
Effect of electronic entropy on temperature peculiarities of the frequency characteristics of two
interacting anharmonic vibrational modes in �-Zr

V. Yu. Trubitsin*
Physico-Technical Institute, Ural Branch of RAS, 132 Kirov Street, 426001 Izhevsk, Russia

�Received 15 December 2005; published 16 June 2006�

A two-dimensional temperature-dependent effective potential is calculated for the interacting longitudinal
and transverse L phonons of � zirconium in the frozen-phonon model. The effective potentials obtained for
different temperatures are used for the numerical solution of a set of stochastic differential equations with a
thermostat of the white-noise type. Analysis of the spectral density of transverse vibrations allows one to
determine the temperature at which �-Zr becomes unstable with respect to the longitudinal L vibrations. The
obtained temperature value practically coincides with the experimental temperature of the �→� structural
transition in zirconium. The role of electronic entropy in the �-Zr stability is discussed.
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I. INTRODUCTION

In recent years, structural transformations of zirconium
induced by high temperatures and pressures have been inten-
sively investigated both experimentally and theoretically.
Considerable attention has been given to studying, at atmo-
spheric pressure, the structural stability of the high-
temperature � phase and the peculiarities of its transition into
an � phase existing at temperatures below T=1136 K.1 The
commonly accepted view today is that the structural �→�
phase transition at atmospheric pressure is closely related to
the softening of the transverse phonon with wave vector k
= 1

2 �110� �N phonon� experimentally observed in �-Zr.2,3

Theoretical arguments in favor of this viewpoint are mainly
based on calculations of the effective potential for the N
phonon performed in the frozen-phonon model.4 From these
calculations it follows that the effective potential of the N
phonon of Zr has a two-well shape, and, as a consequence,
the phonon frequency squared in the harmonic approxima-
tion is negative. The imaginary phonon frequency points to
the instability of �-Zr in the ground state.

Using the perturbation theory formalism for anharmonic
effects in crystals, it was shown4 that at high temperatures
the � phase of Zr becomes stable to the atomic displace-
ments corresponding to the N phonon due to its interaction
with other transverse vibrational modes lying along the �110�
direction. Using a modified pseudoharmonic approximation,5

we in turn succeeded in showing that in this case stability
may be attained by merely allowing for the inherent anhar-
monicity of the N mode.6

However, the stability of �-Zr as a whole is not deter-
mined only by the lattice stability to the atomic displace-
ments corresponding to the N phonon. The calculations per-
formed in the “frozen”-phonon model7 show that �-Zr is also
unstable with respect to the atomic displacements corre-
sponding to the longitudinal vibrations with wave vector k
= 2

3 �1,1 ,1� �Ll phonon�.
At pressures larger than the triple point �T=973 K and

P=5.5 GPa� such displacements cause the temperature phase
transition from the � to the � phase �the AlB2-type struc-
ture�. At room temperature the � phase of Zr is experimen-
tally observed in the pressure range from 2.2 to

30–35 GPa.8,9 At zero pressure the instability of �-Zr to this
mode manifests itself in a sharp decrease of the longitudinal
vibration frequency obtained from the spectra of inelastic
neutron scattering near k= 2

3 �1,1 ,1�.3 To our knowledge
none of the currently available theoretical studies discusses
the mechanism of stabilization of the high-temperature �
phase with respect to the Ll displacements. Moreover, it is
still unclear whether stabilization is due to the inherent an-
harmonicity of the Ll mode or to the phonon-phonon inter-
action.

In Ref. 10 we have suggested a model for two interacting
modes with wave vector k= 2

3 �1,1 ,1� �a strongly anharmonic
longitudinal Ll mode, and an almost harmonic transverse Lt
mode� embedded in a thermostat modelling their connection
with the rest of the crystal.

The temperature dependence of the vibration frequency of
the Ll and Lt modes was found by solving a system of sto-
chastic differential Langevin equations with a thermostat of
the white-noise type, which describe the motion of a particle
in a two-dimensional effective potential W�x ,y�. The poten-
tial was calculated within the electron density functional
theory for a series of simultaneous atomic displacements x ,y
corresponding to the Ll and Lt modes. The interaction of
these modes was shown to result in an induced anharmonic-
ity for quick transverse Lt vibrations which in the absence of
interaction remain almost harmonic at all temperatures con-
sidered. The presence of induced anharmonicity leads to the
frequency broadening of the spectral density S��� and to the
appearance of a complicated temperature dependence of
S��� of the Lt mode.

The calculation of the probability density of the mean-
square atomic displacements10 shows that the probability of
finding the atoms at the sites corresponding to the bcc lattice
�� phase� increases with temperature. However, even at tem-
peratures much higher than the point of the �→� structural
phase transition this probability is almost three times smaller
than the probability of finding the atoms at the � sites. In
other words, even at high temperatures the bcc lattice re-
mains unstable with respect to the Ll displacements.

We have assumed10 the two-mode effective potential
W�x ,y� to be temperature independent. This is a rough as-
sumption because, first, it does not allow for the crystal lat-
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tice expansion with increasing temperature. Second, at finite
temperatures the potential W�x ,y� should be calculated not
from the total energy of a crystal in the ground state, Eel, but
from the free energy F�T�,

F�T� = Eel − TSel, �1�

where Sel is the electronic entropy and T is the temperature.
In Ref. 11 the electronic entropy was shown to be of consid-
erable importance in stabilizing the high-temperature bcc
phase of Zr.

The effect of the crystal volume change on the two-mode
potential W�x ,y� will be detailed elsewhere. In this work we
shall restrict ourselves to the calculation of the electronic
entropy effect on W�x ,y�. We shall also find the temperature
dependence of the spectral density of the longitudinal, Ll,
and transverse, Lt, modes with k= 2

3 �111� and determine, at
zero pressure, the stability region of the � phase of Zr with
respect to the atomic displacements corresponding to these
modes. To this end we shall successively consider the depen-
dence of the electron entropy Sel�T ,x ,y� and free energy
F�T ,x ,y� on the temperature and atomic displacements x ,y.
The effective potentials WT�x ,y�=F�T ,x ,y�−F�T ,0 ,0� cal-
culated at each fixed temperature will be used in solving a set
of stochastic differential Langevin equations of motion with
a white-noise thermostat. An analogous stochastic approach
was used earlier12 to model the lattice vibrations of a
strongly anharmonic crystal. In Ref. 12, as distinct from this
work, the dynamics of motion of a single longitudinal Ll
mode in a one-dimensional temperature independent model
potential W�x� have been studied.

II. THE TWO-MODE EFFECTIVE POTENTIAL

As in a previous paper,10 the unit cell of �-Zr was chosen
as a hexagonal lattice with three base atoms. A detailed de-
scription of the unit cell geometry, its relation with the bcc
lattice parameters, and the atomic displacements correspond-
ing to the vibrations with the chosen wave vector k
= 2

3 �111� may be found, for example, in Ref. 4. The total
energy was calculated by the self-consistent full-potential
LMTO �FP LMTO� method13,14 with the GGA approxima-
tion for the exchange-correlation potential term.15 The same
set of FP LMTO parameters was used for all displacements.
The one-center expansions inside the MT spheres were con-
fined to lmax=6. The MT sphere radii were chosen equal to
Rmt=2.20 a .u. Integration over k was performed on a
�10,10,10� mesh equivalent to 166 k points in the irreduc-
ible part of the Brillouin zone. The total energy was calcu-
lated for 108 pairs of coordinates x ,y �18 values for the
variable x corresponding to the longitudinal Ll mode, and six
values for y corresponding to the transverse Lt mode�. The
energies obtained were first approximated by a tenth-degree
polynomial for the longitudinal vibrations and then by a
fourth-degree polynomial for the transverse ones.

The two-mode effective potential calculated in the frozen-
phonon model is shown in Fig. 1 �the potential part corre-
sponding to the positive period of transverse vibrations is
presented in the upper panel, while the lower panels show

the potential cross sections for the transverse �y=0� and lon-
gitudinal �x=0� vibration components.� As seen from the fig-
ure, the total energy is minimum at zero displacements �the
atoms are localized at the � sites�. Two local energy minima
at x��0.166 � , y=0 correspond to the bcc atomic arrange-
ment. It should be noted that to obtain the � structure ob-
served in zirconium from the bcc lattice it does not suffice to
merely displace the atoms along the x direction, one should
also increase the c /a ratio. Nevertheless, in this paper we
shall use the term “� phase” for a lattice with zero displace-
ments. At y=0, the effective potential for longitudinal vibra-
tions has a three-well shape, which agrees with the calcula-
tions in Ref. 4. Since the local minima are shallow, the bcc
lattice of Zr is unstable with respect to small longitudinal
vibrations. At large transverse displacements, the potential
for the longitudinal component transforms into a two-well
one.

The left-hand lower panel of Fig. 1 shows the cross sec-
tions corresponding to the “pure” transverse atomic vibra-
tions near the � �solid line� and � �dotted line� centers. The
effective potential is seen to have in either case a parabolic
shape, hence, the vibrations frequency for the transverse
branch, in the absence of interaction with the longitudinal
vibrations, must be described quite well by the harmonic
approximation in both the � and � phases.

III. CALCULATION OF THE ELECTRONIC ENTROPY

The electronic exitation entropy term in �1� will be intro-
duced as earlier.11 This means that our analysis is limited to

FIG. 1. Two-mode effective potential for longitudinal and trans-
verse atomic displacements corresponding to the vibrations with
wave vector k= 2

3 �1,1 ,1� in �-Zr. The displacements are given in
units of the lattice parameter a.

V. YU. TRUBITSIN PHYSICAL REVIEW B 73, 214302 �2006�

214302-2



the classical lattice-dynamics regime when the electron-
phonon interaction effects become negligible and the elec-
tronic excitation entropy term Sel is bare electronic entropy

Se = − kB� n�f ln f − �1 − f�ln�1 − f��dE . �2�

Here n�E� is the electron density of states �DOS�, and f�E� is
the Fermi distribution

f�E� = �exp ��E − �� + 1�−1, �3�

�=1/ �kBT�. The chemical potential ��T� is determined from
the condition for the number of electrons z,

z =� n�E�f�E�dE . �4�

In Ref. 11 Sel was calculated for the hcp and bcc structures of
Zr and Ti. The electronic entropy was shown to be large and
strongly nonlinear in temperature, as a result of both the
volume and energy dependences of the DOS.

In Fig. 2, n�E� is shown for different atomic displace-
ments corresponding to the Ll vibrations in the absence of
transverse displacements �y=0�.

The bottom figure corresponds to the � lattice �x=0.0�,
and the top one to the bcc lattice �x=0.166�. It can be seen
that a considerable change in the electron spectrum occurs at
longitudinal atomic displacements. So, the DOS at the Fermi
level, n�EF�, gets almost doubled on transition from the � to

the bcc structure. The DOS at the Fermi level reaches its
maximum at x=0.1, when the Fermi level passes through the
peak of DOS.

The electronic DOS at the Fermi level, n�EF�, and the
entropy at T=300 K calculated for the displacements corre-
sponding to the Ll vibrations in �-Zr are presented in Fig. 3.
It is seen that at room temperature the electronic entropy
changes at Ll displacements in the same way as the DOS at
the Fermi level. This result is in good agreement with the
expression for the entropy of a strongly degenerate electron
gas at low temperatures, known from the electron theory of
metals16

Se =
�2

3
n�EF�T . �5�

From this expression it follows that, at a constant tem-
perature, the entropy is proportional to the DOS at the Fermi
level. Nonetheless, it can be seen from the figure that near
x=0 and x=0.16 this proportionality is violated. To clarify
the situation, let us take a look at Fig. 4.

In Fig. 4�a� the temperature dependence of the entropy is
calculated for three atomic displacements corresponding to
�i� the � lattice �x=0.0�, �ii� the maximum DOS value x
=0.10, and �iii� x=0.20. It is seen that, on the whole, in the
temperature range considered the entropy is fairly well ap-
proximated by a linear function of temperature, which is in
good agreement with the expression for the entropy of a
strongly degenerate free electron gas �5�. Figure 4�b� shows,
however, that the coefficient of proportionality between en-

FIG. 2. The DOS of Zr at different atomic displacements x
corresponding to the Ll vibrations. Zero displacements correspond
to the � phase. The energy is reckoned from the Fermi energy.

FIG. 3. The DOS at the Fermi level �a� and entropy at
T=300 K �b� for the atomic displacements corresponding to the Ll

vibrations.
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tropy and temperature has an intricate temperature depen-
dence. So, it increases with temperature at x=0.0, and dimin-
ishes with increasing temperature at x=0.10, while at x
=0.20 the coefficient grows with a rise in temperature up to
T=1200 K and decreases with further increase of T. In rela-
tion �5� the coefficient of proportionality between entropy
and temperature is merely the DOS at the Fermi level. The
temperature dependence of S /T in Fig. 4�b� can be obtained
by replicating the Fermi energy in relation �5� for the chemi-
cal potential determined from the normalizing condition �4�.
Indeed, as seen in Fig. 2, the DOS grows with increase in
chemical potential for x=0.0, and decreases for x=0.10. The
intricate shape of the S /T curve at x=0.20 is due to the fact
that with increasing temperature n���T�� passes through the
maximum. Correspondingly, entropy grows at low tempera-
tures and diminishes at high ones. Thus, expression �5� may
be used to calculate the entropy in a wide temperature range.

In Fig. 5 the electronic entropy is calculated at T
=1800 K for the atomic displacements corresponding to both
the longitudinal, Ll, and transverse, Lt, vibrations with wave
vector k= 2

3 �1,1 ,1� in �-Zr. As seen from the figure, entropy
is an intricate function of the displacements. The entropy
minimum occurs at zero displacements corresponding to the
atomic positions characteristic of the � structure �see the
right-hand lower panel�.

In the left-hand lower panel of Fig. 5 the changes in en-
tropy are shown at transverse displacements for the � �solid
line� and bcc �dotted line� atomic configurations. The en-
tropy is seen to increase for the atomic vibrations in the �
lattice and decrease in the bcc one.

IV. TEMPERATURE DEPENDENCE OF ENTROPY AND
FREE ENERGY

As seen from Fig. 4, the temperature dependence of the
entropy differs for different atomic displacements x ,y. In
Fig. 6 the electronic entropy S�x ,0� is shown for various
temperatures. The difference in entropy between the � and
bcc lattices is seen to increase with temperature, the entropy
maximum shifting from x=0.10 to x=0.2.

As the entropy enters in the free energy �1� with negative
sign, such a change in entropy must lead to a decrease of the
difference in free energy between the � and � phases with
increasing temperature, and, as a consequence, to the varia-
tion with temperature of the effective potential shape. In the

FIG. 4. The temperature dependence of entropy �a�, and the
coefficient of proportionality between entropy and temperature �b�
for different atomic displacements �x=0, 0.1, and 0.2�.

FIG. 5. Electronic entropy at T=1800 K for the longitudinal and
transverse atomic displacements corresponding to the vibrations
with wave vector k= 2

3 �1,1 ,1� in �-Zr. The displacements are given
in units of the lattice parameter a.

FIG. 6. Entropy for the longitudinal displacements at different
temperatures.
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2D case the free energy as a function of the displacements
x ,y has a shape similar to that in Fig. 1. Note that for each
fixed temperature we obtain a particular effective potential
WT�x ,y�. As an illustrative example, we show in Fig. 7 only
the 1D potential WT�x ,0� for the Ll mode at different tem-
peratures, as being the most important for further discussion.
It can be seen that, at high temperatures, allowance for the
electronic entropy results in a significant change of the ef-
fective potential. Although the potential remains strongly an-
harmonic at high temperatures, the energies of the bcc and �
lattices become comparable.

Thus, by calculating the free energy at different tempera-
tures, we obtained the temperature-dependent effective po-
tentials for the interacting longitudinal and transverse vibra-
tions of � zirconium. In general, the magnitude of the
potential barrier between the � and � phases decreases with
increasing temperature, which should affect both the vibra-
tion frequency and the interaction between the LL and LT
modes.

V. EQUATIONS OF MOTION FOR A PARTICLE IN A
POTENTIAL FIELD WITH RANDOM FORCES

Let us consider the dynamics of motion of a pseudopar-
ticle in the 2D effective potential W�x ,y� shown in Fig. 1. As
follows from the construction of W�x ,y�, the variables x ,y
are generalized collective variables corresponding to two
waves of atomic displacements with the same wave vector
k= 2

3 �1,1 ,1� and different polarizations �longitudinal, x, and
transverse, y�. We assume that the effect of all the other
phonons of the system may be represented as random forces
acting on a system of two interacting oscillators. The dynam-
ics of motion of two interacting vibrational modes embedded
in a thermostat with random forces is defined by the stochas-
tic differentional equations of the Langevin type

d2x

dt2 +
�W�x,y�

�x
+ �x

dx

dt
= Fx�t� ,

d2y

dt2 +
�W�x,y�

�y
+ �y

dy

dt
= Fy�t� . �6�

Fx�t� ,Fy�t� are random forces with correlators

�Fi�t�	 = 0, �7�

�Fi�t�Fj�t��	 = 2T��ij��t − t�� , �8�

� are coefficients of the vibration damping, T is the tempera-
ture of the thermostat. Assuming all the higher momenta to
be zero at n�3,

�F�t1�F�t2� ¯ F�tn�	 = 0, �9�

we obtain the standard definition of the random process F�t�
called Gaussian white noise.

The coefficient in �8� was chosen so that Eqs. �6� de-
scribe, in the limit of large times, the relaxation of the dis-
tribution function to the stationary Boltzmann distribution
with temperature T,

P�X, v̄,t → 	 � = exp
−
mv̄2/2 + W�X�

2kbT
� , �10�

where X�t� is a dynamical vector variable, and the mean-
square velocity v̄ in the limit t→	 is equal to the thermo-
dynamically equilibrium value at temperature T,

v̄2 = lim
t→	

�v2	 = kbT . �11�

The equilibrium distribution �10� results from the action
of two opposing tendencies. Owing to the presence of ran-
dom forces F the velocity V �and, hence, X� becomes a
random value, while the term describing the damping �V
suppresses V, tending to reduce it to zero. The set of equa-
tions �6� was solved by numerical integration of stochastic
differential equations, using a method17 being a generaliza-
tion of the Runge-Kutta scheme to the stochastic differential
equations. We used a four-step method of third order with the
parameters from Ref. 17.

VI. SPECTRAL DENSITY

When solving the set of stochastic differential equations, a
particular effective potential W�T� was constructed for each
fixed temperature T in �8�. The calculation was performed
with a time step 
t=1.57�10−16 s, the number of steps in
the realization being Nsh=3�108. Thus, the total time of
modelling was tr�5�10−8 s, which is vastly greater than
the period of vibrations of the chosen modes. The test calcu-
lations for Nsh=9�108 have shown that the result remains
unchanged with such an increase of the modelling time.

The stochastic dynamical variables �coordinates X ,Y and
velocities VX ,VY� found by solving Eqs. �6� were used to
calculate the autocorrelation velocity functions Ki���
= ��Vi�0�Vi���		. To this end the whole interval of modelling
time was divided into realizations. The values of dynamical
variables X�t0� ,Y�t0� obtained at the end of each realization
were used as the starting values for the next one. In the
average, the length of one realization was Nr=100 000 steps
�1.57�10−11 s�. When calculating the correlators, the total
number of realizations over which the averaging was per-
formed amounted to 3000.

The autocorrelation velocity functions are shown in Fig. 8
for different temperatures. It can be seen that at low tempera-

FIG. 7. Free energy for the longitudinal displacements at differ-
ent temperatures.
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tures the autocorrelation functions oscillate for a time that
exceeds the period of atomic vibrations, whereas at high
temperatures the correlations decline rapidly. This means that
at high temperatures the system quickly forgets about its ini-
tial state and comes into a stationary one. The temperature
dependence of the correlation time is determined by the con-
ditions imposed on random external forces F�t� acting on the
system of two oscillators �see relations �7� and �8��.

The first relation reflects the fact that the mean force act-
ing on the system of oscillators is equal to zero. The second
condition implies that the interaction with the thermostat is
practically instantaneous, and the successive interactions do
not correlate with one another. As seen from Eq. �8�, the
magnitude of random external forces increases with tempera-
ture, which results in a faster damping of the correlators. It
follows from Fig. 8 that at low �T=300 K� and high �T
=1800 K� temperatures the autocorrelation functions have
practically the same oscillation frequency, while at interme-
diate temperatures there are additional oscillations. This is
especially noticeable for the autocorrelation of the y compo-
nent of the velocity at T=1200 K, and for �Vx�t�Vx�t0�	 at
T=900 K.

The spectral vibration density Si��� found from the auto-
correlation velocity function Ki���,

Si��� =
2

�
�

0

	

cos����Ki���d� , �12�

is presented in Fig. 9�a� for different temperatures. The first
maximum of the spectral density at frequencies close to �
�1 THz is due to the longitudinal vibrations, and the second
one, near ��4 THz is connected to the transverse vibra-
tions. As seen from the figure, the temperature variation
leads to a significant change in the spectral density of both
longitudinal and transverse vibrations.

We first consider the fine structure of the spectral density
of longitudinal vibrations, Sx���, and its evolution with tem-
perature. At low temperatures there is only one peak of fre-
quency �1

x �1.9 THz, which corresponds to the atomic vi-
brations near the sites appropriate to the � lattice �x=0�.
With increasing temperature, the frequency of such vibra-
tions diminishes, which is due to a slight anharmonicity of
the effective potential �Fig. 7� near the origin. At temperature
T=600 K, over-barrier vibrations arise in the system, leading
to the appearance of an additional peak in the vicinity of
�2

x �0.9 THz in the Sx��� curve. With a rise in temperature,
the probability of over-barrier vibrations increases, and at
T=900 K the share of such vibrations becomes dominant.
This results in an increase of the spectral density intensity
Sx��� at ��1.0 THz and in its decrease at �1.5 THz.
This tendency persists with further increase in temperature,
the maximum of the spectral density shifting to greater fre-

FIG. 8. Autocorrelation velocity functions �Vx�0�Vx�t�	 �upper
diagrams� and �Vy�0�Vy�t�	 �lower diagrams� at different tempera-
tures T.

FIG. 9. Spectral density of the L phonon calculated for the tem-
perature dependent �a� and temperature independent �b� effective
potential.

V. YU. TRUBITSIN PHYSICAL REVIEW B 73, 214302 �2006�

214302-6



quencies. As seen in Fig. 9�a�, at T=1800 K practically all Ll
vibrations are the over-barrier ones.

An analogous change in the spectral density is also ob-
served for the transverse atomic displacements �the fre-
quency range ��3–4.5 THz�. Again, at room temperature
we see one maximum of frequency �1

y �4.2 THz, corre-
sponding to the vibrations near the sites of the � lattice.
Then, with increasing temperature, an additional peak ap-
pears in the range �2

y �3.5 THz. With further rise in tem-
perature this peak shifts to higher frequencies and becomes
the main one.

In Fig. 10 the solid line shows the temperature depen-
dence of the vibrational frequency at which the spectral den-
sities Sx��� and Sy��� have a maximum value �individual
values of �max were estimated for the longitudinal and trans-
verse components of S����. As seen, for both types of vibra-
tions there is a discontinuity in �max. From the above it fol-
lows that the discontinuity occurs at Ttr, at which the
intensities are equal: Sx��1

x�=Sx��2
x� or Sy��1

y�=Sy��2
y�.

For the longitudinal vibrations the temperature Ttr
x lies in

the range from 600 to 900, and for the transverse ones Ttr
y

�1200. The fact that the temperatures Ttr
i differ is due to a

different nature of the two-hump structure of Sx��� and
Sy���. In the former case, the presence of a structure with
similar intensities of the spectral density reflects the fact that
the over-barrier vibrations are equal to the number of vibra-
tions near the � centers, while in the latter case the similar
intensities indicate that the shares of vibrations near the bcc
and � sites are equal. Therefore, the spectral density of the
longitudinal vibrations, Sx���, carries no immediate informa-
tion about the proportion of time the system spends, respec-
tively, in the bcc and the � lattice. Such information is con-
tained in the spectral density of the vibrations, Sy���. It is
seen from the above that at a temperature close to 1200 the
probabilities of finding the system in the � and the bcc phase
are equal. The temperature Ttr

y can be considered as the tem-
perature of equilibrium between the two phases with respect
to the atomic displacements characteristic of the longitudinal
Ll vibrations with wave vector k= 2

3 �111�.
For reference, in Fig. 9�b� is plotted the spectral density of

vibrations calculated for a temperature-independent effective
potential. In this case for all temperatures the effective po-

tential was the same, equal to the potential found from the
total energy without allowance for entropy. A comparison
between Fig. 9�a� and Fig. 9�b� shows that the greatest dis-
crepancy is observed for the transverse vibrations. Namely,
the two-hump structure of the spectral density of transverse
vibrations persists up to T=1800 K, which far exceeds the
phase transition temperature in zirconium. And at T
=1200 K the main contribution to the spectral density comes
from the vibrations with frequency ��4.2 THz, correspond-
ing to the vibrations near the equilibrium position of the �
structure. The calculated values of �max for this case are
shown in Fig. 10 by a dashed line. As seen from the figure,
taking account of the temperature dependence of the effec-
tive potential leads to a decrease in the frequency of both
longitudinal and transverse vibrations in the system and to a
fall in temperature Ttr

y .
Thus, the calculation performed shows that the allowance

made for the electronic entropy when modelling strongly an-
harmonic lattice vibrations results in a decrease of the calcu-
lated temperature value at which the � phase of zirconium
becomes stable to the atomic displacements corresponding to
the L phonon.

VII. CONCLUSION

In this work we have used �-Zr to discuss the effect of
temperature on the effective potential W�x ,y� and the spec-
tral density of vibrations of the longitudinal, Ll, and trans-
verse, Lt, interacting modes with wave vector k= 2

3 �111�. The
effective potential acting on these modes at zero temperature
was calculated in the frozen-phonon approximation within
the electron density functional theory by the FP LMTO
method.13,14 For nonzero temperatures, the potential WT was
defined as the difference of the free energies FT calculated
for different atomic displacements, WT�x ,y�=FT�x ,y�
−FT�0,0�. The required electronic entropy was defined
through the density of electron states and the Fermi-Dirac
distribution function.

The results obtained show that in zirconium in the tem-
perature range up to 2000 K the entropy may be well ap-
proximated by a linear function of the density of electronic
states. The shape of the effective potential W�x ,y� for the
Ll and Lt vibrations strongly depends on the temperature.
With increasing temperature the height of the energy barrier
between the bcc and � structures decreases. As a result, the
bcc lattice of Zr becomes stable with respect to these modes
at lower temperatures. An analysis of the vibrational fre-
quency of the transverse Lt mode showed the temperature, at
which the � phase of Zr becomes unstable with respect to the
longitudinal Ll displacements, to be TL=1150±25 K. This
value practically coincides with the experimental tempera-
ture of the �→� transition, T�→�=1136 K.1 Thus, the bcc
lattice of Zr is dynamically stable with respect to the longi-
tudinal Ll vibrations owing to the intrinsic anharmonicity
of this mode. Of considerable importance is the electronic
entropy which substantially enlarges the stability region of
�-Zr with a decrease in temperature. It is commonly believed
today that under atmospheric pressure and low temperatures
the structural instability of �-Zr is due to the softening

FIG. 10. The temperature dependence of the frequency �max.
The temperature-dependent effective potential is shown by the solid
line, the temperature-independent one by the dashed line.
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of the transverse phonon with wave vector k= 1
2 �110�

�Nt phonon�.3,18 The result obtained in this paper points to
the fact that at zero pressure there is at least one more pro-
cess responsible for the structural instability of bcc zirco-
nium: the atomic displacements corresponding to the longi-
tudinal Ll phonon. This brings up the question as to whether
the coincidence of the temperatures Ttr

y and T�→� is acciden-
tal, or the Ll mode is really of considerable, if not decisive,

importance in the �→� structural transformation in zirco-
nium.

ACKNOWLEDGMENTS

The author acknowledges the support from the RFBR
Grant No. 04-02-16680.

*Electronic address: tvynew@otf.pti.udm.ru
1 E. Yu. Tonkov, High Pressure Phase Transformations �Gordon

and Breach, Philadelphia, 1992�, Vol. 2.
2 A. Heiming, W. Petry, J. Trampenau, M. Alba, C. Herzig, and G.

Vogl, Phys. Rev. B 40, 11425 �1989�.
3 A. Heiming, W. Petry, J. Trampenau, M. Alba, C. Herzig, H. R.

Schober, and G. Vogl, Phys. Rev. B 43, 10948 �1991�.
4 Y. Chen, C.-L. Fu, K.-M. Ho, and B. N. Harmon, Phys. Rev. B

31, 6775 �1985�.
5 E. I. Salamatov, Phys. Status Solidi B 197, 323 �1996�.
6 S. A. Ostanin, E. I. Salamatov, and V. Yu. Trubitsin, Phys. Rev. B

57, 5002 �1998�.
7 K.-M. Ho, C. L. Fu, and B. N. Harmon, Phys. Rev. B 29, 1575

�1984�.
8 Y. Akahama, M. Kobayashi, and H. Kawamura, J. Phys. Soc. Jpn.

59, 3843 �1990�.
9 Y. Akahama, M. Kobayashi, and H. Kawamura, J. Phys. Soc. Jpn.

60, 3211 �1991�.
10 V. Trubitsin and S. Ostanin, Phys. Rev. Lett. 93, 155503 �2004�.
11 O. Eriksson, J. M. Wills, and D. Wallace, Phys. Rev. B 46, 5221

�1992�.
12 Yu. N. Gornostyrev, M. I. Katsnelson, A. V. Trefilov, and S. V.

Tret’jakov, Phys. Rev. B 54, 3286 �1996�.
13 S. Yu. Savrasov and D. Yu. Savrasov, Phys. Rev. B 46, 12181

�1992�.
14 S. Y. Savrasov, Phys. Rev. B 54, 16470 �1996�.
15 J. P. Perdew, K. Burke, and M. Emzerhof, Phys. Rev. Lett. 77,

3865 �1996�.
16 I. M. Lifshits, M. Ya. Azbel’, and M. I. Kaganov, Electron Theory

of Metals �Nauka, Moscow, 1971�.
17 H. S. Greenside and E. Helfand, Bell Syst. Tech. J. 60, 1927

�1981�.
18 S. A. Ostanin, E. I. Salamatov, and V. Yu. Trubitsin, High Press.

Res. 17, 385 �2000�.

V. YU. TRUBITSIN PHYSICAL REVIEW B 73, 214302 �2006�

214302-8


