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The pressure and temperature dependence of the vibrational frequency of two interacting strongly anhar-
monic longitudinal and transverse modes with wave vector k=2/3�111� in �-Zr is studied by solving a set of
stochastic differential Langevin equations with a thermostat of the white noise type. The appropriate effective
potential is calculated within the electron density functional theory, taking into account the contributions to the
free energy from the electronic entropy depending on the atomic displacements. An analysis of the changes in
the spectral density of vibrations with the pressure and temperature allows us to determine the stability region
of the bcc phase of zirconium at pressures up to 35 GPa. A good agreement is obtained with the experimental
data available. From the calculation performed it follows that the structural instability of the Zr bcc lattice with
respect to the displacements characteristic of vibrations with wave vector k=2/3�111� is of significant impor-
tance not only for the �→� transition, but also for the �→� transformation observed at pressures less than
5 GPa.
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I. INTRODUCTION

In the preceding paper1 we have studied the effect of the
temperature on the effective potential W�x ,y� and spectral
density of vibrations of the interacting longitudinal, x, and
transverse, y, modes with wave vector k=2/3�111� �Ll and
Lt phonons�. The effective potential acting on these modes at
zero temperature was calculated in the frozen-phonon ap-
proximation within the framework of the electron density
functional theory by the FP LMTO method.2,3 For nonzero
temperatures, the WT potential was defined as the difference
in free energy FT for different atomic displacements,
WT�x ,y�=FT�x ,y�−FT�0,0�. We have shown that the shape
of the effective potential is essentially temperature depen-
dent. An analysis of the changes with temperature in the
frequency dependence of the transverse Lt vibrations allowed
the stability region of the Zr � phase to be determined at zero
pressure.

It is currently believed that, at atmospheric pressure, the
low-temperature instability of �-Zr is due to the softening of
the transverse phonon with wave vector k=1/2�110� �Nt

phonon�.4–6 The result we obtained1 testifies that at zero
pressure there is, at least, one more process responsible for
the structural instability of the Zr bcc lattice, namely, the
atomic displacements corresponding to the longitudinal Ll
phonon. This phonon mode is commonly associated with the
�→� transformation observed in zirconium at high
pressures.7,8 We have shown1 that for P=0 GPa the tempera-
ture at which the � phase of Zr becomes unstable to the
longitudinal Ll displacements is TL=1150±50 K. This value
practically coincides with the experimentally obtained �
→� transition temperature T�→�=1136 K.9 The question
now arises of whether the close agreement between TL and
T�→� is accidental or the Ll mode plays really an important,
if not decisive, role in the �→� transformation. To answer
this question one should determine the region of stability of
bcc Zr with respect to the atomic displacements characteris-
tic of the Ll mode at different pressures.

Earlier, we have shown6 that with increasing pressure the
temperature of the transition due to the Nt mode softening
must decrease. In the present paper, using the approach de-
veloped in Ref. 1, we shall calculate the changes with the
pressure in the spectral density of the longitudinal, Ll, and
transverse, Lt, modes with wave vector k=2/3�111�, and de-
termine, in a wide temperature and pressure range, the sta-
bility region of the Zr � phase with respect to the displace-
ments corresponding to these modes. To this end, we shall
successively consider the dependence on the volume, V, and
atomic displacements, x ,y, of the total energy of a crystal in
the ground state, Eel

V�x ,y� �2D analog of the frozen-phonon
model�, electronic entropy Sel

V�T ,x ,y� and free energy

FT
V�x,y� = Eel

V�x,y� − TSel
V�T,x,y� . �1�

The effective potentials WT�x ,y�=FT�x ,y�−FT�0,0� calcu-
lated for each fixed volume and temperature will be used in
solving a set of stochastic differential equations of motion
with a thermostat of the white noise type.

A similar stochastic approach to modeling the lattice vi-
brations of a strongly anharmonic crystal �including the Ll
mode of Zr� was used in Ref. 10 where, in contrast to this
paper, the dynamics of motion of a single mode in a
temperature-independent potential were studied at zero pres-
sure.

II. DETAILS OF CALCULATION

As in Ref. 1, the unit cell of �-Zr was chosen as a hex-
agonal lattice with three base atoms. A detailed description
of the unit cell geometry, its relation with the bcc lattice
parameters, and the atomic displacements corresponding to
the vibrations with the chosen wave vector k=2/3�111� may
be found, for example, in Ref. 11. The total energy was cal-
culated by the self-consistent full-potential LMTO method
�FP LMTO� �Refs. 2 and 3� with the GGA approximation for
the exchange-correlation potential term.12 The same set of FP
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LMTO parameters was used for all displacements. The one-
center expansions inside the MT spheres were confined to
lmax=6. The MT sphere radii were chosen equal to Rmt
=2.20 a.u. Integration over k was performed on a �10,10,10�
mesh equivalent to 166 k-points in the irreducible part of the
Brillouin zone. The total energy was calculated for 108 pairs
of coordinates x ,y �18 values for the variable x correspond-
ing to the longitudinal Ll mode, and six values for y corre-
sponding to the transverse Lt mode�. The energies obtained
were first approximated by a tenth-degree polynomial for the
longitudinal vibrations and then by a fourth-degree polyno-
mial for the transverse ones.

The electronic excitation entropy term was introduced as
earlier.1,13 This means that our analysis was limited to the
classical lattice-dynamics regime when the electron-phonon
interaction effects become negligible and the electronic ex-
citation entropy term Sel is bare electronic entropy

Se = − kB� n�f ln f − �1 − f�ln�1 − f��dE . �2�

Here n�E� is the density of states, and f�E� is the Fermi
distribution

f�E� = �exp ��E − �� + 1�−1, �3�

�=1/ �kBT�. The chemical potential ��T� was determined
from the condition for the number of electrons, z

z =� n�E�f�E�dE . �4�

The obtained temperature-dependent effective potential
WT

V�x ,y� was used in solving the set of stochastic differential
Langevin-type equations,

d2x

dt2 +
�W�x,y�

�x
+ �x

dx

dt
= Fx�t� ,

d2y

dt2 +
�W�x,y�

�y
+ �y

dy

dt
= Fy�t� , �5�

Fx�t�, Fy�t� are random forces with correlators

�Fi�t�� = 0, �6�

�Fi�t�Fj�t��� = 2T��ij��t − t�� , �7�

� are coefficients of the vibration damping, T is the tempera-
ture of the thermostat. The set of equations �5� was solved by
numerical integration of stochastic differential equations, us-
ing a method,14 which is a generalization of the Runge-Kutta
scheme to the stochastic differential equations. We used a
four-step method of third order with the parameters from
Ref. 14.

When solving the set of stochastic differential equations, a
particular effective potential W�T� was constructed for each
fixed temperature T in �7�. The calculation was performed
with a time step �t=1.57�10−16 s, the number of steps in
the realization being Nsh=3�108. Thus, the total time of
modeling was tr�5�10−8 s, which is vastly greater than the
period of vibrations of the chosen modes. The test calcula-

tions for Nsh=9�108 have shown that the result remains
unchanged with such an increase of the modeling time.

The stochastic dynamical variables �coordinates X ,Y and
velocities VX ,VY� found by solving Eqs. �5� were used to
calculate the autocorrelation velocity functions Ki�	�
= �Vi�0�Vi�	��. To this end the whole interval of modeling
time was divided into realizations. The values of dynamical
variables X�t0� ,Y�t0� obtained at the end of each realization
were used as the starting values for the next one. In the
average, the length of one realization was Nr=100 000 steps
�1.57�10−11 s�. When calculating the correlators, the total
number of realizations over which the averaging was per-
formed amounted to 3000.

The spectral vibration density Si��� was found from the
autocorrelation velocity function Ki�	�,

Si��� =
2



�

0

�

cos��	�Ki�	�d	 . �8�

The computational details as well as the effect of the cal-
culation parameters on the result were discussed in Ref. 1.

III. VOLUME DEPENDENCE OF THE EFFECTIVE
POTENTIAL AND SPECTRAL DENSITY OF VIBRATIONS

The effective potential W�x ,0� for the longitudinal dis-
placements Ll, calculated at different temperatures and four
values of the volume �V=V0 ,V=0.9V0 ,V=0.8V0 ,V=0.7V0,
here V0 is the equilibrium volume�, is shown in Fig. 1. It can
be seen that the effective potential for the longitudinal vibra-
tions and equilibrium volume V=V0 has a three-well shape,
which agrees with the findings of Ref. 11. The free energy is
minimum at zero displacements when the atoms are local-
ized at the sites of the crystalline structure of �-Zr. Two
local minima at x�	0.166	 correspond to the atomic arrange-
ment in the bcc structure. Because of these minima being
shallow, the bcc lattice of zirconium proves to be unstable to
small longitudinal vibrations at V0. It should be noted that to
obtain the � structure observed in Zr from the bcc lattice, it
will not suffice to merely shift the atoms, it is also necessary
to increase the c /a ratio. In further discussion, we shall not
take into account the change of c /a under the �→� struc-
tural transformation.

The change of the potential with reduction in the volume
qualitatively agrees with the change it undergoes as the tem-
perature increases. First, with small changes in the volume
�V=0.9V0�, the difference in energy between the bcc and �
structures diminishes. Then, at V=0.8V0, a plateau appears
near the equilibrium position of the � structure, i.e., the crys-
tal energy remains almost unchanged at small atomic dis-
placements. For this volume the bcc structure becomes ener-
getically preferential. With further reduction in the volume
�V=0.7V0� the effective potential transforms into a two-well
one. As a result, the � phase becomes unstable with respect
to infinitesimal atomic displacements and, hence, only zirco-
nium with a bcc lattice may be stable at V=0.7V0. Note that
in spite of qualitatively similar changes of the effective po-
tential with a reduction in the volume and with an increase in
temperature, the causes of these changes are completely dif-
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ferent. So, the changes in the potential with increasing tem-
perature are entirely due to the change of the electronic en-
tropy, whereas with reduction in the volume, the change of
W is totally caused by the change of the electron structure in
the ground state. In Fig. 1 we present only the effective
potential for the longitudinal atomic displacements, for the
transverse ones it has a parabolic shape at both the �
�W�0,y�� and bcc �W�0.166,y�� sites. We do not show here a
three-dimensional �3D� picture of the potential because of its
being a little informative and hardly comprehensible. Three-
dimensional pictures of the effective potential at different
temperatures can be found in Ref. 1, as well as a detailed
discussion of the temperature dependence of the potential at
a constant volume, V0.

The spectral densities of vibrations, Si���, are presented
in Fig. 2 for different temperatures and volumes. As was
shown in Ref. 1, the first maximum of the spectral density
Sx��� at low frequencies ���1.5 GHz� is associated with
the longitudinal vibrations; the second one, at ��3 GHz,
yields the spectral density of the transverse vibrations, Sy���.
As seen, the changes of the spectral density with temperature
at V=0.90V0 coincide, on the whole, with those at the equi-
librium volume. This is not surprising, since in both cases the
effective potential has the same shape, and differs only in the
depth of the potential well �see Fig. 1�.

It can be seen from the figure that the volume dependence
of the vibrational frequency differs for the longitudinal and
transverse modes. So, at low temperatures, with a reduction
in the volume the frequency decreases for the longitudinal
vibrations and increases for the transverse ones. At high tem-
peratures, the frequency of the longitudinal vibrations
changes only slightly with reduced volume, and the trans-
verse vibrations frequency increases from ��3.9 THz for
the equilibrium volume up to ��4.5 THz for V=0.9V0.

It is easily seen from Fig. 2 that with a reduction in the
volume, there is a decrease in the temperature at which two

equal in intensity peaks appear in the spectral density curve
in the region of both longitudinal and transverse vibrations.
In Ref. 1 we have shown that the appearance of a double-
hump structure in the spectral density curve points to the
occurrence of structural instability connected with the given
type of vibrations. For the transverse mode, the temperature,
at which the spectral density has two equal in intensity
peaks, is T�1200 K and T�900 K for the equilibrium �V0�
and reduced V=0.90V0 volume, respectively. For the longi-
tudinal vibrations this temperature is somewhat lower, T
=700 K and T=500 K at the equilibrium and reduced vol-
ume.

The appearance of a double peak in the spectral density
Sx��� is due to the presence of longitudinal vibrations with
energies smaller and greater than the height of the barrier
that separates the bcc and � phases �see Fig. 1�. Similar
intensities of the vibration density testify that the share of
vibrations higher in energy than the barrier �over-barrier tra-
jectories� is equal to the share of vibrations with an energy
lower than the barrier height �vibrations near the � center�.
However, the presence of over-barrier vibrations yields no
direct information about the relative portion of time spent by
the system, respectively, in the bcc and the � phase. As was
shown,1 this information may be extracted from the spectral
density of the transverse vibrations, since their frequency
directly depends on where the system spends most of the
time: near the bcc or the � center. Thus, analysis of the
spectral density of the transverse vibrations makes it possible
to estimate the temperature at which the probability of find-
ing the system in either phase is the same.

In the third panel of Fig. 2 is shown the spectral density of
vibrations under a crystal compression to V=0.80V0. On the
whole, the changes with temperature in the spectral density
Sx coincide, at this volume, with the above-considered case.
The main distinction reduces to the presence, at high tem-
peratures of an additional peak in the region of ��2 THz.
At low temperatures �T600 K� this peak is the main one,

FIG. 1. The effective potential
W�x ,0� for different temperatures
and crystal volumes.
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and its position remains almost unchanged at all tempera-
tures considered. Despite the apparent resemblance of the
spectral density of the Ll mode at V=0.80V0 and V=V0, the
lattice dynamics in these cases are quite different. Namely, at
the equilibrium volume, V0, the vibrations at low tempera-
tures occur near the � sites, while at V=0.80V0 the peak in
the frequency range of ��2 THz is connected with the vi-
brations near the bcc sites. This is due to the fact that at V
=0.8V0 the free energy of the bcc phase is less than the
energy of the � phase �see Fig. 1� and, hence, at low tem-
peratures the system spends most of the time near the bcc
sites �x�0.16�. With increasing temperature, there appear
over-barrier vibrations with a lower frequency, which results
in the formation of a Sy��� peak in the frequency range of

��1 THz. As already noted, the presence of over-barrier
trajectories yields no information on the lattice stability.

As seen in Fig. 2, at V=0.80V0, with increasing tempera-
ture the maximum of the spectral density of the transverse
vibrations shifts slightly to higher frequencies, and a second
peak is entirely absent in the Sy��� curve. Such a character of
the spectral density change with temperature indicates that,
at all temperatures considered, the transverse vibrations are
mainly localized near the sites corresponding to the bcc
structure. In other words, at this volume the bcc lattice re-
mains stable at any temperature. This can be seen in Fig. 3
which shows the probability density of the longitudinal
atomic displacements at different temperatures and crystal
volumes.

As follows from the figure, at V=0.80V0, the probability
of finding the system near the bcc sites is greater. Nonethe-
less, at high temperatures, the system still spends much of
the time near the � sites �x=0�. Further reduction of the
volume to V=0.70V0 causes the vibrations to occur only near
the bcc sites. This is completely determined by the shape of
the effective potential at this volume �see Fig. 1� and the
absence of over-barrier vibrations. Correspondingly, in the
spectral density curves at V=0.70V0 �Fig. 2� a second peak
does not appear for both the longitudinal and transverse vi-
brations. With increasing temperature, only a shift of the
maxima is observed and, hence, at all temperatures consid-
ered, the bcc phase of zirconium is stable.

IV. TEMPERATURE DEPENDENCE OF THE VIBRATIONS
FREQUENCY OF THE Lt MODE OF bcc ZIRCONIUM

AND THE P-T PHASE DIAGRAM

As has been shown in the preceding section, the relative
intensity of the spectral density of the transverse vibrations
may be used to estimate the probability of finding the system
in one phase or another. The vibration frequencies �max of
the transverse Lt mode, for which the spectral density Sy���
reaches its absolute maximum at a given temperature, are
shown in Fig. 4. As seen, for V /V0�0.85, a slight decrease
in �max is observed with increasing temperature. Then, at a
certain temperature Ttr, the vibrational frequency �max
sharply decreases. Further increase in temperature causes the
frequency of the Lt vibrations to increase. An analysis of the
spectral density of transverse vibrations shows that the tem-
perature ranges with higher frequencies correspond to the �,
and those with lower frequencies to the bcc lattice. Since
Fig. 4 presents the frequencies at which the spectral density
of the transverse vibrations is maximum, a jump in �max
occurs at temperatures, for which Sy��� �Fig. 2� has two
peaks equal in intensity. In this case the temperature Ttr can
beconsidered as the �→� phase transition temperature at a
constant volume. In the figure, the vertical dotted lines mark
the temperature at which there is a sharp change in the trans-
verse vibrations frequency �max for different volumes. As
seen, with reduction in the volume the value of Ttr dimin-
ishes. For V /V00.80 the frequency �max monotonically in-
creases with temperature, in complete agreement with Fig. 2.
Such a behavior indicates that, for the considered volumes,
the bcc structure remains stable at all temperatures, and the

FIG. 2. The spectral density of vibrations for different tempera-
tures and crystal volumes.
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structural phase transition connected with this mode does not
occur.

Using the values of Ttr found in such a way for different
V /V0 and the pressure dependence of the volume, P�V� �Fig.
5�, calculated within the electron density functional theory,
one can determine the stability region of the bcc phase of Zr
in the P-T plane. In Fig. 6 the obtained values of Ttr , Ptr are
shown by open circles. The solid circles correspond to the
known experimental data.9,16–18 The dotted lines are drawn
through the experimental points in order to schematically
separate different phases of zirconium, and the solid line
indicates the interfaces obtained within the electron density
functional theory and the Debye-Grüneisen model.15

It can be seen that at small pressures �P5 GPa� the
calculated temperature, at which the bcc lattice becomes
stable with respect to the atomic displacements correspond-
ing to the L phonon, agrees well with the experimentally

measured temperature of the �→� transition. For example,
at atmospheric pressure this temperature is T=1136 K.9 Our
calculation yields, at P=0 GPa, a value of T=1150±50 K
for the stability boundary of bcc Zr. The triple point found in
Ref. 18 has the following coordinates: P=5.5 GPa, T
=995 K. We have obtained, at a pressure P=5.0 GPa, a tran-
sition temperature value of 1025±50 K. In Ref. 18 the tem-
peratures of the �→� and �→� transitions were thoroughly
measured at pressures ranging from 1 to 5 GPa. The experi-
mental points obtained are fairly well approximated by a
straight line with a slope equal to−2.4 °C/kbar. In our cal-
culation, in this interval of pressures there are only two
points at 0 and 5 GPa. The slope of the straight line drawn
through these points amounts to −2.5 °C/kbar, which is in
excellent agreement with the experimental values.

Our calculation suggests that in the range of high pres-
sures at room temperature, the bcc lattice becomes stable at
25 GPa. Experimentally, at room temperatures the �→bcc
transition is observed at 30±2 GPa �Ref. 16� and 35 GPa.17

If it is remembered that our calculation has no fitting param-
eters, such a result may be considered as quite satisfactory.
Unfortunately, no detailed experimental studies of the equi-

FIG. 3. The probability density
of the mean-square displacement
for the Ll vibrations at different
temperatures and volumes.

FIG. 4. The frequency �max of the transverse Lt vibrations as a
function of temperature for different volumes.

FIG. 5. The equation of state of bcc zirconium calculated within
the electron density functional theory.
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librium line between the � and � phases of Zr are currently
available. So, in Fig. 6 is also presented the Zr phase dia-
gram we have calculated in the Debye-Grüneisen model15

�solid line�. As seen, there is a quite reasonable agreement
between two theoretical calculations performed within differ-
ent models. Note that in the Debye-Grüneisen model, at T
=300 K, the �→bcc transition takes place at a pressure of
about 24 GPa, which closely agrees with the value obtained
in this work. There may be two main reasons for the discrep-
ancy between theory and experiment observed in the high-
pressure range. First, in our calculation the variation of the
c /a ratio in the � phase with the volume and temperature
was not taken into account. Second, the calculation was per-
formed for an ideal structure, whereas experimentally, it is
not feasible to obtain a perfect crystal under pressure.

As we have repeatedly noted, the displacements corre-
sponding to the L mode result in the formation of a hexago-
nal � lattice. At the same time, at P5.0 the formation of a
hcp lattice �� phase� is experimentally observed with de-
creasing temperature. The �→� structural phase transition
in Zr is usually attributed to an anomalous softening of the
transverse phonon at the N point of the Brillouin zone of the
bcc lattice. We have calculated6 the effective potential of the
N phonon of Zr at different volumes. An analysis of the
changes in the potential shape with the pressure allows us to
conclude that with increasing pressure the temperature at
which the bcc lattice becomes unstable with respect to the N
phonon diminishes. Thus, in the pressure range from 0 to
5 GPa and the temperature interval from 1000 to 1200 K
there exist at least two competitive processes responsible for
the disturbance of stability of the Zr bcc lattice.

The effective potentials of the transverse, Nt,
19 and longi-

tudinal, Ll, modes in �-Zr calculated in the frozen-phonon
model are shown in Fig. 7. The energy of the bcc phase was
chosen as the zero of energy. The zero on the abscissa cor-
responds to the bcc structure for the Nt mode, and for the Ll
mode, as before, to the � structure. For the Nt phonon the
effective potential has a double-well shape with a central
energy maximum corresponding to the bcc structure. Such a
shape of the potential results in the fact that, at low tempera-
tures, the bcc lattice becomes unstable with respect to the
displacements corresponding to the Nt phonon. With increas-
ing temperature, when the energy of the system exceeds the
barrier height, stabilization of the bcc structure is likely to

occur. Since the barrier height for the Nt phonon is less than
for the Ll one, the temperature, at which the bcc lattice of Zr
becomes unstable with respect to the atomic displacements
corresponding to the Nt mode, should be lower than for the
Ll mode.

If these are realistic assumptions, the following scenario
of the �→� phase transition could be expected: with de-
creasing temperature, in �-Zr there first arises instability
with respect to the Ll vibrations, which results in the forma-
tion of a metastable � phase. Since the � phase is unstable in
this range of temperatures and pressures, it transforms, in a
short time, into an � phase. At pressures above the triple
point, the � phase becomes stable and its transition into the
� phase with a hcp lattice does not occur.

It is not our intention, in this paper, to prove or disprove
such a plausible scenario for the �→� structural transforma-
tion. This would require a special study of the Nt phonon
frequency dependence and its changes with the pressure, as
was done in this work for the L mode.

V. CONCLUSION

We have discussed in detail the effect of the vibrational L
mode on the structural stability of �-Zr in a wide range of
pressures and temperatures. To this end, the two-mode effec-
tive potential of the longitudinal and transverse mode of bcc
zirconium with wave vector k=2/3�111�, as well as its
changes with pressure and temperature, were successively
calculated. It was found that with a reduction in the volume,
the energy barrier between the bcc and � lattice first de-
creases in depth, and at volumes below 0.8V0, the potential
acquires a double-well shape, and the bcc structure becomes
energetically preferential.

The effective potentials obtained for different tempera-
tures and volumes were used in solving a set of stochastic
differential equations with a thermostat of the white noise
type. An analysis of the spectral densities of these modes and
their changes under pressure calculated from the autocorre-
lation velocity functions allowed us to determine the equilib-
rium temperatures at which �-Zr remains stable.

The calculated stability region of the Zr � phase agrees
well with the experimental data available. This suggests that
for all pressures considered the main mode, associated with
instability of the bcc lattice of zirconium with decreasing
temperature, is the longitudinal L mode with wave vector

FIG. 6. The P-T phase diagram of zirconium: �, experiment
�Refs. 9, 16, and 17�; �, Ttr calculation; Debye-Grüneisen calcula-
tion �Ref. 15� �solid line�.

FIG. 7. The effective potential for the transverse �Nt� and lon-
gitudinal �Ll� modes in �-Zr calculated in the frozen-phonon model.
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k=2/3�111�. The particular shape of the equilibrium line
between the � phase, and the � and � phases may be deter-
mined by the presence of other anomalous vibrational modes
in �-Zr.
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