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Within the framework of the linearized Ginzburg-Landau theory, we study the phase boundary of thin
superconducting films. These films are nanostructured such that there is a one-dimensional periodic enhance-
ment of the surface superconductivity which can be realized, e.g., by placing superconducting stripes with a
higher critical temperature on top of the film, leading to a one-dimensional modulation of the superconducting
boundary condition. We study the influence of this one-dimensional modulation on the enhancement of the
critical temperature of the film. In a second step we also place stripes at the bottom of the film and we study
both in-phase and out-of-phase modulation.

DOI: 10.1103/PhysRevB.73.212503 PACS number�s�: 74.20.De, 74.78.�w, 74.62.�c

Due to progress in nanofabrication the study of thin su-
perconducting films and confined mesoscopic samples re-
ceived a lot of attention during the past decade. The proper-
ties of superconductors and therefore their applications are
determined by their critical parameters, i.e., the critical field,
the critical current, and the critical temperature. By nano-
structuring the superconductor, i.e., quantum design, one can
modify the properties of an existing superconducting mate-
rial.

Most studies focus on improving the critical magnetic
fields and the critical current. Thin films containing a regular
array of pinning centers �see, e.g., Refs. 1–3� are popular
study objects. The pinning centers capture the magnetic field,
i.e., the vortices, which leads to less dissipation and, hence,
an increase of the critical current and critical magnetic field.
Also confining the superconducting material to small meso-
scopic samples �see, e.g., Refs. 4–6� leads to an enhance-
ment of both the critical current and the critical field. How-
ever, this kind of nanostructuring does not lead to an
enhancement of the critical temperature.

Fink and Joiner7 succeeded in treating the surface of a
semi-infinite superconductor half-space by cold working in
such a way that the superconductivity near the surface was
enhanced, which resulted in a higher critical field and critical
current, but also in a higher critical temperature. Another
possibility to enhance the critical temperature is to bring the
superconductor in contact with a well-chosen superconduct-
ing layer with a higher transition temperature.8

Few theoretical studies have been performed where super-
conductivity near the boundary is enhanced leading to an
enhancement of the critical temperature. Montevecchi and
Indekeu9 presented a theoretical study of the effect of con-
finement on the superconducting/normal transition for sys-
tems with surface enhancement. Yampolskii and Peeters10

studied thin disks surrounded by a medium which enhances
surface superconductivity, and Baelus et al.11 studied super-
conducting cylinders surrounded by such a medium. Re-
cently, Slachmuylders et al.12 studied the magnetic field de-
pendence of the critical temperature for superconducting
squares with enhanced superconductivity near the boundary.

In the present paper, we study thin nanostructured super-
conducting films, where surface superconductivity is periodi-

cally enhanced. In particular, we consider an infinite super-
conducting film made of a material with bulk critical
temperature Tc. On top of this film superconducting stripes
are placed which are made of a superconducting material
with a higher critical temperature. Let us call d the thickness
of the film and W the distance between the centers of two
stripes. These stripes result in an alternating boundary con-
dition, which we approximate by the function �z=d/2�x�
=�max sin2��x /W�, where �max=−� /b with b�0 the ex-
trapolation length which determines the boundary
condition.13 Figure 1 shows schematically the configuration.

Notice that this configuration is well within reach of the
possibilities of present day nanofabrication. It presents a
route to enhance the critical temperature of superconducting
films.

We solve the linearized Ginzburg-Landau equation in the
absence of an applied magnetic field

− �

2m
�� 2� = − ��T�� , �1�

where −��T� equals the energy

E � − ��T� =
�2

2m�2�1 −
T

Tc
� . �2�

When we express all the lengths in ����T=0� �i.e., W*

=W /� and d*=d /�� and the energy in E0=�2 /2mS �i.e., E*

FIG. 1. �Color online� The configuration. An infinite supercon-
ducting film �blue area� with thickness d with superconducting
stripes �red regions� made of a material with a higher Tc on top. The
black curve shows our approximation for the boundary condition.
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=E /E0� with S the surface area of the cross section of the
unit cell, i.e., S=Wd, then we can rewrite the Ginzburg-
Landau equation as follows:

− �� *2� = 	� , �3�

with 	�E* /W*d* the eigenvalue of the system.
To solve this problem we take into account the general

boundary condition in the absence of the magnetic field, i.e.,

� − n� · �� *��boundary =
1

b*� , �4�

in dimensionless units, with b*=b /� the dimensionless ex-
trapolation length.

Since the linearized Ginzburg-Landau equation is only
valid at the phase boundary, we know that the temperature T
equals the critical temperature T* of the sample, i.e., T=T*,
and therefore

E = − ��T*� =
�2

2m�2�1 −
T*

Tc
� , �5�

where Tc is the bulk critical temperature of the film material.
In dimensionless units, we find

	 =
E*

W*d* = �1 −
T*

Tc
� , �6�

or T* /Tc=−	+1. The critical temperature of the sample T* is
obtained from the eigenvalue 	 of the linearized Ginzburg-
Landau equation �3�.

From now on, we will express everything in dimension-
less units and we will omit the “*” except for T* which is the
critical temperature of the sample.

We solved Eq. �3� using the finite element technique, on a
finite interval −d /2�z�d /2 �d is the thickness of the film�
and 0�x�W �W is the distance between the stripes�, with
the periodic boundary conditions ��0,z�=��W ,z�, ���x ,
−d /2� /��x ,−d /2�=�z=−d/2�x� and ���x ,d /2� /��x ,d /2�
=�z=d/2�x�.

First, we consider the case where only the upper boundary
is modulated, as shown in Fig. 1, i.e., �z=−d/2�x�=0 and
�z=d/2�x�=�max sin2��x /W� where �max=−� /b with b�0 the
extrapolation length which determines the enhancement of
the superconductivity near the boundary. When −� /b=0, i.e.,
the condition for a normal/insulator boundary, the critical
temperature T* equals the bulk critical temperature Tc, re-
gardless of the thickness of the film or the distance between
the stripes. When increasing −� /b the Cooper-pair density is
locally enhanced at the upper boundary of the film, below the
positions of the stripes. As an example, we show in the inset
of Fig. 2 the Cooper-pair density for W=�, d=�, and −� /b
=0.2. Near the top of the film, the Cooper-pair density is
clearly enhanced due to the presence of the stripe. Notice
that in between two stripes, the Cooper-pair density is still
enhanced near the upper boundary of the film. Due to this
local enhancement of the Cooper-pair density, the critical
temperature of the film increases compared to the one of
bulk material. In Fig. 2 the critical temperature T* of the
superconducting film is given as a function of −� /b for W

=1,2, and 5� and d=0.5,1, and 2�. For fixed film thickness
d the critical temperature T* enhances when the width of the
stripes becomes larger, i.e., increasing W. For relative thin

FIG. 2. �Color online� The critical temperature as a function of
−� /b for a superconducting film with W=1,2, and 5� and
d=0.5,1, and 2�. The inset shows the Cooper-pair density for
W=�, d=�, and −� /b=0.2.

FIG. 3. �Color online� The Cooper-pair density along the z
direction �a� for x=W /2, i.e., below the center of the stripe, and
�b� for x=0, i.e., below the middle between two stripes, for W=�,
d=�, and different values of −� /b, i.e., −� /b=0 up to 1.0 with steps
of 0.1.
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films, i.e., d�� we find that the dependence of the critical
temperature on d is much more pronounced than the depen-
dence on W. When decreasing the thickness d of the film the
enhancement of the critical temperature T* increases. This
can be explained by the fact that a relatively larger part of the
film is influenced by the stripes.

Above we already mentioned that near the top of the film
the Cooper-pair density is not only enhanced just below the
stripes, but also in between two stripes �see the inset of Fig.
2�. In Figs. 3�a� and 3�b� we show the enhancement of the
Cooper-pair density along the z direction for x=W /2, i.e.,
below the center of the stripe, and for x=0, i.e., below the
middle between two stripes, for W=�, d=�, and different
values of −� /b. The Cooper-pair density is always normal-
ized by its value at z=−d /2. With increasing −� /b the

Cooper-pair density enhances in both cases, but the enhance-
ment is much more pronounced below the stripes.

From Fig. 2 it was clear that the critical temperature T* of
the film increases, when decreasing the thickness of the film,
at least when d��, because a relatively larger part of the
film is influenced by the stripes. What happens when we
increase the thickness of the film? When the film is thick, it
can be expected that the stripes only influence the Cooper-
pair density near the top of the film. Figure 4 shows the
critical temperature T* of the film as a function of the film
thickness for −� /b=0.1, 0.2, and 0.3. With increasing thick-
ness the critical temperature T* decreases towards a constant
value, as is shown in the inset of Fig. 4. For −� /b=0.1, 0.2,
and 0.3 we find that the critical temperature becomes T* /Tc
=1.003, 1.010, and 1.065 when d becomes sufficiently large.

Up to now, we only placed stripes at the top of the film.
Now, we will discuss what happens when we also place
stripes at the bottom of the film. We assume that the bound-
ary condition at the bottom of the film is given by
�z=−d/2�x�=�max sin2��x /W�, where �max=−� /b and the ex-
trapolation length b has the same value as on the top of the
film. First, we will assume that the modulation is the same at
the top and the bottom, i.e., in-phase modulation. Later, we
will discuss what happens when the stripes at the bottom are
shifted over a distance a, i.e., �z=−d/2�x�=�max sin2���x
−a� /W	.

Figure 5 shows the critical temperature as a function of
−� /b for a film with thickness d=0.2 and 0.5� when the
stripes are placed at the top only �dashed curves�, i.e., Ttop

* ,

FIG. 4. �Color online� The critical temperature T* as a function
of the film thickness for a superconducting film with W=� and
−� /b=0.1, 0.2, and 0.3. The inset shows the results for larger thick-
nesses on a log-scale.

FIG. 5. �Color online� The critical temperature as a function
of −� /b for a film with thickness d=0.2 and 0.5� when the stripes
are placed at the top only �dashed curves�, i.e., Ttop

* , and when
the stripes are placed on the top and the bottom �solid curves�,
i.e., Ttop/bottom

* . The dotted curve with the solid symbols indicates
2Ttop

* −1.

FIG. 6. �Color online� The critical temperature T* as a function
of the displacement a of the stripes at the bottom for W=�, −� /b
=0.2 and �a� d=0.2� and �b� d=0.5�. The insets �i�–�iii� show con-
tour plots of the Cooper-pair density at a=−W /2, −W /4, and 0,
respectively. High Cooper-pair density is given by red regions,
while low Cooper-pair density is given by blue regions.
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and when the stripes are placed on the top and the bottom
�solid curves�, i.e., Ttop/bottom

* . In both cases the critical tem-
perature obviously increases with increasing −� /b, but the
increase is much stronger when the stripes are placed on
both sides. Ttop/bottom

* can be approached rather closely by
2Ttop

* −1, which is shown by the solid symbols with the dot-
ted curves.

Next, we move the stripes at the bottom over a distance a
in the x direction, where a=0 means that the stripes at the
bottom are at the same x values as the stripes at the top, and
a= ±W /2 means that the stripes at the bottom are just in
between the stripes at the top. Figure 6�a� shows the critical
temperature T* as a function of the displacement a of the
stripes at the bottom for W=�, d=0.2�, and −� /b=0.2. The
insets �i�–�iii� show contour plots of the Cooper-pair density
at a=−W /2 ,−W /4, and 0, respectively. High Cooper-pair
density is given by red regions, while low Cooper-pair den-
sity is given by blue regions. The critical temperature has a
maximum at a=0, when the modulation is in-phase, and
a minimum when the modulation is out of phase, i.e.,
a= ±W /2. Figure 6�b� shows the same but now for a film

with thickness d=0.5�. For d=0.2� we find that the differ-
ence in critical temperature is about 0.5%, while for d
=0.5� it is 0.4%. When we further increase the film thick-
ness, the influence of the shift a decreases, because the over-
lap between the regions of enhancement of superconductivity
decreases.

In conclusion, we investigated the one-dimensional
modulation of the superconducting boundary condition for
thin superconducting films, within the framework of the lin-
earized Ginzburg-Landau theory. For a thin film with a spa-
tial one-dimensional modulation of the boundary condition,
we find an increase of the critical temperature with −� /b and
W and a decrease with d. For a modulation of the boundary
condition at the top and the bottom we found a maximum
critical temperature when both modulations are in-phase.
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