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Atomic-scale simulations of strain localization in three-dimensional model amorphous solids
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Molecular-dynamics simulations of the mechanical properties of three different three-dimensional metallic
glass analogs reveal that each exhibits a transition from homogeneous flow to localized flow as the quench rate
used to produce the glass is decreased. The solid samples are tested in uniaxial compression over more than an
order of magnitude range of strain rates. Three different systems are studied including one single-component
glass former and two binary alloys. The strain rate sensitivity of the localization changes sign at a critical
cooling rate, implying a discontinuous transition in mechanical properties in the low loading rate limit. Analy-
sis of the short-range order using a generalization of the Frank-Kasper criterion reveals that the short-range
order is depleted in the shear band in two of the three systems. Moreover, the homogeneous to inhomogeneous
deformation transition in the mechanical properties is found to coincide with the percolation of an identifiable
aspect of the short-range order in those two systems. The third system studied, the Kob-Anderson glass, is
hypothesized not to be amenable to the methods typically used to characterize short-range order due to its
non-hard-sphere nature.

DOI: 10.1103/PhysRevB.73.214201 PACS number�s�: 62.20.Fe, 61.43.�j
I. INTRODUCTION

When a solid is plastically deformed, it can exhibit either
homogenous deformation, during which the plastic strain is
uniform throughout the specimen, or localized deformation,
during which plastic strain is confined in thin regions called
shear bands. Strain localization occurs spontaneously in a
variety of material systems including fine-grained alloys,
metallic glasses, polymers, granular media, foams, and
colloids.1–5 Physically based theories for localization are
critical for predicting fracture in amorphous solids, rheologi-
cal response, structural stability of granular media, and en-
ergy dissipation in geophysical processes.

It is commonly believed that strain localization arises
from loss of stability. Cases like adiabatic shear banding that
arise due to a thermoplastic instability are thought to be well
understood.6,7 However, there is no equivalent theory for
many other systems. One such system is metallic glass. Me-
tallic glass is a relatively new material that exhibits great
promise for many applications due to its high elastic limit,
high specific strength, and high restitution coefficient.8,9

However, spontaneous localization of strain presents the
dominant failure mode for metallic glass. Particularly under
uniaxial tension the tendency for metallic glass to undergo
localized deformation often results in dramatic failure via
fracture along a single shear band.10 This failure mode can
prevent any apparent hardening in tension, limiting the utility
of metallic glasses for structural applications. Current theo-
retical concepts regarding softening and localization in these
materials have relied on the concepts of free volume11 and
shear transformation zones.12,13 In free volume theories11,12,14

excess free volume generated during deformation lowers the
viscosity of the glass resulting in softening and
localization.14 Closely related shear transformation zone
theories focus on the micromechanisms of shear.12 Both
theories use a similar language of deformation kinetics pio-
neered by Eyring15 to describe the evolution of the glass

microstructure. These models have been used to understand
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shear softening and shear thinning,16 and to analyze data on
the emergence of localization.17 However, none of the cur-
rent theories can be used to directly model the nucleation and
propagation of shear bands, and many of the parameters in
the current theories cannot unambiguously be related to spe-
cific atomic scale structures or the thermomechanical history
of the glass.

Experimental techniques such as positron-annihilation
spectroscopy can reveal the open volume of metallic glass
but with rather poor spatial resolution.18,19 Several advanced
transmission electron microscopy �TEM� and x-ray-
diffraction techniques have been developed to study amor-
phous solids: �i� fluctuation electron microscopy �FEM�,
which aims to probe the medium range ordering �MRO� by
analyzing the variation of the contrast of dark-field images
with different degree of coherency of the electron beam;20–25

�ii� quantitative high-resolution transmission electron mi-
croscopy �HRTEM�, which has been used to map the nanom-
eter size voids inside the shear bands;26–28 �iii� extended
x-ray-absorption fine structure �EXAFS� which can provide
species-specific local environment information.29 The third
technique is of particular interest because it can be used to
reconstruct the three-dimensional atomic configurations by
using reverse Monte Carlo �RMC� methods.30,31 However, an
experimental structural characterization technique that can
provide unambiguous structural information at the atomic
scale is still lacking.

Atomic scale simulations, particularly molecular dynam-
ics �MD� that can reveal dynamics of the physical process,
play an increasingly crucial role in answering fundamental
questions in materials science. This is made possible par-
tially by the unprecedented computing power and readily
available algorithms that are capable of modeling many ma-
terial systems under a variety of conditions. In the simulation
work that has been undertaken regarding the mechanical be-
havior of metallic glasses, qualitative agreement between
simulation observations and experimental results is observed
in the general behavior of stress-strain curves, yielding and

32–40
cyclic loading behaviors. It should be noted that, be-
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cause a typical experimentally observed shear band width in
a metallic glass is on the order of 10–20 nm, the spatial
dimension of simulation box has to be considerably larger to
contain a shear band than to examine homogeneous elastic or
plastic response. Perhaps for this reason there has been rela-
tively little simulation work on strain localization of disor-
dered systems35,39,41–43 as compared to experimental or the-
oretical investigations. In particular, recent work by Bailey,
Schiotz, and Jacbosen39 have observed that in their simula-
tions shear bands do not arise as the result of a thermal
softening instability and that the shear banded region is not
characterized by a decrease in local density. The latter results
call into question the utility of free volume, closely related to
the local density, as a useful way to characterize the struc-
tural changes that accompany strain localization in metallic
glasses on the atomic scale. Only a few of the atomistic
studies to date have investigated the effect of quenching rate
on mechanical response.42,43 The thermal history of the glass
affects the structure of the glass, and therefore would reason-
ably be expected to affect mechanical behavior. We also con-
sider the effect of strain rate and, in the process, perform
multiple simulations to account for issues of sample-to-
sample variation inherent in the study of disordered systems.

To investigate the strain localization behavior of amor-
phous solids, we previously performed molecular-dynamics
simulations of uniaxial tensile loading43 and
nanoindentation44 on two-dimensional binary Lennard-Jones
systems. A transition in the mechanical behavior was ob-
served to occur in the quasistatic limit. Homogenous defor-
mation was predicted for quickly quenched glasses while
localized deformation was predicted for slowly quenched
glasses. This transition was found to coincide with the k-core
percolation of quasicrystal-like short range order �SRO�. Fur-
thermore, the fact that the material inside the shear band has
a lower degree of SRO than the undeformed material indi-
cates the instability arises from structural disordering. While
the results of these two-dimensional simulations are compel-
ling, in a more realistic three-dimensional system the addi-
tional degrees of freedom of the atoms could significantly
affect the dynamics of the physical process. Some atomic
rearrangements could be easier in three dimensions due to
the otherwise prohibited motion in the perpendicular direc-
tion. For two-dimensional systems, the preferred packing lo-
cally and globally is the same: equilateral triangles. This is
why atomic size mismatch has to be included to form a
glass.45 However, for three-dimensional systems, the locally
preferred packing, tetrahedra, cannot on its own constitute
the global ground-state structure. Therefore it is of interest to
test whether the observations made in two-dimensional sys-
tems hold in three dimensions. In this work, three different
three-dimensional systems are investigated through mechani-
cal tests and analysis procedures similar to those carried out
in Ref. 43.

II. MOLECULAR-DYNAMICS SIMULATIONS

A. Potential models

Three different model glass formers are investigated in

this work to examine the extent to which our prior observa-
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tions in two-dimensional systems are generic.43,44 The first
model utilizes the Dzugutov potential �DZ� to create a one-
component glass in three dimensions. The DZ potential is
described by the function

U�r� = A�r−m + B�exp� c

r − a
���a − r�

+ B exp� d

r − b
���b − r� . �1�

The parameters m, A, B, a, b, c, and d are chosen as de-
scribed in Ref. 46 and � represents the Heaviside step func-
tion which enforces the short-range nature of each of the
terms. All quantities are measured in reduced units: �, a
length scale approximately proportional to 88.5% of the
bond length, and �, an energy scale approximately propor-
tional to 1.72 times the binary interaction energy.46 These are
chosen to facilitate comparison to the widely used Lennard-
Jones system which is described below. By assuming particle
mass is m0, the reduced time unit is t0=��m0 /�. This poten-
tial features a maximum at the distance at which neighboring
atoms would reside in order to form fcc, bcc, or hcp crystals.
When cooled from the melt under zero pressure, the system
does not form these crystal phases; however, dodecagonal
quasicrystals or Frank-Kasper crystals can be formed if cool-
ing is slow enough.47 Under higher cooling rates, glasses are
formed. The mode coupling temperature of this system
TMCT=0.4� /k.48 This sets an upper bound for the glass tran-
sition temperature.

The second simulated glass is a Wahnstrom �WA� binary
Lennard-Jones system.49 We will refer the two species as A
and B. Atoms interact via a standard 12-6 Lennard-Jones
potential:

U���r� = 4��������

r
�12

− ����

r
�6� , �2�

where � and � represent the species of the interacting atoms;
��� represents the energy of the bond and ��� provides a
length scale, the distance at which the interaction energy is
zero. We choose �AA, �AA, and mB as the reduced units for
energy, length, and mass. The time unit is t0=�AA

�m0 /�AA.
The parameters are �AA=1.0, �BB=1.0, �AB=�BA=1.0, �AA
=1.0, �BB=5/6, �AB=�BA=11/12, mA=2, and mB=1. Inter-
actions are neglected beyond a cutoff set by the distance at
which the interaction potential falls below a critical value,
U���rc,���=0.0163�AA, such that rc,AA is 2.5 �AA, and energy
calculations are adjusted accordingly. This system has been
used by others to study dynamical heterogeneity in the su-
percooled liquid regime50 and by one of the authors to inves-
tigate plastic deformation in the glassy state.51,52

The third glass forming system studied here is a Kob-
Andersen �KA� binary Lennard-Jones system. The two spe-
cies, which will again be referred to as A and B, also interact
via Eq. �2�. We choose �AA, �AA, and mA as the reduced units
for energy, length, and mass for this system. The time unit is
t0=�AA

�m0 /�AA. The parameters for KA are �AA=1.0, �BB
=0.5, �AB=�BA=1.5, �AA=1.0, �BB=0.88, �AB=�BA=0.8,

mA=1, and mB=1. Interactions are neglected beyond a cutoff
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set by the distance at which the interaction potential falls
below a critical value, U���rc,���=0.0163�AA, such that rc,AA

is 2.5�AA.
In order to simplify discussions that follow, we use re-

duced units �, �, m, and t0 for energy, length, mass and time
to express our results for all three systems. The exact values
of those physical quantities are system dependent as de-
scribed above.

B. Preparation of glasses

We choose to simulate N atoms in a box of size Lx�Ly
�Lz where Lz is much smaller than the other two dimen-
sions. Information about the simulation systems for all three
potentials is summarized in Table I. This slab geometry is
used to maximize the spatial dimension in the X-Y plane, as
in Ref. 39. We prepare the glassy samples in the following
way. We start from well equilibrated liquid at initial tempera-
ture Ti and pressure Pi. Then the system is quenched down to
a very low final temperature Tf and pressure Pf over a cho-
sen time period �cooling time tcool� by constantly reducing
the temperature and pressure. The temperature is controlled
by using a Nose-Hoover thermostat with a varying heat bath
temperature.53 The pressure is controlled by a Parrinello-
Rahman barostat with a varying externally applied
pressure.54,55 The starting number density of the liquid is �i.
This and the mode coupling temperatures �TMCT� for all three
potentials for each particular initial number density are also
listed in Table I. Ti is at least double TMCT so that a relatively
short amount of time is needed to achieve thermal equilib-
rium. The temperature of the glassy solid �Tf� is around 3%
of that of the TMCT so that thermal effects are minimized
during the compression tests. For the WA and KA systems, a
glass is formed under all quenching rates investigated here.

TABLE I. Cooling schedule

System
N

�atoms�
Lx�Ly �Lz

��3�
TMCT

�� /k�
tcool

�t0�

DZ-1 112,000 74�114�16 0.4 1000

DZ-2 112,000 74�114�16 0.4 2000

DZ-3 112,000 74�114�16 0.4 5000

DZ-4 112,000 74�114�16 0.4 7500

DZ-5 112,000 74�114�16 0.4 10000

WA-1 144,000 70�105�15 0.57 100

WA-2 144,000 70�105�15 0.57 1000

WA-3 144,000 70�105�15 0.57 5000

WA-4 144,000 70�105�15 0.57 10000

WA-5 144,000 70�105�15 0.57 40000a

KA-1 144,000 72�108�15 0.435 100

KA-2 144,000 72�108�15 0.435 1000

KA-3 144,000 72�108�15 0.435 10000

KA-4 144,000 72�108�15 0.435 20000

aThis is an estimated cooling time for a three-step
cooling schedules �details in Table II�.
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However, for the DZ system, quasicrystals and sometimes
even bcc crystallites can be precipitated for low quenching
rates. Discontinuities in the potential energy versus tempera-
ture are evident for slowly cooled DZ samples. These corre-
spond to the formation of dodecagonal quasicrystals as con-
firmed by the structural analysis:47 for samples with cooling
time longer than 10 000 t0, a 12-fold symmetry axis indicates
the existence of dodecagonal quasicrystals. Therefore this is
the maximum cooling time we can use and still obtain a glass
for the DZ system. The cooling times for the DZ samples are
1000, 2000, 5000, 7500, 10 000 t0 for DZ-1 through DZ-5 as
in Table I. The cooling times for the WA samples are 100,
1000, 5000, 10 000, 40 000 �effective� t0 for WA-1 through
WA-5 as in Table I. For the slowest cooling for the WA
system, we use a three stage quenching schedule �Table II� to
maximize the cooling time while the temperature is near the
glass transition temperature. A one-stage quench spends
about one quarter of the time around the glass transition �step
II in Table II�. Therefore we consider the effective cooling
time for WA-5 to be about 40 000 t0. This practice is used to
reduce the computing time. The cooling times for the KA
system are 100, 1000, 10 000, 20 000 t0 for KA-1 through
KA-4 as in Table I. Three to nine independent samples for
each quenching schedule are employed to examine sample to
sample variations. The average potential energy per atom

DZ, WA, and KA systems.

Ti

/k�
Tf

�� /k�
Pi

�� /�3�
Pf

�� /�3�
�i

�1/�3�

Number
of

samples

1.0 0.030 6.0 0.0 0.84 4

1.0 0.030 6.0 0.0 0.84 5

1.0 0.030 6.0 0.0 0.84 5

1.0 0.030 6.0 0.0 0.84 4

1.0 0.030 6.0 0.0 0.84 8

1.2 0.036 13.3 0.0 1.28 3

1.2 0.036 13.3 0.0 1.28 3

1.2 0.036 13.3 0.0 1.28 9

1.2 0.036 13.3 0.0 1.28 9

1.2 0.036 13.3 0.0 1.28 5

.87 0.030 8.5 0.0 1.20 3

.87 0.030 8.5 0.0 1.20 3

.87 0.030 8.5 0.0 1.20 6

.87 0.030 8.5 0.0 1.20 6

ling schedule that is comparable to other one-step

TABLE II. Three-step cooling schedule for WA-5.

Tstart

�� /k�
Tend

�� /k�
Pstart

�� /�3�
Pend

�� /�3�
Cooling Time for

WA-5 �t0�

Step I 1.2 0.73 13.3 7.98 100

Step II 0.73 0.45 7.98 4.73 10000

Step III 0.45 0.036 4.73 0.00 100
s for

��

0

0

0

0

coo
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before mechanical tests is used to quantify the structural sta-
bility of the glass. Samples quenched at higher rates exhibit
higher potential energy.

The geometry for the uniaxial compression test is illus-
trated in Fig. 1�a�. During mechanical tests the Y axis is the
uniaxial compression direction. The strain is applied homog-
enously throughout the sample with periodic boundary con-
ditions imposed along both X-Y planes and Z-X planes, al-
though the material response is not constrained to be
homogeneous. Y-Z planes are free surfaces in order to allow
shear band slip. There are two facts that suggest the presence
of the free surfaces are important for relieving the structural
constraint, but do not in themselves account for the localized
deformation behavior: �i� the deformation does not necessar-
ily initiate at the surfaces; �ii� simple shear tests using Lees-

FIG. 1. �Color online� Illustration of the test geometry �a� and
the slip with rotation �b� for uniaxial compression. Materials be-
tween the slip plane, denoted by the tilted line in �b�, and its image
are considered to be the simulation system. The arrows represent
the normal and tangential forces on the slip plane.
Edwards boundary conditions without surfaces show very
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similar localization behavior.56 Thus we feel that these simu-
lations show a more convincing demonstration of spontane-
ous localization from the bulk than simple shear simulations
that utilize constrained bounding walls which could poten-
tially induce localized deformation.41 Next we consider the
rotation of the system that accompanies shear band slip. For
the sake of discussion, we consider the system between the
shear band and the next shear band image as shown in Fig.
1�b�. This system is equivalent to the original system due to
the periodic boundary condition. Because the shear band nor-
mally forms at an angle approximately 45° to the loading
direction, there is a net torque resulting from the normal
stress. Before yielding, this torque is balanced by the torque
of the friction force on the sliding surface. However, when
slip occurs, the friction force drops, and the system is rotated
by the normal stress torque. The rotation of the system is
important because it allows shear band propagation while
maintaining the lateral displacement of the top of the system
relative to the bottom.

Since the sample is a thin slab, the net stress in the thick-
ness direction, �̄zz, is maintained zero by coupling to a
barostat. No thermostat is used during compression. Six
strain rates are used in this study: 0.0005, 0.0002, 0.0001,
0.00005, 0.000 02, and 0.000 01 t0

−1.

C. Uniaxial tensile tests

Figure 2 shows representative compressive stress strain
curves for the shortest and longest cooling times at the low-
est strain rate for each of the three systems. For samples
produced at the longer cooling times the stress reaches a
higher maximum and then suddenly drops. This is followed
by a more steady flow regime during which some serrations
are evident. The sudden drops are caused by the formation of
shear bands. However, for samples produced with short cool-
ing time, the stress strain curves are rather smooth and the
behavior is close to the ideal elastic–perfectly plastic re-
sponse. Figure 3 shows typical systems compressed by 10%
strain with atoms colored by the local value of the deviatoric
shear strain. The deviatoric shear strain is obtained through a
least-square fitting of the atomic displacements of neighbor-
ing atoms within a cutoff distance.13 This cutoff distance is
3� for all three systems. In Ref. 43, we introduced a quantity
we called the deformation participation ratio �DPR� in order
to quantify the degree of localization apparent in Fig. 3. The
definition of DPR is the fraction of atoms that have a local
deviatoric shear strain larger than the nominal shear strain
for the whole system. For the case of ideally localized defor-
mation in large systems, only a small fraction of the material
carries the plastic deformation. Therefore the DPR has a
lower bound of the shear band width divided by the system
size for an ideally localized deformation. For the case of
ideally homogenous deformation, atoms have equal probabil-
ity to have a local strain larger than the nominal shear strain
or smaller than the nominal shear strain. Therefore the DPR
has an upper bound of 0.5 for ideally homogenous deforma-
tion. Following the same analysis as in Ref. 43, we obtained
DPR at 10% strain for samples with different cooling rates
and different strain rates as shown in Fig. 4. In all cases the
-4
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DPR is lower in the samples that start at lower potential
energy, indicating localization is enhanced in the more
slowly quenched samples. Additionally, in all cases there is a
crossover in the strain rate dependence of the DPR. For
samples produced at high cooling rates, lower strain rate
compression tests have higher DPR than higher strain rate
tests. However, for samples with low cooling rates, lower
strain rate compression tests have lower DPR. We quantify
this utilizing a power-law relation to model DPR as a func-
tion of strain rate:

DPR = A�̇m �3�

Here �̇ is the strain rate, A is a positive constant, and m is the

FIG. 2. Stress-strain curves for DZ �a�, WA �b�, and KA �c�
systems at the lowest strain rate 0.000 01t0

−1. The broken lines rep-
resent samples produced with short cooling time �DZ-1, WA-1, and
KA-1� and solid lines represent samples produced with long cooling
time �DZ-5, WA-5, and KA-4�.
strain rate sensitivity of the DPR. The purpose of the power-
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law fit is solely to quantify the trend of the strain rate depen-
dence. Note that since we are only interested in the trend, no
term is included in Eq. �3� that restricts DPR within the
bounds of 0.0–0.5. Quantifying the trend with respect to
strain rate is important because the lowest strain rate we can
access using atomic simulations is approximately 107 s−1.
Although we cannot directly simulate the localization behav-
ior in the quasistatic limit, we can predict the low rate be-
havior from an extrapolation of the accessible high strain rate
simulation data. Thus the physical significance of m is that
the sign of m determines the predicted localization behavior
in the low strain rate limit. If m is positive then, in the qua-
sistatic large system size limit, DPR will approach zero,
which corresponds to localized deformation. On the other
hand, if m is negative, DPR will increase as strain rate de-
creases and eventually attain the upper bound of 0.5, which
corresponds to homogenous deformation. As shown in Fig.
5, m changes from negative to positive in all three potential
systems. This indicates that there is a discontinuous transi-
tion of homogenous flow to localized deformation in the qua-
sistatic limit depending on sample preparations. A similar
transition was observed in our study of the two-dimensional
binary system described in Ref. 43.

III. SRO STRUCTURAL CHARACTERIZATION

Figure 6 shows the pair-correlation functions for the
shortest and longest cooling time for all three systems before
mechanical tests. It is clear that the two-body correlation
functions, particularly the radial distributions obtained
through averaging, do not capture the subtle structural differ-
ences between samples that are prepared with different
quenching rates. Therefore higher-order correlations have to
be considered. The quasicrystal-like SRO characterization
used in our previous two-dimensional investigations43,44 pro-
vides a way to quantify the many-body correlations by uti-
lizing the fact that the two-dimensional system in Ref. 43 has
an underlying quasicrystalline state. Similarly, the DZ sys-
tem also has a dodecagonal quasicrystalline state that is of
the Frank-Kasper type and is mostly tetrahedrally close
packed.57 However, there is no corresponding known quasi-
crystalline state for WA and KA systems. Here our goal is to
find a generic means to characterize SRO in three-
dimensional systems. A natural starting point is the tetrahe-
dral order. This is because tetrahedral packing represents the
closest approach of four rigid spheres. Even more sophisti-
cated approaches, such as ab initio calculations on Li-atom
cluster packing, predict that the optimal structures are those
that maximize the number of tetrahedra because the valence
electrons prefer to localize in tetrahedral interstices.45,58

Therefore, under hard-sphere assumptions, it seems generally
true that an atom prefers to form as many tetrahedra as pos-
sible with its nearest neighbors to maximize the local pack-
ing efficiency. This argument is also supported by the fact
that, for all three systems, the samples with the lowest
quenching rates are 0.5–0.8 % more dense than the samples
with the highest quenching rates. We will assume that in an
ideal packing the center atom forms nothing but tetrahedra

with its neighbors. For example, the icosahedral center forms
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20 tetrahedra with its neighboring vertices. This is equivalent
to requiring that the faces of each coordination polyhedron,
consisting of the near neighbors of each atom, are composed
entirely of triangles. We will refer to the near neighbor atoms
surrounding the central atom as the coordination shell.

By calculating the number of faces, edges, and vertices, a
criterion for this ideal packing can be derived based on Eu-
ler’s theorem:59

�
q

�6 − q�	q = 12. �4�

Here the surface coordination number q is defined for each
atom in the coordination shell as the number of neighboring
atoms also residing in the coordination shell. 	q represents
the number of atoms in the coordination shell with a surface
coordination number q. We refer to atoms with a coordina-
tion shell satisfying Eq. �4� as atoms with triangulated coor-
dination shell �TCS� SRO. Frank and Kasper59 found four
such triangulated coordination shells with coordination num-
bers of 12 �icosahedron�, 14, 15, and 16 constraining the
surface coordination number to be only 5 and 6 for nearly
identical atoms. More configurations satisfy Eq. �4� if size-
mismatch is allowed. Here we allow q to be any value for the
sake of generality. In practice, q cannot be smaller than 3
except at the surface and cannot exceed 7 for all three sys-
tems investigated here. We use the average of the first and
second peak position in the partial radial distribution func-
tion as the cutoffs for the first neighbor shell. The cutoff for
the DZ system is about 1.48�, which is close to 1.5� used in
other studies.48 The cutoff for WA system is about 1.43, 1.32,
1.22� for the AA, AB, and BB bonds, respectively. The cutoff
for the KA system is about 1.45, 1.22, 1.32� for the AA, AB,
and BB bonds, respectively.

This topological criterion differs somewhat from the ra-
dius ratios calculated by Miracle, Sanders, and Senkov to

maximize the packing efficiency of the first neighbor shell
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given a coordination number.60 For comparison, the SRO
criterion considered here requires the faces of the coordina-
tion polyhedron to be triangular without restricting the sur-
face coordination number. On the other hand, the SRO crite-
rion of Miracle et al. requires the surface coordination
number to be the same without explicitly restricting the poly-
hedron faces. The essentially mean-field assumption that
each atomic environment is identical leads to some configu-
rations that seem to have no topological realization. For this
reason we prefer the criterion presented here. Further studies
are needed to illustrate which approach better represents
packing in hard spheres and metallic glass alloys.

There are two other popular methods widely used to char-
acterize the icosahedral order or crystalline order in liquids
and glasses. In common neighbor analysis �CNA�,61 the
structural unit identified is a pair of atoms, which is not an
enclosed structure. Therefore it is not possible to associate a
unique structural signature with an individual atom based on
CNA. Instead, in the method above, we identify the complete
first neighbor shell around each atom. Another important
method to characterize the local environment is the bond
orientational order analysis.62 Different local atomic environ-
ments have different local bond order spectra. However, in
order to obtain good statistics of the spectrum, one has to
average over many atoms. Thus the spatial resolution is low.
Furthermore, determining which type of local structure one
atom belongs to based on its bond order spectrum is not
trivial and often arbitrary cutoffs are used to make these
distinctions.63

In Fig. 7, the number density of TCS SRO is plotted along
with a deformation map in which atoms are colored by the
local shear strain. For the DZ system and the WA system, the
material inside the shear band has a significantly lower SRO
than the undeformed material. Therefore the TCS SRO is
effective for structurally characterizing the locations of shear
bands in those two systems. This also indicates that the

FIG. 3. Plastic deformation represented by de-
viatoric shear strain �projected to X-Y plane� of
uniaxial compression samples at 10% strain at the
lowest strain rate 0.000 01t0

−1 for DZ-1 – DZ-5
from left to right as shown in �a�; WA-1 – WA-5
from left to right as shown in �b�; KA-1 – KA-4
from left to right as shown in �c�. Atoms are col-
ored according to the local deviatoric shear strain.
Black represents strain larger than 20% while
white represents 0% strain. The stress and strain
curves of the systems with the shortest and long-
est cooling time for all three systems are plotted
in Fig. 2.
breakdown of this kind of SRO is critical to the instability
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that causes strain localization. This is analogous to our pre-
vious observation that quasicrystal-like SRO is depleted in
shear bands during nanoindentation of a two-dimensional bi-
nary system.44 However, for the KA system, there are no
significant features in the density of TCS SRO similar to
those in the deformation map. Therefore the success of this
kind of SRO analysis depends on the specific nature of the
potential and alloy system. For comparison, we included the
number density maps in Fig. 7. These maps are equivalent to
free volume calculations assuming a chemically homoge-
neous system since, in this case, the hard-sphere component

−1

FIG. 4. Deformation participation ratio �DPR� measured at 10%
strain plotted as a function of the potential energy per atom mea-
sured prior to the uniaxial compression tests for DZ �a�, WA �b�,
and KA �c� systems. Data are shown for tests at the highest strain
rate 0.0005t0

−1 �broken lines� and lowest strain rate 0.000 01t0
−1

�solid lines�.
v0, subtracted to calculate the free volume, v f =� −v0, is

214201
spatially uniform. Only the number density map in the DZ
system shows recognizable features similar to the deforma-
tion map. It should be noted that there should be a correla-
tion between the degree of TCS SRO as defined here and the
number density, simply because this SRO definition is de-
rived to correspond to efficient packing. However, the rela-
tively small differences in number density are typically
washed out by the local-density fluctuations. In order to ob-
tain a better signal-to-noise ratio in analyzing the number
density, one would need to average over a larger region of
the material to get better statistics. This may not be possible
on the narrow scale of a shear band width. Another signifi-
cant draw back for number density is that it is very sensitive

FIG. 5. Strain rate sensitivity m is plotted as a function of po-
tential energy per atom of the sample measured prior to the me-
chanical test for DZ �a�, WA �b�, and KA �c� systems. A transition
from negative to positive m occurs for all three systems.
to the stress state since it couples to the dilatational strain.
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Therefore for our purposes SRO is a better structural char-
acterization method than the number density or, by exten-
sion, free volume.

IV. PERCOLATION OF SRO

We have observed that in two dimensions k-core percola-
tion of quasicrystal-like SRO �Ref. 43� coincides with the
mechanical behavior transition. Here we want to investigate
whether similar percolation of TCS SRO occurs in the three-

FIG. 6. Radial distribution function curves for �a� DZ-1 and
DZ-5; �b� WA-1 and WA-5; �c� KA-1 and KA-4. The upper broken
lines represent samples produced with the shortest cooling time and
lower solid lines represent samples produced with the longest cool-
ing time. The curves are shifted so that they will be distinguishable.
214201
dimensional systems. Following the connection criterion in
Ref. 48, we define two atoms with TCS SRO to be connected
if they share at least three atoms. This condition is equivalent
to requiring the two TCS SRO coordination polyhedra to
share a face or to interpenetrate.

For the DZ system, we observe that the TCS SRO perco-
lates in all samples investigated, even those produced at the
highest cooling rates. Thus we do not see a percolation tran-
sition of TCS SRO in DZ system corresponding to the tran-
sition in mechanical properties evident in Fig. 5. It should be
noted that the Dzugutov potential deviates significantly from
a hard-sphere model because of the energy maximum and the
interactions extending beyond near neighbors. The fact that
the Dzugutov potential strongly favors tetrahedral order may
account for why the TCS SRO criterion overestimates the
SRO in the DZ system. Further evidence that TCS SRO does
not determine the packing efficiency in this system is pro-
vided by the relatively low density of the DZ system
�0.838�−3� when compared to the WA �1.291�−3� or KA
�1.224�−3� systems with the same cooling time �tcool

FIG. 7. Each row shows the distribution of plastic deformation
�projected to X-Y plane� on the left, the density of TCS SRO �pro-
jected to X-Y plane� averaged over volume elements in the middle,
and the average density over the same volume elements on the
right. Row �a� is a DZ sample �DZ-5� and averaging is performed
over volumes of size 6.3�6.5�16.3�3; row �b� is a WA sample
�WA-5� and averaging is performed over volumes of size 6.0
�6.4�15.4�3, and row �c� is a KA sample �KA-4� and averaging
is performed over volumes of size 6.0�6.3�15.4�3. All three
samples have undergone a 10% strain compression at the lowest
strain rate, 0.000 01t0

−1. The color scheme of the distributions of
plastic deformation is the same as in Fig. 3. For all TCS density
maps, black represents SRO equal or larger than the average SRO;
white represents zero SRO. For all number density maps, black
represents the average local number density; white represents a den-
sity that is, 12% for �a�, 3% for �b�, and 5% for �c�, lower than the
average, respectively, to maximize contrast of the density maps.
=10 000t0�. Indeed, SRO that only considers icosahedral or-
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der is observed to percolate near the mechanical behavior
transition, as shown in Fig. 8. Similar percolation has been
observed in the DZ system as the supercooled liquid ap-
proaches the glass transition.64 For the WA system, we do
observe a TCS SRO percolation transition to occur where the
mechanical transition takes place as shown in Fig. 9. There-
fore TCS SRO appears to be the relevant SRO for the WA
system. For the KA system, no systems exhibited percola-
tion. We believe this is not due to the lack of a structural
transition, but rather due to the failure of TCS SRO to ad-
equately characterize the KA system. Particularly, in this sys-
tem the mean of the AA bond length and BB bond length is
larger than that of the AB bond. Furthermore, the bond
strength of AB is larger than that of either AA or BB, which
indicates strong chemical affinity in this system. Therefore
an alternative SRO that considers both the non-hard-sphere
nature and the chemical SRO needs to be defined to reveal
the structural transition that triggers the homogeneous-
inhomogeneous deformation transition in this and similarly
complex alloy systems where chemical effects play a signifi-
cant role in determining bond lengths.

FIG. 8. The fraction of DZ systems that exhibit percolation
�black dots� of icosahedral SRO is plotted as a function of potential
energy per atom of each sample as measured prior to the mechani-
cal test. The strain rate sensitivities for these systems, m �crosses�,
are also plotted for comparison.

FIG. 9. The fraction of WA systems that exhibit percolation
�black dots� of TCS SRO is plotted as a function of potential energy
per atom of each sample as measured prior to the mechanical test.
The strain rate sensitivities for these systems, m �crosses�, are also

plotted for comparison.
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V. CONCLUSIONS

Using the Dzugutov system and two binary Lennard-
Jones systems we have demonstrated that a number of our
previous observations in two-dimensional systems also hold
in these three-dimensional systems. In uniaxial compression
tests of all three systems, strain localization is observed in
glasses produced at lower cooling rates and homogenous de-
formation is observed in glasses produced at higher cooling
rates. Moreover, the strain rate sensitivity of the localization
changes from negative to positive which indicates an under-
lying transition from homogenous to localized deformation
in the quasistatic limit as the quench rate is reduced.

We have generalized the Frank-Kasper criterion to deter-
mine the SRO in all three systems. This type of SRO origi-
nates from a model of efficient local packing of atoms given
two important assumptions: that they interact only via near-
neighbor interactions, and that efficiently packed structures
consist of triangulated polyhedra. Therefore the appropriate-
ness of this measure depends on whether the potential is
similar in behavior to that of a hard-sphere system. Conse-
quently the analysis achieved different levels of success in
each of the glasses simulated. In the KA system the mean of
the AA and BB bond lengths is significantly larger than the
AB bond length, resulting in atoms deviating from spherical
packing in heterogeneous chemical environments. The pack-
ing of nonspherical particles is significantly different than
hard spheres because of the additional rotational degrees of
freedom and can reasonably result in a deviation from trian-
gulated coordination shells.65 Therefore the KA system is the
farthest away from the hard-sphere model. The maxima in
the DZ potential introduces a significant second nearest-
neighbor interaction that strongly favors the formation of
icosahedra and other Frank-Kasper structures with coordina-
tion 14, 15, and 16 �Ref. 59� resulting in a high degree of
distorted tetrahedral order. The fact that DZ system is less
dense than a monatomic Lennard-Jones glass �approximately
1.0�−3 using a similar quenching schedule�, as well as the
other two binary Lennard-Jones systems, indicates that this
tetrahedral order is achieved at the expense of the packing
efficiency. We believe this explains why DZ is observed to
have a coinciding percolation point if only icosahedral order
is considered, but exhibits excess SRO if the TCS SRO cri-
terion is applied. The WA system is the closest to the hard-
sphere model and we do observe a transition in percolation
of TCS SRO corresponding to the mechanical transition in
this system.

The key issue that emerges is the question of whether
there is a unique way to define the most relevant measure of
SRO in a general glassy system. A proper measure of SRO
has to account for whether the structures in the material are
energetically favorable but the generalized Frank-Kasper cri-
terion we developed here only measures the packing geom-
etry. For systems close to the hard-sphere model, this method
should be a relevant measure of SRO in three-dimensional
systems, even for larger size mismatch or more constituents.
However, to the extent that actual bonding can vary signifi-
cantly from the hard-sphere limit, this criterion is likely to
break down in more complex alloy systems, and more so-
phisticated measures of short- and medium-range order will

need to be developed.
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