studies, we expect that, in frustrated spin sys-
tems, modifications of the interaction strength and/or the spin
magnitude play very important roles and cause various inter-
esting phenomena, e.g., the appearance of the PDP and its
related features. Those expectations led us to study the
mixed-spin effects in a frustrated system.

In this paper, by using the MFA and MC simulation, we
discuss the mixed-spin ANNNI model �Fig. 1�, in which fer-
romagnetic layers composed of spins S and � �hereafter, we
call these layers the S layer and the � layer, respectively� are
stacked alternately. This system is described by

H = − J0S2�
�ij�

SiSj − J0��
2�

�ij�
�i� j − J1S��

�ij�
Si� j

− J2S2�
�ij�

SiSj − J2��
2�

�ij�
�i� j . �1�

In Eq. �1�, J0 and J0� represent the ferromagnetic intralayer
interactions for the S and � layers, respectively. J1 is the NN
ferromagnetic interlayer interaction and J2 �J2�� is the NNN
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antiferromagnetic interlayer interaction between S layers ��
layers�. Si �� j� is the spin variable, which is normalized by
its spin magnitude, sitting on the ith �jth� site. In the present
study, we assume S=1 and �=1/2, and then Si �� j� takes
one of ±1,0 �±1� spin states. The summations run over the
spin pairs with respect to each interaction.

The arrangement of this paper is as follows. In Sec. II, we
show the expressions of the layer magnetizations and the free
energy based on the MFA, and explain the finite-temperature
magnetic phase diagrams obtained for various strengths of
the exchange interactions. In Sec. III, by using MC simula-
tion, we look for the existence of the PDP and its relevant
phenomena suggested by the MFA in Sec II. Finally, in Sec
IV, we conclude and discuss the spin-mixing effects on the
ANNNI model.

II. MOLECULAR FIELD APPROXIMATION

A. Layer magnetizations and free energy

For the ferromagnetic intralayer interactions, it is believed
that all spins within the same layer take the same thermal
average. Imposing periodic boundary conditions and using a
site-dependent MFA, Eq. �1� can be reduced to the following
chain Hamiltonian:

HMF = − J1S��
i=1

N/2 ��S2i−1H2i−1 + �2iH2i�

−
1

2
��S2i−1�H2i−1 + ��2i�H2i�� , �2�

where

H2i−1 = 4�S�S2i−1� + ���2i−2� + ��2i�� + �S��S2i−3� + �S2i+1�� ,

�3�

H2i = 4����2i� + ��S2i−1� + �S2i+1�� + �����2i−2� + ��2i+2�� .

�4�

In Eqs. �2�–�4�, S2i−1, �2i, �S2i−1�, and ��2i� denote the spin S
on the �2i−1�th layer, the spin � on the 2ith layer, and their
thermal averages, respectively. Hereafter, we use the follow-
ing notations for the ratio of the exchange interactions nor-
malized by the spin magnitudes:

�S =
J0S2

J1S�
, �� =

J0��
2

J1S�
, �S =

J2S2

J1S�
, �� =

J2��
2

J1S�
.

�5�

From Eqs. �2�–�5�, for the present case of S=1 and �=1/2,
the thermal averages of the layer magnetizations per spin are
given by

�S2i−1� =
2 sinh KH2i−1

1 + 2 cosh KH2i−1
, �6�

��2i� = tanh KH2i, �7�

and the free energy per spin is given by

F

J1S�
=

1

NK
�
i=1

N/2 �K

2
��S2i−1�H2i−1 + ��2i�H2i�

− ln�1 + 2 cosh KH2i−1��2 cosh KH2i�� , �8�

where

K =
J1S�

kBT
. �9�

To determine probable configurations of spins, the simulta-
neous equations for the spin layers up to N=16 are self-
consistently solved by means of the iteration. The most
stable spin structure is determined so as to minimize the free
energy of Eq. �8�.

In order to evaluate the wave-number-dependent phase
transition temperature, here we introduce a site-dependent
fictitious field hj. In the paramagnetic state, the �S2i−1� and
��2i� induced by the site-dependent external field hj are cal-
culated from Eqs. �6� and �7�, and are given by neglecting
higher orders of H2i−1, H2i, and hj as follows:

�S2i−1� �
2

3
K�H2i−1 + g�Bh2i−1� , �10�

��2i� � K�H2i + g�Bh2i� , �11�

where g and �B denote the g factor and Bohr magneton,
respectively. Now, we introduce the Fourier components of
�S2i−1�, ��2i�, and hj,

�S2i−1� = �
q

�Sq�expiqr2i−1, �12�

��2i� = �
q

��q�expiqr2i, �13�

FIG. 1. Mixed-spin ANNNI model. It is composed of two kinds
of alternately stacked S=1 �light spheres� and �=1/2 �dark
spheres� ferromagnetic layers.

KASAMA, MURAOKA, AND IDOGAKI PHYSICAL REVIEW B 73, 214411 �2006�

214411-2



hj = �
q

hq expiqrj . �14�

Equations �10�–�14� give

�Sq� =
2

3
K	JS�q��Sq� + J��q���q� + g�Bhq
 , �15�

��q� = K	J��q���q� + J��q��Sq� + g�Bhq
 , �16�

where JS�q�, J��q�, and J��q� denote the Fourier components
of the exchange interactions which are described by

JS�q� = 2�2�S + �S cos 2q� , �17�

J��q� = 2�2�� + �� cos 2q� , �18�

J��q� = 2 cos q . �19�

Note that the lattice constant is taken to be unity. From Eqs.
�15� and �16�, the wave-vector-dependent susceptibilities,
which are defined by

�S =
Ng�B�Sq�

2hq
, �20�

�� =
Ng�B��q�

2hq
, �21�

are given by

�S =
N�g�B�2K	2 + K�J��q� − J��q��


f�q,K�
, �22�

�� =
N�g�B�2K	3 + 2K�J��q� − JS�q��


f�q,K�
, �23�

where

f�q,K� = �2KJS�q� − 3��KJ��q� − 1� − 2�KJ��q��2. �24�

The critical temperature 1/Kc and critical wave vector qc are
determined by the simultaneous equations

f�qc,Kc� = 0, �25�

�

�q
f�qc,Kc� = 0. �26�

Equations �25� and �26� can be solved numerically or in
some cases analytically. The results are classified into three
cases: qc=0, 0�qc�� /2, and qc=� /2, which are assigned
to the ferromagnetic phase, the modulated phase, and that
having wave number 1/4, respectively. It should be noted
that, in the ordinary ANNNI model, the critical wave number
1/4 appears only in the limit of 
J2
 /J1→�, i.e., the direct
phase transition from the paramagnetic phase to the modu-
lated phase with wave number 1/4 does not occur. The criti-
cal temperature for qc=� /2 is given by

1

Kc
= max�4�2�S − �S�

3
,2�2�� − ���� . �27�

Equation �27� suggests the possibility that with the change
of interaction ratio the slope of the linear phase boundary
between the paramagnetic phase and wave number 1/4
phase may change from one to the other. This will be shown
in Sec. II B.

B. Magnetic phase diagrams

In order to discuss the spin-mixing effects, we com-
pare the results obtained for the following three cases
of interaction strength: case 1 J0 /J1=J0� /J1=1, J2=J2�; case 2
J0S2 /J1S�=J0��

2 /J1S�=1, J2S2=J2��
2; case 3 J0 /J1=J0� /J1

=1, J2S2=J2��
2.

In case 1, all exchange interactions have the same
strength. Therefore, the difference of the spin value directly
affects the strength of interaction energy �i.e., energy effect�
between respective spin pairs. In case 2, all interaction ener-
gies between respective spin pairs have the same strength.
Therefore, we can see the effect of the difference of the
number of allowed spin states or spin degrees of freedom
�i.e., entropy effect�. Case 3 is the hybridization of cases 1
and 2.

Case 1. For this case, we took the interaction ratios de-
fined in Eq. �5� as �S /2=2��=1, �S /2=2��, and performed
the numerical calculation by changing the value of �S. The
magnetic phase diagram calculated for case 1 is shown in
Fig. 2. The symbols �n1n2 . . . � correspond to the modulated
phases starting with an S layer, whose fundamental periods
consist of successive n1 layers, which have the same direc-
tion of magnetization, and the following n2 layers, which
have the opposite direction to the previous one, and so on. In
addition, “10” represents a paramagnetic layer. For example,
schematic spin configurations of �2�, �310�, �110�, and
�23210� are shown in Fig. 3, in which the direction and the
length of the bars depict the orientation and magnitude of
layer magnetization. In Fig. 2, the PDP phases are shown as
hatched areas, and the ferromagnetic and paramagnetic
phases are denoted by “ferro” and “para,” respectively. The

FIG. 2. Magnetic phase diagram for case 1.
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point where ferromagnetic, paramagnetic, and modulated
phases coexist, is designated as “LP” �Lifshitz point�. An-
other special point is shown as “SP” �saturated point�, where
the critical wave number saturates to 1/4 with decreasing �1
��0�.

There are three PDPs having periods �310�, �23210�, and
�110�. All these PDPs include paramagnetic � layers. In case
1, the interaction energy related to the larger spin S is larger
than that of the smaller spin �. Then, with the decrease of
temperature, the ordering of the S layer can be more easily
established than that of the � layer resulting in a PDP which
includes paramagnetic � layers.

Case 2. For this case, we took the interaction ratios de-
fined in Eq. �5� as �S=��=1, �S=��, and performed the
numerical calculation by changing the value of �S. The phase
diagram is shown in Fig. 4. We note that there appear three
PDPs as in Fig. 2. The apparent difference between in Figs. 2
and 4 is that the modulated PDPs are �310�, �23210�, and
�110� in Fig. 2 but �103�, �10232�, and �101� in Fig. 4, respec-
tively. Namely, in contrast to case 1, the PDPs in Fig. 4
include paramagnetic S layers. In case 2, the interaction en-

ergy between respective spin pairs is the same, so the en-
tropy is the dominant term in free energy for determining
stable spin states. Then with increase of the temperature, the
layer including the larger spin S becomes paramagnetic more
easily than that with the smaller spin.

Case 3. For this case, we took the interaction ratios de-
fined in Eq. �5� as �S /2=2��=1, �S=��, and performed the
numerical calculation by changing the value of �S. The phase
diagram is shown in Fig. 5�a�. It resembles Fig. 2, but the
extended phase diagram 	Fig. 5�b�
 shows a characteristic
difference from Fig. 2. In contrast to Fig. 2, the stable tem-
perature range of the �110� PDP phase becomes narrow with
decreasing �S ��0�, and finally vanishes at �S=−5. With fur-
ther decrease of �S, there appears a new PDP of �101� for
�S�−5. That is to say, the crossover phenomenon between
the �110� PDP and �101� PDP occurs at �S=−5 	crossover
point �CP�
.

To our knowledge, the crossover phenomenon between
two different PDPs is detected here for the first time. Gener-
ally, MFA results do not accurately describe critical tempera-
tures because of neglecting spin correlations and fluctua-
tions. Therefore, it has to be checked that the CP can be
reproduced by more accurate methods, for example MC
simulation. However, even if the crossover phenomenon can
be reproduced by MC simulation, it is expected that the in-
teraction strength and critical temperature for CP quantita-
tively differ from those obtained by the MFA. To overcome

FIG. 3. Schematic spin configurations of �310�, �110�, and
�23210�. The direction and length of the bars depict the layer mag-
netization of each layer. The white and black balls correspond to a
S and � layers, respectively.

FIG. 4. Magnetic phase diagram for case 2.

FIG. 5. Magnetic phase diagram for case 3.
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this problem, before performing the MC simulation, we find
the main factor leading to the CP by using the MFA.

C. Simple analysis of the crossover phenomenon

We give a simple argument on the occurrence of the
crossover between �110� and �101� PDPs and find a guide to
estimate the CP which will aid the MC simulation in the next
section. In the vicinity of the CP, the NNN interactions J2
and J2� are dominant in the ordering of the system. It is there-
fore reasonable to assume �S4i−3�=−�S4i−1���S� and
��4i−2�=−��4i�����. Under this assumption, we can obtain
thermal averages of magnetizations from Eqs. �6� and �7�,

�S� =
2 sinh KHS

1 + 2 cosh KHS
, �28�

��� = tanh KH�, �29�

where

HS = �S��4�S − 2�S� , �30�

H� = ����4�� − 2��� , �31�

and from Eqs. �5� and �9�

KHS =
�S��4J0S2 − 2J2S2�

kBT
, �32�

KH� =
����4J0��

2 − 2J2��
2�

kBT
. �33�

Equations �28�, �29�, �32�, and �33� imply that in the vicinity
of the CP the mixed-spin ANNNI model is divided into two
independent Ising models with spin S and spin �, respec-
tively. Thus the critical temperatures of these systems can be
separately obtained as follows:

kBTc
S =

2

3
�4J0 − 2J2� , �34�

kBTc
� = 4J0� − 2J2�. �35�

For interaction ratios �S=2 and ��=0.5, i.e., the condition of
case 3, the 2J2 /J0� �̃S dependencies of these critical tem-
peratures are shown in Fig. 6. We can see that Tc

� increases
more quickly than Tc

S with decreasing �̃S ��0�. It should be
noted that a crossover occurs at �̃S=−5 and 2kBTc

S /J0
=2kBTc

� /J0=12, which are consistent with the volues ob-
tained in Fig. 5�b� since J0 /2=J1S� in the present case. We
see that the NN interlayer interactions J1 for each layer can-
cel out between the upper layer and lower layer and the NNN
interlayer interactions J2 and J2� are intrinsic for the occur-
rence of the crossover phenomenon. This physical picture for
the crossover phenomenon is very useful in the following
MC simulation.

III. MONTE CARLO SIMULATION

In this section, we perform a MC simulation focused on
the examination and confirmation of the crossover phenom-

enon between �110� and �101� PDPs. Following the scheme
of Sec. II C, first we perform MC simulations for two inde-
pendent Ising models with spin S=1 and spin �=1/2, re-
spectively. Next, we introduce and study their coupled ver-
sion, i.e., the mixed-spin ANNNI model.

A. Two independent Ising models

Under the condition of J1=0, the mixed-spin ANNNI
Hamiltonian is divided into the following two independent
Ising Hamiltonians:

HS = − J0S2�
�ij�

SiSj − J2S2�
�ij�

SiSj , �36�

H� = − J0��
2�

�ij�
�i� j − J2��

2�
�ij�

�i� j , �37�

where HS �H�� is the S=1 ��=1/2� Ising model with the
ferromagnetic intralayer interaction J0 �J0�� and the antiferro-
magnetic NN interlayer interaction J2 �J2��.

We used the standard importance sampling method with
the Metropolis algorithm on an L	L	L simple cubic lattice
�L=40� with periodic boundary conditions along the three
axes. The result for the initial 104 Monte Carlo steps per spin
�MCS� at each temperature was disregarded and the result
for the subsequent 104 MCS was used for calculation of
physical quantities. The results during the latter 104 MCS are
divided into ten samples in order to estimate the standard
deviation. The last spin configuration of each temperature is
employed as an input for calculation at the next temperature.
Starting from very low temperature, we calculated the spe-
cific heat as the fluctuation in the internal energy. The critical
temperatures were determined from the maximum of the
specific-heat curve. The strength of the intralayer interactions
was fixed as J0=J0� as in case 3 and Sec. II C.

The �̃S dependence of the critical temperatures is shown
in Fig. 7�a� for the case of J2S2=J2��

2 in order to compare
with the MFA result of Fig. 6. Both critical temperatures for
the S=1 and �=1/2 Ising models increase with decreasing

FIG. 6. MFA results of the critical temperatures of Ising models
with spin S=1 �solid line� and spin �=1/2 �broken line�. The renor-
malization by J0 is for comparison with the results of Monte Carlo
simulation which are shown in Fig. 7.
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�̃S. The difference between the two critical temperatures,
however, extends with further decreasing of �̃S, and the
crossover is not observed. This means that in practice the
parameter used in the MFA calculation cannot produce the
crossover phenomenon. In order to confirm the crossover, we
performed further MC simulations by changing the ratio
J2� /J2. In Fig. 7�b�, we show the MC result for 2J2�S

2=J2�2.
In this case, we can really observe the crossover between two
critical temperatures at �̃S=−3.0 and 2kBT /J0=7.2.

In the MFA which neglects spin correlations, the field
interacting with a spin is simply approximated as propor-
tional to the thermal expectation value of the neighboring
spin, and then the NN interlayer interaction has been per-
fectly canceled out at the CP. However, even in a region of
strong frustration like the CP, correlations between frustrated
spins should affect the frustration effect, spin stability, and
finally the location of the CP. In the next section, we intro-
duce the NN interlayer interaction and examine the crossover
phenomenon of the mixed-spin ANNNI model by using MC
simulation. With inclusion of the interaction J1, there appears
a strong frustration effect and we will need to reexamine and
rechoose an appropriate set of values of the interactions in
order to check the crossover phenomenon.

B. Monte Carlo simulation for the mixed-spin ANNNI model

In this section, we directly examine the existence of the
CP in the mixed-spin ANNNI model. We used the Metropolis
MC algorithm to study the difference between temperature
dependences of layer magnetizations defined as follows:

�MS,2i−1� =� S

L2 �
x�S layer

S2i−1,x� = S�S2i−1� , �38�

�M�,2i� =� �

L2 �
x�� layer

�2i,x� = ���2i� . �39�

In Eqs. �38� and �39�, the summations run over the spins
placed on the �2i−1�th �2ith� S layer �� layer�. From very
low temperature, we calculated the layer magnetizations in
the same heating procedure as that explained and used in
Sec. III A.

In the calculation of the temperature dependence of the
layer magnetizations, the period-four modulation �2� was set
as the initial spin configuration on the lattice, which has suf-
ficiently large size �L	L	Lz�= �60	60	40�. After dis-
carding the first 105 MCS for equilibration at each tempera-
ture, thermal averages are calculated using the subsequent
105 MCS. The error bars were calculated by taking all the
results for the latter 105 MCS and grouping them into 102

samples to calculate a thermal average and a standard devia-
tion. Figure 8�a� shows the temperature dependences of the
layer-magnetizations for �S=−2 with 1.7J2S2=J2��

2. In the
temperature range between kBT /J1S�=5.4 and 6.4, �M�,2�
�0 and �M�,4��0 while �MS,1� and �MS,3� remain finite.

In order to see the system size dependence of the layer
magnetizations, we performed MC simulation at a fixed tem-
perature for several systems of size L=30, 40, 48, 56, and 60
with fixed Lz=40. For each simulation, the result of the ini-
tial 106 MCS was disregarded and the results of the subse-
quent 106 MCS were devided into 103 samples to calculate a
thermal average and a standard deviation. The least-square
fitting plots of �MS,1� and �M�,2� against 1 /L at kBT /J1S�
=5.8 are shown in Fig. 8�b�. This figure shows that the finite-
size effect of the lattice causes a finite �M�,2�, and �M�,2�
completely vanishes in the limit L→�. �Note that the order
parameters �MS,2i−1� and �M�,2i� will have the same character
as in a two-dimensional system. The size dependence of
�MS,2i� and �M�,2i−1� therefore should obey the 1/L varia-
tion.� From Fig. 8, we conclude that the �110� PDP exists at
�S=−2.0.

On the other hand, the layer magnetizations for �S=−15
with 1.7J2S2=J2��

2 are shown in Fig. 9 as functions of tem-
perature and 1/L. The details of these simulation are the
same as mentioned above. Figure 9�a� shows �MS,1��0 and
�MS,3��0 while �M�,2��0 and �M�,4��0 between
kBT /J1S�=17 and 17.8 in contrast to Fig. 8�a�. In addition,
Fig. 9�b� shows �MS,1�=0 at the thermodynamic limit. Ac-
cordingly, the �101� PDP is stable at �S=−15.

From Figs. 8 and 9 we can conclude that the �110� and
�101� phases are stabilized at �S=−2 and −15, respectively.
These results imply the existence of a CP between �S=−2

FIG. 7. Monte Carlo results of the critical temperatures of
two independent Ising models with spin S=1 �squares� and spin
�=1/2 �circles� against �̃S=2J2 /J0 for �a� J2S2=J2��

2 and �b�
2J2S2=J2��

2.
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and −15. These MC results are qualitatively consistent with
those obtained from the MFA calculations.

IV. CONCLUDING REMARKS

We have studied the partially disordered phase of the S
=1 and �=1/2 mixed-spin ANNNI model. By using the
MFA, we have discussed the following three cases changing
the strength of competing interactions: case 1, J0=J0� and
J2=J2�; case 2, J0S2=J0��

2 and J2S2=J2��
2; and case 3, J0

=J0� and J2S2=J2��
2. In case 1, the difference between the

magnitudes of spin S and of spin � mainly affected the in-
ternal energy and the energy gain determining the structure
of spin ordering. As a result, we observed a PDP composed
of paramagnetic � layers. In case 2, the entropy gain of the
larger spin S reduced the free energy. Then, in contrast to
case 1, we found PDP including the paramagnetic S layers.
In case 3, which is the hybridization of cases 1 and 2, we
observed a crossover phenomenon between two different
types of PDP mentioned above at their crossover point.

By simple MFA calculation, we discussed the physical
background of the appearance of the crossover phenomenon.
Referring to this MFA consideration, first we performed MC
simulations for the two independent spin-S and spin-� Ising
models, respectively. Next, we introduced their coupling

�NN interlayer interaction� in the calculation, and practically
confirmed the appearance of a crossover between the PDP
including paramagnetic spin-� layers ��110�� and paramag-
netic spin-S layers ��101��, respectively.

In this paper, we have systematically studied the mixed-
spin ANNNI model by choosing appropriate sets of values of
the interactions. The present model is an extended version of
the previous ordinary ANNNI model. Then, by taking an

FIG. 8. Layer magnetizations �MS� �squares� and �M�� �circles�
on �S=−2 against �a� the temperature variation for �L ,L ,Lz�
= �60,60,40� and �b� the L variation at kBT /J1S�=5.8.

FIG. 9. Layer magnetizations �MS� �squares� and �M�� �circles�
at �S=−15 against �a� the temperature variation for �L ,L ,Lz�
= �60,60,40� and �b� the linear L variation at kBT /J1S�=17.2.

FIG. 10. Magnetic phase diagram for case 4.
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appropriate set of values of parameters, we can reproduce the
phase diagram which resembles the previous ordinary
ANNNI model showing no PDP. Actually, for example, we
performed the MFA calculation for the set of interactions
�S=3, ��=2, and 2�S=3�� �case 4�, in which the strength of
the interactions is fixed to the inverse ratio of critical tem-
peratures, i.e., S2 /S�S+1� :�2 /���+1�=3:2. The magnetic
phase diagram obtained is shown in Fig. 10. In Fig. 10, the
PDP does not appear and the SP exists only in the limit of
�S→−�. We note that this phase diagram is almost the same
as that of the ordinary ANNNI model calculated by the MFA,
except for a slight difference in the periods of modulated
phases. This difference is due to the restriction of N. In the
present calculation for N�16, phases corresponding to q
=0 and � /8
q
� /2 can be taken into account. For higher
values of N, complex structures with longer periodicities will

appear in the phase diagram. These structures, however, are
not stable except within an extremely narrow temperature
range in the phase diagram, and so no additional significant
insight can be achieved by extending the numerical calcula-
tion to such higher values of N.9

In the present paper, we focused our attention on the in-
vestigation and confirmation of the appearance of PDSs and
their crossover behavior by using a rather simple molecular
field and Monte Carlo calculation. Detailed analysis of the
critical properties of the phase transition between the
completely paramagnetic state and the PDS particularly
around the crossover point will be very interesting future
work to be studied. Finally, it will also be an interesting
future problem to extend the present calculation to larger-
spin cases and/or mixed-spin systems having other combina-
tions of spin values.
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